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Abstract. When ontologies reach a certain size and complexity, faults such as
inconsistencies or wrong entailments are hardly avoidable. Locating the faulty
axioms that cause these faults is a hard and time-consuming task. Addressing this
issue, several techniques for semi-automatic fault localization in ontologies have
been proposed. Often, these approaches involve a human expert who provides
answers to system-generated questions about the intended (correct) ontology in
order to reduce the possible fault locations. To suggest as few and as informative
questions as possible, existing methods draw on various algorithmic optimizati-
ons as well as heuristics. However, these computations are often based on certain
assumptions about the interacting user and the metric to be optimized.
In this work, we critically discuss these optimization criteria and suppositions
about the user. As a result, we suggest an alternative, arguably more realistic
metric to measure the expert’s effort and show that existing approaches do not
achieve optimal efficiency in terms of this metric. Moreover, we detect that signi-
ficant differences regarding user interaction costs arise if the assumptions made
by existing works do not hold. As a remedy, we suggest a new notion of expert
question that does not rely on any assumptions about the user’s way of answering.
Experiments on faulty real-world ontologies testify that the new querying method
minimizes the necessary expert consultations in the majority of cases and reduces
the computation time for the best next question by at least 80 % in all scenarios.

Keywords: Ontology Debugging · Interactive Debugging · Fault Localization ·
Sequential Diagnosis · Expert Questions · Ontology Quality Assurance · Onto-
logy Repair · Test-Driven Debugging

1 Introduction

As Semantic Web technologies have become widely adopted in, e.g., government, se-
curity and health applications, the quality assurance of the data, information and know-
ledge used by these applications is a critical requirement. At the core of these semantic
technologies, ontologies are a means to represent knowledge in a formal, structured and
human-readable way, with a well-defined semantics. As ontologies are often developed
and cured in a collaborative way by numerous contributors [34, 35], are merged by au-
tomated alignment tools [11], reach vast sizes and complexities [5], or use expressive
logical formalisms such as OWL 2 [6], faults occur regularly during the evolution of
ontologies [3, 11, 14, 29]. Since one of the major benefits of ontologies is the capability



2 Patrick Rodler and Michael Eichholzer

of using them to perform logical reasoning and thereby solve relevant problems, faults
that affect the ontology’s semantics are of particular concern for semantic applications.
Specifically, such faults may cause the ontology, e.g., to become inconsistent, include
unsatisfiable classes, or feature wrong entailments.

One important step towards the repair of such faults is the localization of the re-
sponsible faulty ontology axioms. To handle nowadays ontologies with often thousands
of axioms, several fault localization approaches [9, 11, 12, 30] have been proposed to
semi-automatically assist humans in this complex and time-consuming task, amongst
them a plug-in, called ONTODEBUG1 [27], for the popular ontology editor PROTÉGÉ.
These approaches, which are mainly based on the model-based diagnosis framework
[10, 15], use the faulty ontology along with additional specifications to reason about
different fault assumptions. Such fault assumptions are called diagnoses if they are
consistent with all given specifications. The specifications usually comprehend some
requirements to the correct ontology, e.g., in the form of logical properties (e.g., con-
sistency, coherency), and/or in terms of necessary and forbidden entailments. The latter
are usually referred to as positive and negative test cases [4, 28, 30].

Research on model-based diagnosis has brought up various algorithms [9–11, 15,
16, 32] for computing and ranking diagnoses; however, a frequent problem is that a high
number of competing diagnoses might exist where all of them lead to repaired ontolo-
gies with necessarily different semantics [16]. Finding the correct diagnosis (pinpoin-
ting the actually faulty axioms) is thus crucial for successful and sustainable repair. But,
it is a mentally-demanding task for humans since it requires them to reason about and
recognize entailments and non-entailments [7] of the ontology under particular fault as-
sumptions. To relieve the user as much as possible, interactive techniques [16, 30] have
been developed to undertake this task for the most part. What remains to be accomplis-
hed by the interacting human—usually an ontology engineer or a domain expert (re-
ferred to as expert in the sequel)—is the answering of a sequence of system-generated
queries about the intended ontology. Roughly speaking, this involves the classification
of certain axioms as either intended entailments (positive test cases) or non-intended
entailments (negative test cases). Several evaluations [21, 24, 30, 32] have shown the fe-
asibility and usefulness of such a query-based approach for fault localization, and its
efficiency has been improved by various algorithmic optimizations [8, 20, 25, 31] and
the use of heuristics [17, 18, 23, 26, 30] for the selection of the most informative questi-
ons to ask an expert.

However, the used heuristics, algorithms and optimization criteria are based on cer-
tain assumptions about the question answering behavior of experts. In this work, we
critically discuss existing approaches with regard to these assumptions. Particularly, we
characterize different types of experts and show that not all of them are equally well
accommodated by current querying approaches. That is, we observe that the necessary
expert interaction cost to locate the ontology’s faults is significantly influenced by the
way queries posed by the debugging system are answered. To overcome this issue, we
propose a new way of user interaction that serves all discussed expert types equally well
and moreover increases the expected amount of information relevant for fault localiza-
tion obtained from the expert per asked axiom.

1 All information about ONTODEBUG can be found at http://isbi.aau.at/ontodebug/
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The main idea behind the new approach is to restrict queries—which are, for quite
natural reasons, sets of axioms in existing methods—only to single axioms, as usually
done in sequential diagnosis applications [10, 33], where systems different from on-
tologies (e.g., digital circuits) are analyzed and such singleton queries are the natural
choice. That is, experts are asked single axioms at a time instead of getting batch queries
which (possibly) include multiple axioms. Experiments on real-world faulty ontologies
manifest the reasonability of the new approach. Specifically, in two thirds of the studied
cases, the new querying technique is superior to existing ones in terms of minimizing
the number of required expert inputs, regardless of the type of expert. In addition, the
time for the determination of the best next query is reduced by at least 80 % in all
investigated cases when using singleton queries instead of existing techniques.

The rest of the work is organized as follows. In Sec. 2, we give a short introduction
to query-based fault localization in ontologies, before we challenge certain assumptions
made by state-of-the-art approaches in the field in Sec. 3. We describe our proposed
approach and discuss its pros and cons in Sec. 4. Our experiments and the obtained
results are explicated in Sec. 5. We address research limitations and point to relevant
future work topics in Sec. 6. In Sec. 7, we summarize the conclusions from this work.

2 Query-Based Fault Localization in Ontologies

We briefly recap basic technical concepts used in works on ontology fault localization,
based on [16, 30]. As a running example we reuse the example presented in [23].
Fault Localization Problem Instance. We assume a faulty ontology to be given by
the finite set of axioms O ∪ B, where O includes the possibly faulty axioms and B the
correct (background knowledge) axioms, and O ∩ B = ∅ holds. This partitioning of
the ontology means that faulty axioms must be sought only in O, whereas B provides
the fault localization context. At this, B can be useful to achieve a fault search space
restriction (if parts of the faulty ontology are marked correct) or a higher fault detection
rate (if external approved knowledge is taken into account, which may point at other-
wise undetected faults). Besides logical properties such as consistency and coherency2,
requirements to the intended (correct) ontology can be formulated as a set of test cases
[4], analogously as it is common practice in software engineering [2]. In particular, we
distinguish between two types of test cases, positive (set P ) and negative (set N ) ones.
Each test case is a set (interpreted as conjunction) of axioms; positive ones p ∈ P must
be and negative ones n ∈ N must not be entailed by the intended ontology. We call
〈O,B,P ,N 〉 an (ontology) fault localization problem instance (FPI).

Example 1. Consider the following ontology with the terminology T :3

{ ax 1 : ActiveResearcher v ∃writes.(Paper t Review) ,
ax 2 : ∃writes.> v Author , ax 3 : Author v Employee u Person }

2 An ontology O is coherent iff there do not exist any unsatisfiable classes in O. A class C is
unsatisfiable in O iff O |= C v ⊥. See also [13, Def. 1 and 2].

3 Throughout the presented examples, we use Description Logic notation. For details, see [1].
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and assertions A : {ax 4 : ActiveResearcher(ann)}. In natural language, the termi-
nological axioms say that “an active researcher writes something which is a paper, a
review or both” (ax 1), that “everybody who writes something is an author” (ax 2), and
that “an author is both an employee and a person” (ax 3). To locate faults in the termi-
nology while accepting as correct the assertion (ax 4) and stipulating that Ann is not
necessarily an employee (negative test case n1 : {Employee(ann)}), one can specify
the following FPI: fpiex := 〈T ,A, ∅, {n1}〉. ut

Fault Hypotheses. Let UP denote the union of all positive test cases p ∈ P and
C⊥ := {C v ⊥ | C named class in O,B or P}. Given that the ontology, along with
the positive test cases, is inconsistent or incoherent, i.e., O ∪ B ∪ UP |= x for some
x ∈ {⊥} ∪C⊥, or some negative test case is entailed, i.e., O ∪ B ∪ UP |= n for some
n ∈ N , some axioms in O must be accordingly modified or deleted to enable the for-
mulation of the intended ontology. We call such a set of axioms D ⊆ O a diagnosis for
the FPI 〈O,B,P ,N 〉 iff (O \ D) ∪ B ∪ UP 6|= x for all x ∈ N ∪ {⊥} ∪ C⊥. D is a
minimal diagnosis iff there is no diagnosis D′ ⊂ D. We call D∗ the actual diagnosis iff
all ax ∈ D∗ are faulty and all ax ∈ O \ D∗ are correct. For efficiency and to point to
minimally-invasive ontology repairs, fault localization approaches usually restrict their
focus to the computation of minimal diagnoses.

Example 2. For fpiex = 〈O,B,P ,N 〉 from Example 1, O ∪ B ∪ UP entails the ne-
gative test case n1 ∈ N , i.e., that Ann is an employee. The reason is that according
to ax 1(∈ O) and ax 4(∈ B), Ann writes some paper or review since she is an active
researcher. Due to the additional ax 2(∈ O), Ann is also an author because she writes
something. Finally, since Ann is an author, she must be both an employee and a person,
as postulated by ax 3(∈ O). Hence, D1 : [ax 1], D2 : [ax 2], D3 : [ax 3] are (all the)
minimal diagnoses for fpiex, as the deletion of any ax i ∈ O breaks the unwanted en-
tailment n1. ut

Eliminating Wrong Fault Hypotheses. The main idea model-based diagnosis systems
use for fault localization—i.e., to find the actual diagnosis among the set of all (mi-
nimal) diagnoses—is that different fault assumptions have (necessarily [16]) different
semantic properties in terms of entailments and non-entailments. This fact can be ex-
ploited to distinguish between diagnoses by posing queries to an expert. A query is
a set of axioms Q which is entailed by some fault assumptions and inconsistent with
some other fault assumptions. Asking a query Q corresponds to the question “Is (the
conjunction of axioms in) Q an entailment of the intended ontology?”. If answered po-
sitively, Q is added to the positive test cases P , and otherwise to the negative test cases
N . The crucial property which makes a set of axioms Q a query is that at least one
diagnosis is ruled out, regardless of whether Q is affirmed or negated. More formally:

Definition 1 (Query). Given a set of minimal diagnoses D for an FPI 〈O,B,P ,N 〉,
a set of axioms Q is a query (wrt. D) iff at least one Di ∈ D is not a diagnosis for
〈O,B,P ∪ {Q} ,N 〉 and at least oneDj ∈ D is not a diagnosis for 〈O,B,P ,N ∪ {Q}〉.

The expert who answers queries is modeled as a function expert : Q→ {y, n}where Q
is the query space; expert(Q) = y iff the answer to Q is positive, else expert(Q) = n.
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Example 3. Let the known set of diagnoses for fpiex be D = {D1,D2,D3} (see Ex-
ample 2). One query wrt. D is, e.g., Q1 := {ActiveResearcher v Author}. Because,
(i) adding Q1 to P yields that the removal of D1 or D2 from O no longer breaks the
unwanted entailment Employee(ann), i.e., D1,D2 are no longer minimal diagnoses,
(ii) moving Q1 to N means that D3 is not a minimal diagnosis anymore, as, to prevent
the entailment of (the new negative test case) Q1, at least one of ax 1, ax 2 must be de-
leted. Note, e.g., Q2 := {Author v Person} is not a query since no diagnosis in D is
invalidated upon assigning Q2 to P , i.e., in case of a positive answer no useful informa-
tion for diagnoses discrimination is gained. This is because Q2 does not contribute to
the violation of n1 (in fact, the other “part” Author v Employee of ax 3 does so). ut

Problem Definition. The query-based ontology fault localization problem (QFL) is to
find for an FPI a series of queries to an expert, the answers of which lead to a single
possible remaining fault assumption. The optimization version of the problem includes
the additional goal to minimize the effort of the expert. Formally:

Problem 1 ((Optimal) QFL). Given: FPI 〈O,B,P ,N 〉. Find: (Minimal-cost) series of
queries Q1, . . . , Qk s.t. there is only one minimal diagnosis for 〈O,B,P ∪P ′, N ∪N ′〉,
where P ′ (N ′) is the set of all positively (negatively) answered queries, i.e., P ′ := {Qi |
1 ≤ i ≤ k, expert(Qi) = y} and N ′ := {Qi | 1 ≤ i ≤ k, expert(Qi) = n}.

Note, there is no unified definition of the cost of a solution to the QFL problem. Ba-
sically, any function mapping the series Q1, . . . , Qk to a non-negative real number is
possible. We pick up on this discussion again in Sec. 3.

Example 4. Let the actual diagnosis for fpiex beD3, i.e., ax 3 is the (only) faulty axiom
in O (intuition: an author is not necessarily employed, but might be, e.g., a freelan-
cer). Then, given fpiex as an input, solutions to Problem 1, yielding the final diagnosis
D3, are, e.g., P ′ = ∅,N ′ = {{∃writes.> v Employee} , {Author v Employee}} or
P ′ = {{ActiveResearcher v Author}} ,N ′ = ∅. Measuring the querying cost by the
number of queries, the latter solution (cost: 1) is optimal, the former (cost: 2) not. ut

Query-based Fault Localization. Given an FPI as input, the ontology fault localization
process basically consists of four iteratively repeated steps: First, the fault hypotheses
computation yielding a sample of diagnoses; second, the determination of the best next
query based on the known diagnoses; third, the information acquisition where an expert
answers the suggested query; and, fourth, the integration of the gathered information,
involving the extension of the FPI’s test cases based on the posed query and the given
answer. The reiteration of these phases is continued until a stop criterion is met, e.g., a
single diagnosis remains. This remaining diagnosis then provably contains only faulty
axioms [16].4 In the following, we will call one execution of this process starting with
an input FPI until a single diagnosis is isolated a fault localization session.

4 Note, the finally remaining diagnosis does not necessarily contain all faulty axioms in the
ontology, as, e.g., some existing faults in the ontology might not yet have surfaced in terms of
problems such as wrong entailments or unsatisfiable classes. However, the (faultiness of the)
axioms in the final diagnosis do(es) explain all observed problems in the ontology.



6 Patrick Rodler and Michael Eichholzer

3 Discussion of Query-based Fault Localization Approaches

In this section we analyze existing approaches regarding the assumptions they make
about (the query answering behavior of) the interacting user, their properties resulting
from natural design choices, as well as optimization criteria they consider.
Assumptions about Query Answering. All approaches that draw on the interactive
methodology described in Sec. 2 make the assumption during their computations and
optimizations that the expert evaluates each query as a whole. That is, they perform an
assessment of the query effect or (information) gain based on two possible outcomes
(y and n). However, in fact, since queries might contain multiple axioms, the feedback
of an expert to a query might take a multitude of different shapes. Because, the expert
might not view the query as an atomic question, but at the axiom level, i.e., inspecting
axioms one-by-one. Clearly, to answer the query Q = {ax 1, . . . , axm} positively—
i.e., that the conjunction of the axioms ax 1, . . . , axm is an entailment of the intended
ontology—one needs to scrutinize and approve the entailment of all single axioms. To
negate the query Q, in contrast, it suffices to detect one of the m axioms in Q which
is not an entailment of the intended ontology. In this latter case, however, we might
reasonably assume the interacting expert to be able to name (at least this) one specific
axiom ax∗ ∈ Q that is not an intended entailment. We might think of ax∗ as a “witness
of the falsehood of the query”. This additional information—beyond the mere negative
answer n indicating that some undefined query-axiom must not be entailed—justifies
the addition of n∗ := {ax∗}, instead of Q, to the negative test cases. Please note that
n∗ provides stronger information than Q, and thus potentially rules out more diagnoses.
The reason is that each diagnosis that entails Q (i.e., is invalidated given the negative
test case Q) particularly entails ax∗ (i.e., is definitely invalidated given the negative
test case n∗). Apart from the scenario where experts provide just a falsehood-witness
in the negative case, they might give even more information. For instance, an expert
could walk through the query-axioms until either a non-entailed one is found or all
axioms have been verified as intended entailments. In this case, there might as well
be some entailed axioms encountered before the first non-entailed one is detected. The
set of these entailed axioms could then be added to the positive test cases—in addition
to the negative test case n∗. Alternatively, the expert might also continue evaluating
axioms after recognizing the first non-entailed axiom ax∗, in this vein providing the
classification of all single query-axioms in Q.

Based on this discussion, we might—besides the query-based expert that answers
queries as a whole, exactly as specified by the expert function defined in Sec. 2—
characterize (at least) three different types of axiom-based experts which supply infor-
mation beyond the mere n label for a query Q in the negative case:5

– Minimalist: Provides exactly one ax∗ ∈ Q which is not entailed by the intended
ontology.

– Pragmatist: Provides the first found axiom ax∗ ∈ Q that is not entailed by the
intended ontology, and additionally all axioms evaluated as entailments of the in-
tended ontology until ax∗ was found.

5 Note, a positive answer (y) implicitly provides axiom-level information, i.e., the positive classi-
fication of all query-axioms. Thus, the discussed experts differ only in their negation behavior.
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– Maximalist: Provides the classification of each axiom in Q as either an entailment
or a non-entailment of the intended ontology.

Consequently: (i) Without knowing the answering type of the interacting expert
in advance, the binary query evaluation conducted in existing works is generally only
an approximation. (ii) Even if the expert type is known, it is an open question which
form of interaction, i.e., which way of asking the expert, allows to exploit the expert
knowledge most beneficially and economically. Our experimental evaluations reported
in Sec. 5 shall confirm (i) and bring light to (ii).

Natural Design Choices. As explicated in Sec. 2, the principle behind queries is the
comparison of entailments and non-entailments resulting from different fault assump-
tions (diagnoses). In existing works [26, 30], this is often done by computing common
entailments for some diagnoses and verifying whether assuming correct these entailed
axioms leads to an inconsistency with some other diagnosis. In the light of this strategy,
it is quite natural to specify queries as sets of axioms. The reasons are the following:

First, it stands to reason to use and further process all entailments that a reasoner
outputs. Second, the fewer entailments are used, the higher is the chance that these
are entailed by all (known) diagnoses and hence do not constitute a query. In fact, it has
been shown in [24] that such unsuccessful query verifications can account for a massive
query computation time overhead. Third, allowing queries to include a larger number
of axioms implies a larger query search space and thus enables to identify a better next
query—where “better” applies to the case where a query-based expert is assumed and
query selection heuristics [23] are used that aim at minimizing the number of queries.

Optimization Criteria. The meaning of “minimal-cost” in Problem 1 might be defined
in different ways. Most existing works on query-based fault localization, e.g., [16, 26,
27, 30], specify the cost of a solution Q1, . . . , Qk to the QFL problem to be the number
of queries, i.e., k. The underlying assumption in this case is that any two queries mean
the same (answering) cost for an expert. Given that queries might include fewer or more
axioms of lower or higher (syntactic or semantic) complexity, we argue that this cost
measure might be too coarse-grained to capture the effort for an interacting expert in a
realistic way. Instead, it might be more suitable to measure the costs at the axiom level.

However, there is a fundamental problem with the optimization criterion that aims
at minimizing the number of query-axioms an expert needs to classify during an inte-
ractive fault localization session. Because, adopting this criterion, the evaluation and
comparison of the goodness of queries while searching for the best next query trivially
requires the calculation of the specific query-axioms—for a potentially large number
of query candidates. However, the calculation of the specific query-axioms is generally
costly in that it involves a high number of calls to expensive reasoning services. A re-
medy to this problem in terms of a two-staged technique which (i) can assess queries
without knowing the specific axioms they contain and (ii) minimizes both the number of
queries and the costs at the axiom level is suggested by [24]. However, the expert type
taken as a basis for these optimizations is again the query-based one, and the number
of axioms is only the secondary minimization criterion after the number of queries.
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4 New Approach to Expert Interaction

Idea. In the light of the issues pointed out in Sec. 3 and following quite straightforward
from the given argumentation, we propose a new way of expert interaction for fault
localization in ontologies, namely to abandon “batch-queries” including multiple axi-
oms and to focus on so-called singleton queries instead. That is, we suggest to restrict
queries to only single-axiom questions. Formally:

Definition 2 (Singleton Query). Let D be a set of diagnoses for an FPI 〈O,B,P ,N 〉.
Then, Q is a singleton query (wrt. D) iff Q is a query (wrt. D) and |Q| = 1.6

Properties. The advantages of singleton queries are the following:

– Maximally-fine granularity of optimization loop: Each atomic expert input (i.e.,
each classified axiom) can be directly taken into account to optimize further com-
putations and expert interactions. Simply put, each axiom the expert is asked to
classify is a function of all so-far classified axioms.

– Smaller search space: There are fewer singleton queries than there are general que-
ries. Therefore, the worst-case search costs for singleton queries are bounded by
the worst-case search costs for normal queries.

– Realistic query assessment: For singleton queries, the binary-outcome assessment
performed by existing approaches is exact, plausible and not just an approxima-
tion of the possible real cases, independent of the expert (type). The reason is that
there are exactly two possible outcomes, namely y (query-axiom is an intended
entailment) and n (query-axiom is a non-intended entailment).

– Direct re-use of existing works: Concepts (e.g., heuristics) and techniques (e.g.,
search algorithms) devised for queries can be immediately re-used for singleton
queries, because each singleton query is a (specific) query.

– Unequivocal optimization criterion: Minimization of the number of queries and
minimization of the number of query-axioms coincide for singleton queries. This
unifies the two competing and arguable views on the query optimization problem.

– More informative feedback per axiom (assuming query-based expert): For both
singleton and normal queries, the positive assessment of the query implies that all
axioms in it are intended entailments. That is, the information acquired per axiom
is equal. In case the query is negated, however, singleton queries generally provide
more information per axiom. Because, for a normal query a negative answer corre-
sponds to the information that one of a set of axioms is not true, whereas we learn
from a negated singleton query that one particular axiom must not be entailed.

– Same fault localization efficiency for all expert types: Singleton queries, by their
nature, admit only one style of answering—the answer is positive iff the single
comprised axiom must be entailed by the intended ontology, and negative iff it must
not be entailed. Thus, all discussed expert types coincide for singleton queries. As
an implication of this, it is neither required to ascertain the expert type a priori
nor to adapt algorithms to different experts, which makes the query optimization
process simpler and the outcome equally suitable for all (discussed) types of users.

6 To stress the difference between singleton queries (Def. 2) and queries in terms of Def. 1, we
will henceforth often refer to the latter as normal queries.
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On the downside, the smaller search space—apart from the advantage it brings regar-
ding the worst-case query search complexity—can be seen as a disadvantage as well.
The reason is that soundness of the query search is more difficult to obtain, i.e., more
considerations and computations than for normal queries are required to ensure that the
search outcome is indeed a singleton query (cf. the discussion on “Natural Design Choi-
ces” in Sec. 3). To tackle this, one could try to generate normal queries and post process
them by means of query-size minimization techniques similar to those used by existing
works [17, 30]. The problem is, however, that these techniques do not guarantee the
reduction to a single axiom.

Thus, beside all the advantages of singleton queries, an algorithmic and computati-
onal challenge towards their efficient generation and optimization remains to be solved.
Computation and Optimization. Despite this open issue regarding general singleton
queries, we were able to develop a polynomial time and space algorithm for singleton
queries of the form {ax} where ax ∈ O.7 This algorithm gets an FPI 〈O,B,P ,N 〉, a
set of known minimal diagnoses D as well as a query selection heuristic h (among those
discussed in [23]) as an input, and outputs the globally optimal singleton query of the
above-mentioned form. At this, “globally optimal” means optimal in terms of h among
all queries in the query space. The basis for our algorithm is provided by the theory
and strategies for normal queries elaborated in [17], which we extended and adapted
accordingly to obtain a method for singleton queries. The full description of the new
algorithm is beyond the scope of this work and can be found in [19]. Here, we rather
focus on understanding the added value of singleton queries and their comparison with
normal queries.

5 Evaluation

Goal. The aim of the following experiments is the analysis of normal queries under
different answering conditions (expert types discussed in Sec. 3) and the comparison
between normal queries and the proposed singleton queries. Focus of the investigations
is the required effort for the expert for fault localization and the query computation time.
Dataset, Experiment Settings and Measurements. The dataset of faulty (inconsistent
and/or incoherent) real-world ontologies used in our experiments is given in Tab. 1.
We used each of these ontologies O to specify an FPI as fpi := 〈O, ∅, ∅, ∅〉, i.e., the
background knowledge B as well as the positive (P ) and negative (N ) test cases were
initially empty. Tab. 1 also gives an idea of the diagnostic structure of the conside-
red FPIs, in terms of the size and logical expressivity8 of the ontology, as well as the
number and minimal/maximal size of all minimal diagnoses for the initial problem. As
query selection heuristics (h) we used the measures discussed in [26, 30]. These are

7 Such (singleton) queries consisting of only axioms explicitly included in the ontology are
called explicit (singleton) queries [17].

8 The logical expressivity refers to the power of the logical language used in the ontology in
terms of how much can be expressed using this language. In general, the higher the expres-
sivity, the higher the cost of reasoning (and thus the cost of computing queries) with the re-
spective logic tends to be. See [1] for more details on the logical expressivity of ontologies.
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Table 1: Dataset of faulty ontologies used in the experiments, sorted by the ontology size |O|.
ontologyO |O| expressivity 1) #D/min/max 2)

Koala (K) 3) 42 ALCON (D) 10/1/3
University (U) 4) 50 SOIN (D) 90/3/4
MiniTambis (M) 4) 173 ALCN 48/3/3
Transportation (T) 4) 1300 ALCH(D) 1782/6/9
Economy (E) 4) 1781 ALCH(D) 864/4/8
DBpedia (D) 5) 7228 ALCHF(D) 7/1/1

Key:
1): Description Logic expressivity [1].
2): #D, min, max denote the number, the minimal as

well as the maximal size of minimal diagnoses for
the input FPI.

3): Faulty ontology included in the Protégé Project.
4): Sufficiently complex FPIs (#D≥ 40) used in [30].
5): Faulty version of the DB-Pedia ontology, downlo-

aded from https://bit.ly/2RUVbMj.

ENT (maximize information gain per query), SPL (maximize worst-case diagnoses eli-
mination rate per query) and RIO (optimize balance between ENT and SPL per query).

For each FPI and each heuristic h we ran 20 fault localization sessions, each time
using a different randomly specified actual diagnosisD∗ to be located. To automatically
answer queries throughout a session in a way the predefined diagnosis D∗ is finally
located, we implemented a function based on D∗ which simulates the interacting user.
Specifically, the query-based expert was simulated by always outputting an answer to
a query Q that does not effectuate the invalidation of D∗; the axiom-based experts
(minimalist, pragmatist, maximalist) were simulated in a way that, if they classify an
axiom ax at all (cf. Sec. 3), then as an entailment if ax /∈ D∗ and as a non-entailment
else. The size of the diagnoses sample generated before each query computation was
set to |D| = 10. Since two of the used heuristics (ENT, RIO) depend on diagnosis
probabilities, we sampled and assigned uniform random probabilities to diagnoses for
each FPI. For query generation throughout the fault localization sessions, we used the
algorithms described in [17] (for normal queries) and [19] (for singleton queries). Note,
all (normal and singleton) queries Q computed in our experiments were restricted to
include axioms that occur in the ontology O, i.e., Q ⊆ O for all queries Q.9

For each performed fault localization session we measured the number of answered
queries (#Q) as well as the number of classified query-axioms (#Ax) required until the
predefined D∗ was found with certainty (i.e., until all other diagnoses were ruled out
through the answered queries), and the average computation time to find the best next
query (time per Q).
Experiment Results. First, we observe that, for normal queries, the answering style has
a significant impact on the expert’s effort, both when using #Ax and #Q as a cost metric.
In fact, any axiom-based strategy (pragmatist, maximalist or minimalist) is better than
a query-based one (bars in Fig. 1), with savings of up to 57 % wrt. #Ax and up to 58 %
wrt. #Q (cf. ENT, pragmatist vs. query-based, M ontology, in Fig. 1). The reason for
this is that an axiom-based approach involves strictly more informative answers than a
query-based one (cf. Sec. 3).

Second, also among the axiom-based expert types, there are notable cost differences
(wrt. #Ax). As it turns out, the pragmatist approach is clearly the best choice to answer
normal queries for all investigated ontologies.10 Also, when measuring the cost by #Q

9 This is owed to the fact that the efficient generation of optimal singleton queries including
“implicit” axioms, i.e., where Q 6⊆ O holds, is still an open research topic (cf. Sec. 4).

10 Note, the presented figures do not expose all results. However, the observations were greatly
consistent over all studied ontologies. See the extended version [19] of this paper for all plots.
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Fig. 1: Overview of observations for ontology E (left) and M (right): The bars show #Ax and
#Q for heuristics ENT (blue), SPL (gray) and RIO (yellow) and for expert types minimalist,
pragmatist, maximalist, and query-based expert (cf. Sec. 3), for normal queries (normalQ) and
singleton queries (singletonQ). The red line reports time per Q (in sec). All plotted values are
averages over all 20 fault localization sessions. Bars refer to left y-axis, red line to right y-axis.
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Fig. 2: Comparison between normal and singleton queries for ENT (left) and RIO (right) heu-
ristics: The violin plots show the difference in query answering effort (#Ax) between using the
best answering strategy (pragmatist) for normal queries (normalQ) and using singleton queries
(singletonQ), for all ontologies (x-axis) given in Tab. 1. Each violin plot summarizes the diffe-
rences per session over all 20 fault localization sessions. White dots in plots indicate the median;
if above/below zero (red line), singleton/normal queries are better in the majority of the sessions.

(as existing works do), the pragmatist tends to be the most reasonable type, albeit the
differences are just marginal in this case. So far, we conclude that normal queries, for
best efficiency and regardless of the adopted query selection heuristic, should not be
answered simply by y or n, but the interacting expert should evaluate the individual
query-axioms, pursuing the pragmatist method (cf. Sec. 3). Note, it is surprising that
one (axiom-based) answering strategy always prevails, as normal queries are optimized
based on the assumption of the (fairly different) query-based user.

Third, when comparing singleton with normal queries (answered by the pragmatist
strategy), the costs wrt. #Ax are often pretty similar on average (see, e.g., M onto-
logy in Fig. 1), even though with a notable tendency towards a superiority of singleton
queries. E.g., for the E ontology and ENT heuristic, we measure an average effort over-
head of more than 30 % when relying on normal queries as opposed to singleton ones
(Fig. 1). Fig. 2 gives a clearer picture of this comparison. E.g., it reveals that, for all
ontologies, singleton queries were at least as good as normal ones in the majority of
sessions when using ENT as a heuristic. For the RIO heuristic, the results are similar,



12 Patrick Rodler and Michael Eichholzer

and in three cases (ontologies K, T, D) even more in favor of singleton queries than
for ENT. Over all ontologies and heuristics, singleton queries even led to less expert
interactions in more than 66 % of the sessions. However, there are scenarios where nor-
mal queries outperform singletons on average as well, as evidenced by the RIO and M
ontology combination. Moreover, in most scenarios the proportion of sessions where
normal queries mean fewer expert consultations (area of violin plots below the red line)
is significant. Thus, normal queries are a reasonable way of expert interaction, but can
match up to singleton queries only if the pragmatist answering behavior is given.

Regarding the computation time per query, we clearly recognize (red lines in Fig. 1)
that (optimal) singleton queries are significantly faster determined than (optimal) nor-
mal queries. The savings always amounted to between 80 % and 90 %.

6 Research Limitations and Future Work

First, the evaluations in this work are based on simulations of fault localization sessions
and objective measures such as computation times or the number of required queries.
Although this objective assessment shows a higher average efficiency of the new appro-
ach as compared to existing ones, it is important to validate the subjective usefulness of
the suggested querying technique, for instance in terms of a user study. This is part of
our future work. However, it nevertheless stands to reason that users familiar with nor-
mal queries would likewise accept and adopt singleton queries, just because singleton
queries represent a particularly simple subclass of normal queries.

A second limitation is the restriction to explicit queries—those that are constituted
by axioms from the ontology at hand—in our empirical analyses. The reason we did so
is because we currently only have an algorithm for the computation and optimization of
explicit singleton queries, by drawing on and extending the theory elaborated in [17].
The finding of an efficient algorithm that soundly generates implicit singleton queries,
in contrast, is an open issue and on our future work agenda. That said, as soon as we
have developed an adequate algorithm, we plan to do similar evaluations as done in this
work for singleton and normal queries without the restriction to explicit queries.

As a third limitation, it should be noted that the analyzed expert types, as discussed
in Sec. 3, provide by no means a complete characterization of all possible cases that
could arise. While the discussion in this work bases on the assumption that an expert
will provide for each query at the minimum as much information as is necessary to clas-
sify the entire query as a positive or negative test case (cf. the expert function in Sec. 2),
there are (at least) two further query answering scenarios that are worthwhile conside-
ring. First, there is the case where the expert classifies a proper subset (or even none)
of the axioms of a normal query positively while not labeling any axiom negatively,
e.g., due to laziness or lack of knowledge. Second, there is the case where an expert
might misclassify axioms when answering queries. Such “oracle errors” were observed
quite commonly in the studies conducted in [21]. Investigating these two scenarios for
normal and singleton queries as well as the conception of strategies how to handle these
cases is another research avenue we will prospectively pursue.
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7 Conclusions

We critically discuss design choices, made assumptions and used optimization criteria
of state-of-the-art query-based ontology fault localization approaches. Based on the re-
vealed issues, we propose a new way of asking questions to an expert. Theoretical and
empirical analyses using real-world problems demonstrate significant advantages of the
novel querying method. Among other things, we learn that the suggested method—as
opposed to existing approaches—(1) is simpler, (2) enables exact query optimizations
instead of only approximate ones, (3) implies a more than 80 % reduction of the expert’s
waiting time for the next question, (4) enforces more informative expert inputs, (5) le-
ads to the least fault localization effort for the expert in more than 66 % of the cases,
and (6) guarantees the same efficiency regardless of the expert’s (answering) behavior.
Notably, our method is basically applicable to any monotonic knowledge representation
language [16], as well as to other model-based diagnosis applications [22].
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