Appendix to the Paper:
Sequential Model-Based Diagnosis by Systematic Search

Patrick Rodler

University of Klagenfurt, Austria

Abstract

In Appendix F, we discuss the relationship between canonical g-partitions and g-partitions. An additional elaborate
example showcasing the workings of the query computation algorithm based on the well-known circuit example
presented by Reiter [5] is given in Appendix G. Appendix H describes a possible implementation of the Entgr
operator. Finally, we provide a more detailed report of our experimental results from EXP1 in Appendix I.

All references to sections, pages, algorithms, propositions, corollaries, theorems, examples, etc. by arabic numer-
als (e.g., Section 3.5, or Conjecture 1) refer to the respective sections, pages, algorithms, propositions, corollaries,
theorems, examples, etc. in the paper associated with this appendix. Figures and tables that can be found only in this
present appendix document are referred to by the combination of a letter (referring to the respective section of the
appendix) and a numeral (e.g., Figure C.2) in order to distinguish them from their counterparts in the paper.

F. Canonical Q-Partitions vs. All Q-Partitions

Whether g-partitions (D, D~ () exist which are no CQPs is not yet clarified, but both theoretical and empirical
evidence indicate the negative.

First, [6, Sec. 3.4.2] provides a thorough theoretical analysis of the relation between canonical and non-canonical
g-partitions implying that a g-partition must fulfill sophisticated requirements if it is non-canonical. When we did
not succeed in deriving the conjectured contradiction resulting from the theoretical requirements to a non-canonical
g-partition which would rule out such cases theoretically, we tried hard to devise, at least in theory, an instance of a
non-canonical g-partition. But we were not able to come up with one.

Second, [6, Sec. 3.4.2] applies the results of the conducted theoretical analysis to a comprehensive study on
hundreds of real-world KBs with sizes of several thousands of sentences [4]. The findings are that, if possible at all,
the probability of the existence of non-canonical g-partitions is very low.

Third, an analysis of ~ 900 000 g-partitions we ran for different leading diagnoses sets D of different cardinalities
for different DPIs (see Sec. 4, Tab. 4) showed that all g-partitions were indeed CQPs. Concretely, we were performing
for each (D,DPI) combination a brute force search for g-partitions relying on a reasoning engine using the algorithm
given in [8, Alg. 2], and another one exploiting the notions of CQs and CQPs. None of these searches returned a
g-partition which is not canonical. This motivates the following conjecture:

Conjecture 1. Let D C minD x 5 p), and QPOD denote the set of all g-partitions wrt. D with empty D°, and
CQPy, the set of all COPs wrt. D. Then, CQPp = QPY,.

Remark F.1 Conjecture 1 is by no means necessary for the proper functioning of our presented algorithms. In case
the conjecture turned out to be wrong, the consequence would be just the invalidity of perfect completeness wrt. all
g-partitions achieved by the restriction to only CQPs. Still, we could cope well with that since CQs and CQPs bring
along nice computational properties (cf. Sec. 3.2.2) and prove extremely efficient by the total avoidance of reasoning

Email address: patrick.rodler@aau.at (Patrick Rodler)

ey D
X1
/D 4) X2 circuit inputs (from top to bottom)

1

0
A2 1

circuit outputs (from top to bottom)
1
0

o1

[an)
L/

Figure G.1: Example of a diagnosis problem from the domain of circuit diagnosis due to [5].

(cf. Sec. 4). Moreover, equally general query computation methods not incorporating the canonical notions prove to
be strongly incomplete regarding both queries and g-partitions due to their dependence on (the entailments computed
by) the used inference engine (cf. Advantage 5 in Sec. 3.2.2). Although executing a brute force search, they sometimes
explore only 1 % and on average less than 40 % of the g-partitions our proposed approach is able to find (cf. Sec. 4).
Also, our conducted experiments (cf. Sec. 4) manifested the successful finding of optimal g-partitions in all eval-
uated cases for all discussed and commonly adopted (e.g., [3, 7, 8]) QSMs m. The reason for this is that the CQP
search space size considered by our strategy proves by far large enough to guarantee the inclusion of often multi-
ple goal g-partitions also for negligibly small optimality thresholds ¢,,, even if only a small, single-digit number of
leading diagnoses is given. Theoretical support for this is given by Cor. 4, empirical support by Sec. 4.5. O

G. An Additional Example Illustrating the Entire Query Computation Process

Example G.1 With this example, we illustrate the entire query computation process executed by Alg. 2, based
on the well-known circuit example proposed by Reiter in his seminal work [5] (cf. Fig. G.1). Suppose we got the
information from the manufacturer of the gates that and-, or- and xor-gates fail with a probability of 0.05, 0.02 and
0.01, respectively. The set of minimal diagnoses for the DPI DPI; (see Tab. G.1) resulting from the circuit example is
minDpp,. = {D1,D2, D5} = {{a1}, {2, as}, {az, as}}, corresponding to the (abnormality assumptions of the)
sets of components {{X1}, { X2, A2}, {X2,01}}. Let the leading diagnoses be D := minDpp,, . Using Eq. (3),
the diagnosis probabilities (normalized over D and rounded) amount to (p(D1), p(D2), p(D3)) = (0.93,0.05,0.02).

(Phase P1:) Starting from the initial partition ({), D, (), the generated successors are By := ({D1},{Dq, D3}, 0),
Po := ({D2},{D1,Ds3},0) and B3 := ({D3},{D1, D2}, D). Note, all these successors are g-partitions (proven by
Prop. 13). Assuming the same QSM m, threshold ¢,,, heuristic h and pruning function as used in Example A.1,
the heuristic values (h(B1), h(P2), h(P3)) of these g-partitions are (0.43,0.45,0.48). Since B, has the best (i.e.,
least) h-value, but is not a goal, Phase P1 continues with the expansion of 13, after storing 3, as the currently best
visited g-partition so far. However, since p(D*(31)) = 0.93 > 0.5, the pruning criterion is met and no successors
are generated. Instead, the next best sibling of 31, namely 132, is considered. Here, no pruning takes place and the

successors generated based on the C-minimal traits Trpyi, (P2) = {D§2), D:(f)} = {{a1},{as}} (cf. Def. 6) are

‘BQl = <{D2, Dl} s {Dg} y @> and mgg = <{D2, Dg} s {Dl} 5 ®> with h(mgl) = (0.48 and h(‘pgg) = (0.43. Due to the
facts that for 35; the pruning condition is satisfied, 322 has no successor g-partitions (cf. Cor. 3), and none of P,
Boo is a goal, the search backtracks and proceeds with the g-partition 3. In an analogue way as shown for 135, the
successor g-partition P31 = ({D3,D1},{D2},) is generated. Note that Phase P1, in that it stores diagnoses that
must not be moved from D~ to DT to avoid duplicates, does not generate Pzo = ({D3, D2}, {D1}, 0) because it
is equal to P22 which has already been explored (for details see the technical report [6, p. 92 et seqq.] underlying
the present work). Again, no successors are generated for 337 (pruning). Hence, the complete (pruned) backtracking
search tree has been constructed and the stored best (of all) CQP(s) for D, 31, is returned.

(Phase P2:) Let us suppose that an optimal query wrt. the QCM cyx, (cf. Sec. 2.4.4) over the restricted search
space considered by Phase P2 (see Theorem 2) is desired by the user. To this end, the user defines the parameter
fast of Alg. 2 to be true. Further, let the expected cost of testing an and-, or- and xor-gate, respectively, be 1, 3

2

[(e 77 K B
1 out(X1) = zor(inl(X1),n2(X1)) D

2 out(Xs2) = zor(inl(Xa), in2(X2)) .

3 out(A1) = and(inl(Ay), in2(A1)) .

4 out(Az) = and(inl(Az),in2(Az)) °

5 out(01) = or(inl(01),in2(01)) °

6 out(X1) = in2(Az) .
7 out(X1) = inl(Xa2) .
8 out(Az) =inl(0q) .
9 inl(As) = in2(X>) .
10 nl(X1) = inl(A1) °
11 in2(X1) = in2(A1) .
12 out(A1) = in2(01) .
13 inl(X;) =1 .
14 in2(X1) = 0 .
15 inl(Az) =1 .
16 out(Xz) =1 .
17 out(O1) =0 .
i pi € P

X X

i n; € N

X X

i r, € R

1 consistency

minimal conflicts
{1,020}, {1, 04,5}
minimal diagnoses
{oa} {oo,aa} {as, a5}

Table G.1: (top): DPI DPlg,. specifying the circuit diagnosis problem from Fig. G.1. The functions in1(G), in2(G), out(G) denote the first
and second input terminal as well as the output terminal of a gate G, respectively. Further, the functions zor (), and(), or() denote the respective
logical functions with their usual meaning. (bottom): Minimal diagnoses and conflicts for DPI.

and 2. Then, Tryy(P1) = {Dél),Dél)} = {{ag, a4}, {aa,as5}} is used to extract the cx-optimal query Q* =

{ag} = {out(X3) = zor(inl(Xz),in2(X2))} as the minimal hitting set for Try;, (P1) with least cost cx (Q*) = 2
(cf. Prop. 18). Note, the (only) other possible C-minimal explicit-entailments query for B is @ := {ay, a5} with
a cost of ¢x(Q)) = 14 3 = 4. The returned query Q* is a direct component probe for component X5 (cf. [1] and
Example 4). That is, checking the functionality of the xor-gate X5 is the cheapest inspection as per the QCM cx
which brings the most information as per the QSM m, among all queries considered in Phase P2.

(Phase P3:) Given that a query optimized over the full search space is wanted, fast must be set to false in Alg. 2
(default case). This causes the execution of Phase P3 (instead of Phase P2). As an input Inf to Alg. 2 we assume
e.g., some constraint propagator, similar to the one described in [3], which computes predictions of the values at the
circuit’s wires (cf. Fig. G.1). Moreover, we suppose that the preferred entailment types ET" are exactly those stating
values of wires, e.g., out(A4;) = 1.

In Phase P3, the CQ of 3, given by @ = {aq, a4, a5} (cf. Def. 3), is first needed for the query enhancement
(Step 1). To this end, the query expansion, Qexp, is computed as per Eq. (14) as [Entpr({as} U {ag, a4, a5} U
{ag,...,017} UD) \ Entgr({as} U{as,...,ai7} UD)]\ {a2, as, a5} = {out(X1) = 0, 0ut(A2) = 0}. Next,
the contraction of the expanded query Q' = Q U Qexp = {2, a4, 5, 0ut(X71) = 0, out(Az) = 0} (see Eq. (15))
takes place (Step 2). Let us assume that no preference order over query sentences is given, except that a user wants
to avoid direct component tests (input argument pref, see Alg. 2). In other words, the query should not include
any o; € K. This is reflected by setting @', := Qexp and by specifying the input to MINQ as the (ordered) list

ot = QL|QL = [out(X1) = 0,0ut(Az) = 0,2, ay4,as] (cf. Cor. 7). In an analogous manner as illustrated
in Example 17, MINQ determines an optimized contracted query Q* as {out(X;) = 0}. Note, this is the only C-
minimal query satisfying Cor. 7 because the only other C-minimal query comprising only elements from @', is
Qait := {out(As) = 0} which has a g-partition different from 934, i.e., is not g-partition-preserving. The actual g-
partition Pp (Qurt) of Qurz is ({D1, D2}, {Ds},0). Hence, Alg. 2 suggests to probe at the wire connecting gate X
with gates X5 and A,. Taking into account the query outcome probabilities estimated from the given probabilities,
we see that there is a strong bias (probability 0.93) towards a measurement outcome of out(X;) = 0. In this case,
only a single measurement is needed to ascertain that D; as the actual diagnosis, i.e., that X'; must be faulty. O

H. An Example Implementation of the Entrr Operator

Given a sound and complete consistency checker CC' (e.g., some resolution-based procedure [2]) over the (de-
cidable) knowledge representation formalism £ underlying the given DPI, one can use the following implementation
of the Entgr calls in Eq. (14) to obtain a query expansion Qexp. Let r be the desired number of entailments in the
query expansion, s a desired maximal and ¢ the absolute maximal number of consistency checks to be performed. Let
us refer to the left and right Ent g7 calls in Eq. (14) by Ent; and Ent,, respectively. Now, Ent; can be realized as
follows:

1. i = 1 (iteration counter), A = () (already tested sentences), ' (computed entailments to be tested by Ents).

2. Generate (e.g., randomly) a potentially entailed sentence a;; ¢ A of one of the postulated entailment types in
ET which is not an element of (K \ Up) UQ U BU Up.

3. Run CC to prove (K\Up)UQUBUUpU{—«q;} inconsistent in a way that, whenever possible, sentences of Q
are involved in the proof (if, e.g., C'C implements linear resolution [2], a way to realize this is to test sentences
of @) always first for applicability as a side clause for the next resolution step). If “inconsistent” is returned and
a proof involving at least one sentence of () was found, then add «; to E.

4. If
|E| >r (r potential elements of (Qex, have been generated) or

i+|E| >t (the computed number of required consistency checks exceeds t) or
i+|E|>s A |E| >1 (the computed number of required consistency checks exceeds s and at
least one potential element of Q)ey, has been generated)
then terminate and pass E on to Ent,.
5.Adda;to A. i =i+ 1.

Ents, given the output E of Enty, can be realized as follows: Run CC to test the consistency of (K \ Up)UBUUp U
{—a;} for each o; € E. Add all o; € E for which “consistent” is returned to Qex, and discard all others. Finally,
return Qexp.

Note, this implementation of the Ent g calls in Eq. (14) is compliant with all postulations 1.-5. in Sec. 3.5.1.

1. Detailed Discussion of Evaluation Results for EXP1

We subdivide the presentation of the results of EXP1 into discussions of various observed aspects of the algo-
rithms, e.g., times, reasoner calls or search space sizes. Each such set of related aspects is illustrated by a distinct
figure (named in the heading of the respective paragraph). Whenever we will refer to a figure, we will mean exactly
the figure mentioned in the heading. If some figure includes a secondary y-axis, which means a y-axis on the right
side, then all aspects plotted with respect to the secondary axis are given in italic font (whereas those plotted based
on the primary, i.e., left, y-axis are written in normal font) in the figure’s key. On the x-axis, all the plots show the 8
(or fewer) different categories (M, U, T, E, C, O, CE, CC), one for each K in Tab. 4. Every plotted point shows the
respective aspect, as indicated by the figure’s key, in terms of a 5-iteration average value. That is, for each plotted
point, DPI (i.e., the DPI for) and n is fixed, whereas D varies over the 5 iterations (see the description of EXP1 in
Sec. 4.4). Note that the range of n is smaller for the categories M and C because there are no 80 minimal diagnoses
for these two K’s (48 for M, 15 for C, cf. Tab. 4). Further, for clarity and better visibility the plots only show the
values for the (more costly to compute) QSM ENT. The values observed for the QSM SPL were always comparable
or better than for ENT. The unit of times is seconds in all figures.

Diagnoses vs. Query Computation (Fig. 1.2). For both diagnoses and queries, the decisive factor influencing the
computation time is the number of required inference engine calls. This connection can be clearly observed in the
figure where the light and dark bars show the number of the reasoner calls for diagnoses and query computation,
respectively, and the continuous and dashed lines display the respective computation times. Note that the shown
query computation time (dashed line) is the sum of the times for all Phases P1, P2 and P3, i.e., constitutes an upper
bound of both optional (i.e., Phases P1+P2) and default (i.e., Phases P1+P3) mode of Alg. 2.

Algorithms that incorporate reasoners more strongly into query computation often have to limit the number of
leading diagnoses to rather small numbers, e.g., 9 [8]. This is necessary to keep query calculation practical because

4

10,000,000 1000

1,000,000 /1 / 0
/ Al -1 100
100,000 / ;/) /
10,000 4l / g // 10
’ _ A / AL /
/ = L1~ I L} Y
1,000 v / / h 1
] IR,
100 A 1
T 0.1
10 UL 4
1 0.01

|D| [1D:#reasonercalls R Q: # reasoner calls ENT D:time = ====- Q: time ENT

Figure 1.2: Diagnoses computation vs. query computation. D means diagnosis computation and Q means query computation. The QSM m = ENT
was used with the threshold ¢,, = 0.01.

the worst case size of the g-partition search space is 2/P!, not to mention the size of the query search space (of
semantically different queries) which is generally again a multiple of it. For the new method, as the figure reveals,
the growth of query computation time is very moderate for increasing numbers of leading diagnoses. In fact, we can
state it is at most linear, as the growth of the dashed line is at most parallel to the growth of the shaded area (note the
logarithmic y-axes). Sometimes the time even sinks after raising |D|, e.g., for the cases |D| € {70,80} for U, T and
CC. In spite of its slight tendency to increase, the query computation time, by absolute numbers, is always below 3.6
sec and, except for the cases involving CE with |[D| > 30, always lower than 1 sec. That is: Even for high numbers of
up to 80 leading diagnoses (q-partition search space size in O(25°)), optimized queries (as per Theorems 3 and 4) are
computed within almost negligible time.

This is due to the main merit of the new algorithm, which is the avoidance (in optional mode) or minimization (in
default mode) of reasoner calls. Essentially, the slight tendency of the new algorithm’s computation time to increase
for larger diagnoses sets can be primarily attributed to increasing costs of Step 2 in Phase P3, and secondarily to the
substantially larger g-partition search space explored by Phase P1 (see also Figs. 1.3, 1.6 and 1.9 for an illustration of
this fact). On the other hand, the reasoning costs of Step 1 in Phase P3 tend to fall as a response to increasing |D| since
the sizes of the arguments to the two Entgr calls in Eq. (14) tend to decrease given a higher |D|. Second, despite
an increased effort faced by Phase P2 for growing |D|, the absolute times required by P2 are so small (between about
107? and 1073 sec) that they hardly carry weight (see also Fig. 1.9).

The extension of the g-partition search space has not such a high impact due to the used heuristic functions that
proved to guide the algorithm rather quickly towards a goal g-partition and due to the used tree pruning which avoided
the exploration of hopeless subtrees. The higher costs of Step 2 in Phase P3 can be explained as follows: Whereas the
number of ISQPARTCONST calls is dictated by |Q’| which does not (directly) depend on |D]|, the number of reasoner
calls within each call of ISQPARTCONST does depend (linearly) on |D| (see Prop. 30).

We further point out that the time axis (right y-axis) is logarithmic, i.e., an increase of 1 on the axis means an actual
increase of one order of magnitude. One conclusion we can draw from this is that whenever diagnosis computation
requires non-negligible time, let us say more than 10 sec, then query computation is always at least one order of
magnitude and up to more than two orders of magnitude, i.e., a factor of 100 (case O, 80 diagnoses), faster than
diagnosis computation. Note that the diagnosis computation time grows exponentially with [D|, i.e., our data shows
quite constant time growing factors averaging to approximately 2 (visible by the mostly constant slope of the gray line
in the figure) for all eight DPIs in Tab. 4. Hence, computing 10 diagnoses more implies about the double computation
time. Therefore, with the new method: Whenever the computation of a set of diagnoses is feasible, the generation
of an optimized query regarding the computed diagnoses is feasible and often significantly more efficient than the
computation of diagnoses. Hence, using the proposed approach, optimized query computation is a minor problem as

5

100

100%
oo °% o % e o’
8 ...' 3 o 0~ 9 . . ot o 90%
2 2 80%
S e L N R P 70%
. O 5 & 3 & e 2 2§ 2 8

: :J s L O 3§ e 60%

10 & v v : o ¥ g

50%
40%
30%
20%

‘W’M -
1 s s b

e —— 0%

s time P1 IR time P2 time P3 step1 time P3 step2 eeeeee D]
Figure 1.3: Comparison of times for P1, P2 and P3. All times were measured for the QSM m = ENT with threshold ¢,,, = 0.01.

compared to diagnosis computation.

Comparison of Times for Phases P1, P2 and P3 (Fig. 1.3). The figure depicts the relative proportion of the overall
query computation time consumed by the different phases of Alg. 2. It is evident that Phase P3 accounts for more than
%th of the computation time in all test runs. If we exclude the case U—for which the algorithm’s computation time
was the lowest amongst all DPIs in Tab. 4, i.e., below 0.1 sec for all runs, cf. Fig. I.2—then P3 is even responsible
for more than 97 % of the computation time in all runs. This reminds us again of the fact that reasoning (which is
only performed in P3) has a substantially higher impact on the efficiency of query computation than the combinatorial
problems solved in P1 and P2.

This suggests a variant of Alg. 2 which always runs the very fast P1+P2 first and shows the result to the user.
Meanwhile in the background, or alternatively on demand, the algorithm executes P3 to further optimize the already
computed query. In this manner the user can always get a first query suggestion instantaneously.

Moreover, we recognize that P2 (see the thin black area between the darker and lighter shaded areas in the figure),
although it solves an NP-hard problem in general, makes up a negligible fraction of the method’s computational load
due to its fixed parameter tractability (cf. Prop. 26). It is by far the fastest phase of the algorithm. Thus, even for large
numbers of leading diagnoses, the solved hitting set problem remains easy.

What we also point out is that the query expansion (P3, Step 1) is sometimes (for C and CE) the most influencing
factor regarding the computation time for small |D| and successively loses importance against the query contraction
(P3, Step 2) as | D] is increased. Reasons for this were discussed above.

Summary of Phase P1 (Fig. 1.4). By considering the generated and expanded g-partitions and the branching factor
we get an impression of how the search tree looks like in P1. First, it is apparent that the number g of generated
g-partitions is approximately proportional to the number of leading diagnoses |D|, i.e., g =~ ¢|D|, where the factor
c averages to (1.94,1.86,1.67,1.75,2.07,2.27,2.63,1.99) for (M, U, T,E, C, O, CE, CC). Hence, we can state that,
on average, for a very small threshold ¢,,, of 0.01 (and 0), an optimal g-partition wrt. ENT (and SPL) can be found by
generating no more than 3|D| g-partitions. As a consequence, the effort arising in P1—notabene with heuristic and
pruning—grows linearly with the number of leading diagnoses. By absolute numbers, g was always below 200 (with
a maximum of 187 for the case CE with |D| = 80).

Second, we notice that the branching factor as well as the number of expanded g-partitions are approximately
proportional, but grow sublinearly with regard to |D|. For instance, for 10, 40 and 80 leading diagnoses, the branching
factor and number of expanded g-partitions amounted on average (over all eight DPIs) to 6, 12 and 16 as well as 3.8,
7.0 and 8.5, respectively. That is, interestingly, the branching factor is a rough (upper bound) estimate for the number
of explored g-partitions until a goal is found. Moreover, continuously increasing the number of diagnoses, always by

6

0.03 1000
0.025
0.02 100
0.015
0.01 10
0.005 H H JL ﬂ‘
+ + + \ L | +
b =3 + + Hl) + +
+ + | L 4% + u R L+ TN nt |
o shartarrrt b I drs Dt Ve eg a oW N0 D D Tl
|D| C—1/CQ| ENT0.01 + achieved QSM-value ENT 0.01
=== time P1 ENT 0.01 X optimal QSM-value ENT —O— # gen QPs ENT 0.01
—0— #exp QPs ENT 0.01 —@— QP search branching factor

Figure 1.4: Summary of P1. ENT 0.01 means that the QSM m = ENT was used with the threshold ¢,, = 0.01. |CQ| denotes the size of the
canonical query, # gen QPs and # exp QPs means the number of generated and expanded g-partitions, respectively. The branching factor is the
average number of successors of nodes in the search tree.

the same constant, leads to increases in the number of expanded g-partitions and in branching factor by continuously
smaller factors. One reason for this is the tendency of diagnoses (and thus of their subset-minimal traits) to overlap
more frequently if more diagnoses are computed. This overlap means that there are fewer equivalence classes as per
Cor. 3, and thus affects the branching factor negatively.

Concerning the time required for P1 (black dashed line), we see that the maximum time over all cases was below
0.03 sec and, excluding the DPI CE, below 0.01 sec. Therefore, an optimal g-partition (wrt. the threshold 0.01) can
always be computed in less than %th of a second.

Let us now draw our attention to the quality of the computed g-partition and imagine a thought horizontal line
at 0.01 (left y-axis) denoting the specified threshold. It is easy to verify that the QSM-value of the computed g-
partition (line labeled with the + signs) is always below this line, i.e., a g-partition with at least the required quality
was determined in all cases. This analysis additionally shows that, although the threshold is at 0.01, the actually
achieved QSM-value is quite close to the optimal QSM-value wrt. ENT, which is very close to zero (line labeled with
the x signs). Note, wrt. SPL the optimal QSM-value of 0 was always hit. The optimal QSM-value was ascertained by
performing a brute-force search over all g-partitions (cf. Fig. 1.9) and storing the best found QSM-value.

Finally, the size of the CQ, which constitutes an upper bound of the size of a query constructible in Phase P2,
attains values between 2.8 (U, 80) and 28.4 (CE, 50). The size of the CQ depends on the overlapping of the diagnoses
in the D™ set with those in the D™ set of the respective (canonical) q-partition. The higher it is, the lower is the
cardinality of the CQ (cf. Lemma 7).

Summary of Phase P2 (Fig. 1.5). In Phase P2, the query with optimal QCM ¢ (cf. Sec. 2.4.4) is computed by
performing a uniform-cost hitting set search over the collection of all C-minimal traits of the optimal g-partition
found in Phase P1. The number of generated nodes measures the necessary effort for the hitting set tree construction
and depends on the number of C-minimal traits (number of sets to be hit), their cardinality (branching factor of the
hitting set tree) and their overlapping (the higher it is, the lower the depth of the tree and the minimum cardinality of the
query tend to be). For [D| € (10,40, 80), the average and maximal numbers of generated nodes are (8.5, 8.5, 28.9)
and (19,16, 143), respectively. That is, the size of the generated tree is easily manageable, even for large sets of
leading diagnoses. This fact is confirmed by the negligible time (in all runs between m and 15‘% sec) consumed
by P2 (see the white squares in the figure).

100
100 90

10

il

|D| ==l avg size of min traits C—size min-card query + # of min traits

gen HS nodes —=— 9% size reduction of CQ O time P2 ENT 0.01

Figure 1.5: Summary of P2. Min traits means C-minimal traits wrt. the (fixed) g-partition returned by Phase P1. Min-card means minimum-
cardinality. Gen HS nodes refers to the generated nodes in the constructed hitting set tree. The size reduction of the CQ is computed as (1 —

‘I%*\‘) % 100 % where Q@ is the CQ and Q* the query output by P2.

The average size (where the average is taken over the traits of the optimal g-partition returned by Phase P1) of the
C-minimal traits is very small with an average / maximum of 1.59 / 2.75 over all cases, except for CE. For CE, we
measure an average / maximum of 3.88 / 5.24. Hence, the branching factor of the hitting set tree is very low and the
number of generated nodes is significantly higher for CE than for the other tested DPIs.

An explanation for the tendency of C-minimal traits to shrink for higher |D| (which can be best observed for the
cases T, E and CE, see the figure) is the tendency of diagnoses to more frequently overlap, if more diagnoses are
computed (cf. Def. 6). The number of C-minimal traits, on the other hand, is proportional to |D|, which is quite
intuitive as the number of diagnoses in D™ (i.e., the maximal possible number of C-minimal traits) tends to grow
with increasing |D)|, of course depending on (the g-partition properties favored by) the used QSM.

The median of the size of the query with optimal QCM computed by P2 is 3.8 sentences (see the light gray bars).
The achieved size reduction, starting from the CQ of the optimal g-partition returned by P1 and given as input to P2,
ranges from zero percent (cases M, 5 and U, 8 and C, 15), where the CQ coincides with the QCM-optimal query, to
more than 80 % (case CE, 60). In the latter case, CQs of average sizes of 27 are reduced to an average size of 5.

Summary of Phase P3 (Fig. 1.6). As the complexity analysis in Sec. B.3 suggests, the crucial factors determining the
efficiency of Phase P3 are the number and the complexity of the required reasoner calls. For the first step of P3, these
are the calls to Entgr (cf. Eq. (14)). The figure (black bars) reminds us of the fact that their number is constant,
i.e., 2, independent from other parameters. Consequently, only the complexity of the Entgr calls has an effect on
the hardness of P3, Step 1. As becomes clearly evident in the figure, this complexity is ruled by (the complexity,
expressivity and number of implicit entailments of) the KB K of the respective DPI, i.e., the black dashed line is more
or less constant for each DPI. However, it tends to slightly decrease upon increasing |D|. This is exactly what one
would expect (cf. the discussion of Fig. 1.2 above). Note, the time consumed by Phase P3, Step 1 (continuous black
line) is exactly proportional to the time needed for an Entgr call, which confirms that there are no other significant
factors influencing the complexity of this computation step. By absolute numbers, the time per Entgr call never
exceeded 0.2 sec.

As regards Step 2 of Phase P3, the number and complexity of the ISQPARTCONST calls is decisive. The former is
again influenced by the KB K because its complexity and expressivity affects the number of computed entailments in
P3, Step 1. These in turn have an impact on the size of the expanded query, |Q’|, which rules the number of ISQPART-
CONST calls (cf. Prop. 30). In comparison to other DPIs, CE requires a relatively high number of ISQPARTCONST
calls (up to roundly 50) on account of the large size of the computed query expansion in Phase P3, Step 1 (see Fig. 1.7).

8

100 50

10 - 40

A\Y
1}
\L
g

0.1

Hﬁ m i

time P3 stepl e=———timeP3step2 === eee=. time per call Entgr

ML e

I i/ calls Entgp 1 #calls 1SQPARTCONST

= = =time per call ISQPARTCONST

Figure 1.6: Summary of P3.

That is, the reasoner Inf returned substantially more implicit entailments for CE than for other DPIs. The complexity
of an average ISQPARTCONST call is on the one hand determined by |D| (cf. Prop. 29), thus slightly increasing for
each DPI (see the figure), and on the other hand by the reasoning complexity of the respective KB K. For example, in
case of O, although the average number of ISQPARTCONST calls is clearly larger than for E, the latter requires more
time one average for Phase P3, Step 2 due to the higher complexity per call (dashed transparent line). Over all runs,
no call of ISQPARTCONST took longer than 0.01 sec and the time for Phase P3, Step 2 was always below 3.5 sec.

Query Evolution (Fig. 1.7). In this figure we see the comparison of the intermediate results in terms of the query size
throughout Phases P1 and P3 (default mode of Alg. 2). First, Phase P1 returns a g-partition (from which the CQ @
can be immediately computed, see Def. 3). Then the CQ is enriched in Phase P3, Step 1 resulting in the expanded
query @'. This query is finally contracted again in Phase P3, Step 2, yielding the output query Q*.

We see that () is always larger than Q*, i.e., altogether the enlargement and later reduction of the CQ @ produces
a query smaller than). Note, |@| is a theoretical lower bound of |Q’| (cf. Eq. (15)) and hence always lower than |Q’|.
As we already discussed above, the size of Q’ in relation to the size of @ depends very much on the expressivity and
(logical) complexity of the KB. Therefore, |Q’| is larger for, e.g., CC than for, e.g., O, even though the size of Q is
approximately equal in both cases. In figures, |Q| for O and CC averages to 8.9 and 10.1, whereas |Q’| for O and CC
amounts to 29.4 and 52.5. The most implicit entailments could be computed in case of CE, with average sizes of the
expanded query @' of 268. These differences in the number of entailments can be best seen by considering the query
expansion factor (dashed transparent line) which ranges from 9.8 to 17.2 for, e.g., CE and from only 1.4 to 1.7 for,
e.g., U.

The query reduction factor (dotted line), on the other hand, measures the degree of contraction effectuated by
Phase P3, Step 2. A reduction factor of k means that |Q’| = k|Q*|, i.e., the size of the contracted and optimized query
Q*is %th of the expanded one, ’. The maximal values of & are around 65 for, e.g., CE and around 3 for, e.g., U. That
is, for CE, CQs of average size 268 are reduced to optimized queries of average size 5 while, for U, CQs averaging to
7.0 included sentences are minimized to queries averaging to cardinalities of 3.5. Nevertheless, the size of the finally
output query Q* does not fluctuate very strongly (gray continuous line) and has a median of 3.4.

Query Computation vs. Debugger Reaction Time (Fig. 1.8). On the one hand, the figure shows the absolute reaction
time (transparent line) of the debugger, i.e., the time passing between the submission of a query answer and the pro-
vision of the next query. In other words, the reaction time is the time required for leading diagnosis computation plus
the time for query generation. On the other hand, the figure gives insight into which proportion of the reaction time is
due to query computation, where Phases P1+P2 (dashed line) and P3 (dotted line) of the query computation are shown

9

1000 70
x 60
50
100
40
30
10
20
. ” soCe,, N M 10
ce, a0’ ’...' ‘..."0_0 o . "f LT '...'..:ﬂ S o
1 S B s e N ool ST oo yy Sl 0
[D| |output query| |expanded query|
— —|CQ] === query expansion factor sessees query reduction factor

Figure 1.7: Query evolution over Phases P1 and P3. Expanded query / output query refers to the query returned by P3 step 1/ P3 step 2. A query
expansion factor of k means that the expanded query is k times as large in size as the CQ. A query reduction factor of k£ means that the expanded
query is k times as large in size as the output query.

separately, and which proportion is due to diagnosis computation (difference between 100 on the left y-axis and the
dotted line). The debugger’s reaction time ranges from 0.15 sec (U, 10) to 8 min 50 sec (CE, 80). Over all eight DPIs,
the average reaction times for |D| € (10, 20, 30, 40, 50, 60, 70, 80) are (0.8, 2.0, 3.2,6.2,16.5,46.3,87.9,223.6). It
is apparent from the figure that the reaction time grows superlinearly with increasing |D|. For all DPIs separately, the
average factor by which the reaction time grows upon adding ten leading diagnoses is between 1.65 and 2.56. The
average growing factor over the entire data is roundly 2. That is, the reaction time is about doubly as high, if the
number of leading diagnoses is raised by ten.

However, using the presented algorithm, the time spent for query computation accounts for only a minor fraction
of the reaction time. In particular, whenever the reaction time is not very quick, i.e., it is, say, beyond 10 sec, the
query computation is always responsible for less than 10 percent of the reaction time when Alg. 2 is used in default
mode with query expansion and optimization, and for less than 3 per mill of the reaction time when it is used in
optional (fast) mode. Hence, with the new method, whenever the debugger fails to react within short time, this is due
to diagnosis computation and not due to query computation. Moreover, the fraction of the reaction time needed for
computing an explicit-entailments query optimizing both the QSM and the QCM is always negligible, independent of
other parameters.

Search Space Size vs. Computation Times (Fig. 1.9). Here, we see a comparison of the absolute computation times of
the three phases (P1, P2, P3) of the new method (solid lines). Furthermore, we performed a brute force search over all
CQPs, on the one hand to determine the size of the search space explored in P1, i.e., the (exact) number | CQP | of all
existing CQPs for |D| (see the dark shaded area in the figure, cf. Conjecture 1), and, on the other hand, to get an idea
of the efficiency of (canonical) g-partition generation with the new algorithm. The time required for the exploration of
all CQPs is shown by the framed transparent line in the figure. Additionally, the figure displays an upper bound of the
size of the search space tackled by Phase P2 (dotted line), i.e., of the number of all explicit-entailments (EE) queries
for the g-partition 8 = (DT, D™, () where 3 is the result returned by Phase P1. We calculated this upper bound as
wi=2" =30 () where n = |Qcan(DT)| and m := |Q*| — 1, i.e., 2" is the number of all subsets of the CQ
Qcan(D™) of 5B and the subtracted sum counts all subsets of Qcan (D) of size smaller than the minimum-cardinality
query Q* computed by Phase P2. Recall, each explicit-entailments query is a subset of Qcan(D™) and a superset of
some minimal hitting set of all (C-minimal) traits in D~ (by Prop. 17 and Cor. 5), and Q* is a minimum-cardinality
hitting set of all (C-minimal) traits in D~. Hence, u is indeed an upper bound of the number of all explicit-entailments

10

100 1000
90
80

100

70

60

50 10

40

30

20

10
0.1

Figure 1.8: Query computation vs. debugger reaction time. Reaction time refers to the time passing between the submission of a query answer and
the finalization of the next query’s computation.

queries for .1

It is evident from the figure that Phases P1+P2 (fast mode of Alg. 2) always finish in less than 0.03 sec outputting
an optimized query wrt. the QSM m and the QCM c. Importantly, this efficiency is independent of the type (e.g.,
knowledge base, physical system) of the diagnosis problem at hand. Because P1+P2 only do combinatorial computa-
tions that depend solely on the diagnostic structure of the problem, i.e., the size, number, probabilities, overlapping,
etc. of diagnoses. Moreover, it takes Phase P1 longer than Phase P2 in all cases, and P1’s execution time increases
monotonically with |D| whereas P2’s does not. Note that albeit P1+P2 solve Problem 2 for a restricted search space
S (cf. Theorem 3), the number | CQPp,| of CQPs wrt. D, which is just a fraction of |S|, already averages to roundly
(300, 5 500, 28 500, 105 000, 200 000, 370 000, 475 000, 530 000) for |D| € (10,20, 30, 40, 50, 60, 70, 80). That this
restricted search space S is sufficiently large for all numbers of leading diagnoses |D]| is also substantiated by the fact
that in each single test run an optimal query wrt. the very small threshold ¢,,, = 0.01 (90 % smaller than the threshold
used in [8]) was found in S. The number of explicit-entailments queries per g-partition, i.e., the factor ¢ such that
|S| = ¢|CQPp| might also be substantial, as hinted by the dotted line. Although this line describes only an upper
bound, it gives at least a tendency of the size of the domain over which P2 seeks to optimize the given QCM. The
meaningfulness of this trend line is corroborated by the fact that the time required for P2 (bottommost line in the plot)
obviously correlates quite well with it. The query enhancement in P3 (omission of the search space restriction and
switch to the full search space) terminates in all tests within less than 4 sec and returns the globally optimal query wrt.
the QCM cp,ax (see Theorem 4). These practical times result from the moderate use of a reasoner in Phase P3 (cf.
Fig. 1.6).

In Phase P1, even a brute force search computing all possible CQPs is feasible in most cases—finishing within 50
sec in all runs (up to search space sizes of more than 120 000) except for the |D| > 30 cases for the DPI CE (where
up to 3 million CQPs were computed). This high computational speed is possible due to the complete avoidance of
costly reasoner calls by relying on the canonical notions, CQs and CQPs.

References

[1] Mark Brodie, Irina Rish, Sheng Ma, and Natalia Odintsova. Active probing strategies for problem diagnosis in distributed systems. In IJCAI,
2003.

Unfortunately, we cannot make any statement about the strictness of this bound, nor can we give a non-trivial general lower bound. We
nevertheless included this upper bound in the figure with the intention to give an impression of the worst-case complexity (domain over which the
QCM is optimized) of Phase P2.

11

u T E C (o] CE cC
1E+09

100000000
10000000

.

.

.

.

.

. .
.

.

.
.

1000000
100000
10000
1000
100
10
1
0.1

0.01

0.001
0.0001

0.00001
ENT: time P3 ENT: time P1

mmmmn |CQPp| |D|

ENT: time P2 eeeeeeiof EE queries (UB) ———BF: time P1

Figure 1.9: Search space sizes versus query computation times. CQPp denotes the set of CQPs wrt. the leading diagnoses D. EE queries refers
to explicit-entailments queries (cf. page 15), UB signalizes an upper bound. BF terms a brute force search over CQP .

[2] Chin-Liang Chang and Richard Char-Tung Lee. Symbolic Logic and Mechanical Theorem Proving. Academic Press Inc., 1973.

[3] Johan de Kleer and Brian Williams. Diagnosing multiple faults. Artificial Intelligence, 32(1):97-130, 1987.

[4] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Extracting justifications from BioPortal ontologies. In ISWC, pages 287-299, 2012.

[5] Raymond Reiter. A Theory of Diagnosis from First Principles. Artificial Intelligence, 32(1):57-95, 1987.

[6] Patrick Rodler. Towards better response times and higher-quality queries in interactive knowledge base debugging. Technical report, Alpen-
Adria Universitit Klagenfurt, 2016. arXiv:1609.02584.

Patrick Rodler, Kostyantyn Shchekotykhin, Philipp Fleiss, and Gerhard Friedrich. RIO: Minimizing User Interaction in Ontology Debugging.

In RR, 2013.
Kostyantyn Shchekotykhin, Gerhard Friedrich, Philipp Fleiss, and Patrick Rodler. Interactive Ontology Debugging: Two Query Strategies for

Efficient Fault Localization. Web Semantics: Science, Services and Agents on the World Wide Web, 12-13:88-103, 2012.

[7

—

[8

[t}

12

