The Scheduling Job-Set Optimization Problem: A Model-based Diagnosis Approach

Patrick Rodler and Erich Teppan Universität Klagenfurt

Motivation

- Scheduling of jobs crucial in production industry
 - Industry 4.0
 - Make to order production / Lean manufacturing
 - (Jobs can be thought of products to be produced)
- Types of job scheduling problem depends on factory layout and products:
 - (Flexible) Job shop scheduling problem
 - Flow shop scheduling problem
 - Open shop scheduling problem
 - Parallel machine scheduling problem
 - ...
- Common challenge in industry: too many jobs than can be accomplished by a factory within planning horizon
 - In other words: not possible to produce all products until a predefined deadline (=planning horizon)
- Problem: Which of the jobs should be cancelled / postponed?
- Set of cancelled / postponed jobs should be optimal
 - What means optimal?

Optimality of set of cancelled jobs

- 1. A set of cancelled jobs should be at least Pareto efficient
 - Subset minimality is a form of Pareto efficiency
- 2. Depending on application scenario further optimization criteria could be important, e.g.:
 - Revenue loss
 - Customer priorities
 - Marketing strategies
- Associated computational problems:
 - 1. Job Maximization Problem (JMP)
 - guarantee Pareto efficiency (=subset minimality) of set of cancelled jobs
 - 2. Job Optimization Problem (JOP)
 - Each job has a defined utility (based on e.g. revenue)
 - Sum of utilities of cancelled jobs should be minimal (= utilities of remaining jobs should be maximal)
 - JMP is (NP-)easy
 - A first minimal diagnosis can be calculated in linear time
 - JOP is NP-hard
 - Finding the best minimal diagnosis may need the calculation of all minimal diagnoses in worst case
 - Note: complexity of theory checking depends on the type of job scheduling problem
 - Often NP-hard

Example for job scheduling problem: job shop scheduling problem (JSSP)

- Strongly NP-hard
- Jobs consist of a predefined sequence of operations (=production steps)
 - Each operation can be performed by a predefined machine
 - Operations have predefined durations
 - A succeding operation can only start after the preceding operation has been finished
- Machines can perform operations one by one
 - Non-preemption
- Cost of a schedule = completion time (= timespan to perform all operations)

Example cont.: Problem instance and optimal solution

```
Job 1:
        op1-1
              (type=machine1
                                length=2)
        op1-2 (type=machine2
                                length=2)
                                length=2)
        op1-3 (type=machine3
Job 2:
       op2-1 (type=machine2
                                length=2)
                                length=2)
        op2-2 (type=machine3
        op2-3 (type=machine1
                                length=2)
Job 3:
              (type=machine3
                                length=2)
       op3-1
        op3-2 (type=machine1
                                length=2)
        op3-3 (type=machine2
                                length=2)
Job 4:
       op4-1 (type=machine1
                                length=3)
        op4-2 (type=machine2
                                length=2)
        op4-3 (type=machine3
                                 length=1)
```

- Optimal solution with completion time = 9
- What if deadline is at 6?

Example cont.: JMP/JOP

- Two solutions for JMP (=minimal diagnoses):
 - ✓ cancel job 4, or
 - ✓ cancel job 1 and job 3
- **JOP**:
 - If job utilities are equal:
 - → Minimum cardinality diagnosis
 - cancel job 4
 - If job utilities are: $u_1 = 2$, $u_2 = 3$, $u_3 = 1$, $u_4 = 4$
 - $u_1 + u_3 < u_4$
 - cancel job 1 and job 3

Evaluation

- Basic question addressed: Can model-based diagnosis algorithms be applied on JMP/JOP?
 - Proof of concept
- Job shop scheduling problem
 - Taillard benchmark
 - 50 jobs / 15 machines (each job consists of 15 ops)
 - 100 jobs / 20 machines (each job consists of 20 ops)
 - 10 problem instances for each class (i.e. 20 in total)
 - optimal completion times (κ^*) are known
 - deadlines are set to $\kappa = r \times \kappa^*$, $r \in \{0.95, 0.9, 0.85, 0.8, 0.75\}$
- Reverse QuickXplain for diagnosis calculation
- IBM CP Optimizer for scheduling (=consistency checking)

Results

ixcourto									
I	(50 jobs, 1	5 machines)	(100 jobs, 20 machines)			(50 jobs, 15 machines)		(100 jobs, 20 machines)	
r	diag size	time	diag size	time	r	diag size	time	diag size	time
0.95	3	137	4	407	0.8	13	28	20	490
0.95	3	169	4	152	0.8	11	571	24	654
0.95	4	99	4	446	0.8	—	_	21	759
0.95	2	93	5	230	0.8	10	99	21	266
0.95	2	302	4	842	0.8	10	450	20	790
0.95	3	97	6	287	0.8	11	42	21	344
0.95	3	22	5	321	0.8	11	159	19	397
0.95	3	27	5	230	0.8	10	613	19	688
0.95	3	185	4	200	0.8	11	3093	20	291
0.95	3	207	5	333	0.8	12	140	20	350
0.9	7	91	10	392	0.75	13	79	25	956
0.9	5	250	10	209	0.75	14	5497	30	446
0.9	6	223	9	965	0.75	-	_	25	2168
0.9	5	42	10	401	0.75	-	_	28	308
0.9	5	425	9	803	0.75	-	_	25	1830
0.9	6	36	11	166	0.75	13	125	28	350
0.9	6	34	10	391	0.75	14	66	24	943
0.9	5	107	10	375	0.75	13	607	25	389
0.9	5	375	9	409	0.75	-	_	24	534
0.9	5	453	9	834	0.75	14	695	26	434
0.85	9	42	15	358	_				
0.85	8	651	18	264	Solutions for:				
0.85	9	664	14	1092	• all (100,20) instances with all r ∈ {0.95, 0.9, 0.85, 0.8, 0.75}				
0.85	8	30	15	313					
0.85	7	657	14	991					
0.85	10	34	17	173	• all (50,15) instances with $r \in \{0.95, 0.9, 0.85\}$				
0.85	7	178	15	476	• 90 % of the (50,15) instances with r = 0.8				

15

15

217

230

299

106

5250

68

0.85

0.85

0.85

- 90 % of the (50,15) instances with r = 0.8
- 60 % of the (50,15) instances with r = 0.75

Conclusions

- Model-based diagnosis can be applied to JMP also for industrial size instances
- JMP solutions seem to be near optimal solutions for JOP
 - Further heuristic methods can easily be invented for JOP based on JMP
- Future work:
 - Other (heuristic) diagnosis algorithms
 - Application to job scheduling problems other than JSSP
 - Tuning of scheduling machine (= consistency checker)
 - ...
- Thank you for your attention!

