
DEF: (Job Shop Scheduling Problem – JSSP) [Blazewicz et al. 2007]

Given: set of machines M, set of jobs J where every job j ∈ J consists of an ordered
set of operations Opsj = {op1,...,opkj} and each op ∈ Opsj has a length lop ∈ ℕ and
has to be executed on a particular machine mop ∈ M

Find: schedule σ which maps every operation op in AllOps := ⋃j∈J Opsj to a
start time σ(op) ∈ ℕ on its respective machine mop such that
(1) each operation of a job may only start after its preceding operation of the

same job has been finished
formally: σ(opx+1) ≥ σ(opx) + lopx for each pair of successive operations
opx , opx+1 in Opsj for all jobs j ∈ J

(2) on each machine, a next operation may only start after the current
operation has been finished
formally: for each pair of operations opi , opj ∈ AllOps with mopi = mopj ,
either σ(opi) ≥ σ(opj)+lopj or σ(opj) ≥ σ(opi)+lopi

(3) completion time is minimized
formally: among all schedules, σ has minimal time(σ):=maxop∈AllOps(σ(op)+lop)

JSSP Decision Version: given a deadline k ∈ ℕ as additional input, is there a
schedule σ satisfying (1) and (2) and time(σ) ≤ k ?

DEF: (Job Set Optimization Problem – JOP)

Given: deadline k ∈ ℕ , JSSP instance P with job set J , utility function u that
assigns a utility uj ∈ ℕ to each job j ∈ J

Find: Δ ⊆ J such that
(i) P with the reduced job set J \ Δ has a solution schedule σ with time(σ) ≤ k
(ii) there is no other such Δ‘ ⊆ J that satisfies ∑j∈J\Δ‘ uj > ∑j∈J\Δ uj

DEF: (Job Set Maximization Problem – JMP)

Given: deadline k ∈ ℕ , JSSP instance P with job set J

Find: Δ ⊆ J such that
(i) P with the reduced job set J \ Δ has a solution schedule σ with time(σ) ≤ k
(ii) there is no other such Δ‘ ⊆ J that satisfies Δ‘ ⊂ Δ

DEF: (Minimal Set wrt. a Monotone Predicate Problem – MSMP) [Marques-Silva et al. 2013]

Given: set U, monotone predicate p

Find: X ⊆ U such that p(X) = 1 and there is no X‘ ⊂ X with p(X‘) = 1

(A function p: 2U → {0,1} is called a monotone predicate if
p(∅) = 0 and for all X,X‘ ⊆ U it holds that X ⊂ X‘ ⇒ p(X) ≤ p(X‘))

Randomized Problem-Relaxation Solving
for Over-Constrained Schedules

Patrick Rodler, Erich Teppan, Dietmar Jannach
KR 2021

Motivation

1 4

Definitions

Approach

Evaluation 5

Foundation: four observations
Obs1: each JOP solution is a JMP solution (see Fig. F2 (b))

e.g., if every 10th JMP solution is a JOP solution, then generating 20 random
JMP solutions yields a JOP solution with 88 % probability

Obs2: JMP has lower complexity than JOP
intuitively: JOP = finding best JMP solution

Obs3: JMP is manifestation of MSMP problem for which efficient algorithms exist
O(|J|) calls to an oracle for JSSP decision problems per JMP solution

Obs4: CP solvers typically do not support JMP solving
cannot use CP solver to exploit JMP solving for JOP solving

Idea: draw a random sample in the JMP solution space (which covers all JOP solutions)

Procedure (Outline):
• solve multiple randomly modified JMP instances
• store solution with best utility throughout the process, stop if required solution quality is achieved

Modules:
• CP solver (for solving decision versions of JSSP)
• MSMP unit (for finding JMP solutions)
• random number generator (for generating multiple random solutions)

Rationale: trade one hard optimization (JOP) for multiple easier decisions (JSSP)

• direct CP solver approach: (cf. Fig. F2 (c)) black-box solving of two problems at once:
(implicit) subset-minimality + optimal utility of the JOP solution

• proposed approach: (cf. Fig. F2 (a)) disentangle these two problems by
(1) extracting (efficient + well-understood) MSMP reasoning from solver
(2) using solver only for deciding a polynomial number of JSSP instances

(for which state-of-the-art solvers are optimized)

Properties:
• no information exchange between different JMP computations → efficient parallelization
• completeness wrt. JMP/JOP achievable by using suitable random number generator
• no manual adaptation of CP encoding of given JSSP needed
• all modules viewed as black-boxes (cf. Fig. F2 (a))

→ can be realized by most suitable/performant algorithms for given problem

→ approach can profit from latest research advancements in MSMP + JSSP

2

Dataset:
• based on subset of widely used benchmark problems of [Taillard 1993]

10 instances with (50 jobs, 15 machines)
10 instances with (100 jobs, 20 machines)

• generation of JOP instances:

given: Taillard JSSP problem instance P, optimal completion time k* for P

define: 5 over-constrained problems with deadlines k := r · k*
using r ∈ {0.95, 0.9, 0.85, 0.8, 0.75} (different deadline scenarios for company)
uniform job utilities (since no utilities given in Taillard's benchmarks)

result: 20 (Tailllard instances) x 5 (completion time levels r) = 100 JOP problem instances

Settings:

• Java proof-of-concept implementation of proposed approach (cf. Fig. F2 (a))
CP solver: IBM‘s CP Optimizer (https://www.ibm.com/analytics/cplex-cp-optimizer)
MSMP algorithm: Inverse QuickXplain [Shchekotykhin et al. 2014]

• Baseline: CP Optimizer that solves direct encoding of JOP (cf. Fig. F2 (c))
direct encoding = adapted JSSP encoding such that
(1) deadline constraint for job j (“delay for j is not allowed“) is active

if an associated variable vj ∈ {0,1} is set to 1
(2) optimization criterion = maximize the sum over vj for j ∈ J
(3) calling CP Optimizer given this encoding leads to computation of a JOP solution

Experiments:
• two timeouts: 1h, 2h (idea: allow for frequent intra-day recalculations / re-scheduling

 to react quickly to dynamics in industrial scenarios)
• 8 worker threads (for both the proposed and the baseline approach)

Results: (cf. Fig. F3)
• for all timeouts + all JOP instances:

proposed approach yields consistently better schedules
with more finished jobs than the direct CP encoding

• improvements:
(50 jobs, 15 machines) instances: avg 8 %, up to 15 % more jobs
(100 jobs, 20 machines) instances: avg 5 %, up to 13 % more jobs
always better results within 1h than direct CP encoding in 2h
order of magnitude fewer internal solution steps than direct CP encoding

Job Shop Scheduling (JSSP): important NP-hard problem in today‘s industries

Constraint Programming (CP):
• prominent approach to JSSP
• long and successful history
• state-of-the-art CP solvers can handle large-scale JSSP instances

However:
• modern production regimes are often highly dynamic
• can lead to computationally hard optimization problems on top of JSSP
• typical such problem:

over-constrained JSSP: set of orders (jobs) exceeds current production
capacities wrt. a planning horizon (e.g., a week)

reasons: seasonal order fluctuations, unforeseen machine
breakdowns, incoming high-priority orders, …

goal: find set of jobs (orders) of maximal utility
(e.g., revenue) that can be finished in time

→ we call this the Job Set Optimization Problem (JOP)

Issue:
• JOP can be solved by CP solvers by suitably adapting the JSSP encoding
• but even most powerful CP solvers struggle with the increased complexity of JOP

Our Solution:
• framework to solve JOP
• based on a randomized computation of solutions to a relaxed version of JOP
• relaxed version of JOP:

goal: find ⊆-maximal set of jobs (not of maximal utility)
that can be finished in time

→ we call this the Job Set Maximization Problem (JMP)

Evaluation: suggested approach consistently outperforms a cutting-edge CP solver
for JOP problems from a well-known benchmark dataset

Example
Given: JSSP instance
• 3 machines, 3 jobs, each 3 operations
• operation lengths lop:

jobs 1, 2, 3: (2,2,2), job 4: (3,2,1)
• machine numbers mop of operations:

jobs 1, 4: (1,2,3), job 2: (2,3,1), job 3: (3,1,2)
Solution: Fig. F1 (a): schedule σ, time(σ) = 9

Figures

Evaluation Results: Each data point indicates the number of accomplished jobs (y-axis) of the CP approach (blue) versus the proposed approach (orange) per benchmark problem instance, for different time-
outs (1h, 2h) and different values (0.95, . . . , 0.75) of r (x-axis). The orange / blue numbers along the x-axis indicate the average number (per value of r) of (within-timeout) generated JMP solutions (proposed
approach) / intermediate solutions towards JOP (CP approach), each of which improved the current best solution (w.r.t. utility).

(a) Proposed Framework for JOP based on decomposing JOP into subproblems (i) JMP solving and (ii) optimization via randomization. (b) Illustration of Solution Spaces for JOP and JMP. (c) A Direct CP
Approach to JOP. Remarks: Both approaches require a CP encoding of the JSSP P. Gray rectangles denote black-boxes and can be realized by different suitable algorithms. “RNG” = random number generator.

Given: JOP instance
• same JSSP instance (see left)
• deadline k = 6
• all jobs have equal utility u
Solution:
Fig. F1 (b): schedule σ for JOP solution Δ = {job 4},
time(σ) = 6
Fig. F1 (c): schedule σ for JMP (but not JOP)
solution Δ = {job 1, job 3}, time(σ) = 6

Example Illustration:
• m-th row = machine m,
• horizontal axis = time line
• ”opj-i” = i-th operation of job j
• dashed line = deadline k:=6

References

F1

F2

F3

3
• Blazewicz, Ecker, Pesch, Schmidt, Weglarz, 2007. Handbook on Scheduling: Models and

Methods for Advanced Planning. Springer.
• Marques-Silva, Janota, Belov, 2013. Minimal sets over monotone predicates in Boolean

formulae. In: CAV. 592–607 .
• Shchekotykhin, Friedrich, Rodler, Fleiss, 2014. Sequential diagnosis of high cardinality faults in

knowledge-bases by direct diagnosis generation. In: ECAI. 813–818.
• Taillard, 1993. Benchmarks for basic scheduling problems. EJOR 64(2):278–285.

	poster_KR2021_20211028_FINAL.vsdx
	Page-1
	Page-2

