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Abstract

Various model-based diagnosis scenarios require
the computation of the most preferred fault expla-
nations. Existing algorithms that are sound (i.e.,
output only actual fault explanations) and com-
plete (i.e., can return all explanations), however,
require exponential space to achieve this task.
As a remedy, to enable successful diagnosis on
memory-restricted devices and for memory-inten-
sive problem cases, we propose RBF-HS, a diag-
nostic search based on Korf’s well-known RBFS
algorithm. RBF-HS can enumerate an arbitrary
fixed number of fault explanations in best-first
order within linear space bounds, without sacri-
ficing the desirable soundness or completeness
properties. Evaluations using real-world diagno-
sis cases show that RBF-HS, when used to com-
pute minimum-cardinality fault explanations, in
most cases saves substantial space (up to 98 %)
while requiring only reasonably more or even less
time than Reiter’s HS-Tree, a commonly used and
as generally applicable sound, complete and best-
first diagnosis search.

1 Introduction
In model-based diagnosis, heuristic search techniques have
proven to be a powerful tool for the computation of parsi-
monious fault explanations (minimal diagnoses) [1; 2; 3; 4;
5; 6; 7; 8]. Due to the (NP-)hardness of the diagnosis com-
putation problem,1 it is in most applications infeasible to
determine all (minimal) diagnoses.

For this reason—besides the often stipulated guarantee
that only minimal diagnoses are generated (soundness) and
no minimal diagnosis is missed (completeness)—the focus
of search techniques is usually laid on the best minimal
diagnoses, e.g., the most probable or minimum-cardinality

∗Due to the paper length restrictions, some parts of our ana-
lyses had to be omitted in this version. For the full version (in-
cluding a thorough discussion of related work, complexity ana-
lyses, all proofs, an extended evaluation section, more exam-
ples, and a more comprehensive description of the algorithm) see
http://isbi.aau.at/ontodebug/publications.

1Given a non-empty set of minimal diagnoses, computing
another minimal diagnosis is NP-hard, even if theorem proving is
in P [9].

ones. In particular, the set of the best diagnoses appears to
be more appropriate than just any sample of diagnoses, i.a.,
• if all components have a very low failure probability

(actual diagnosis among minimum-cardinality diagno-
ses), as is the case for many physical devices,
• if the given probabilistic information is trustworthy and

well-founded (actual diagnosis among most probable
diagnoses), like in projects with a long history of bug-
fixes, or
• in sequential diagnosis2 scenarios where an early ter-

mination appears to be reasonable only if the best re-
maining solution is always known.

Like for many algorithms, there is a trade-off between
time and space complexity for diagnosis search methods.
Among the factors time and space, the latter can be the
more critical criterion. Because, if the memory consump-
tion of an algorithm exceeds the amount of available me-
mory, the problem becomes intractable, whereas, with a
higher time demand, an algorithm does still work in prin-
ciple and will deliver a solution (albeit with a potentially
longer waiting time). In model-based diagnosis, there is a
range of scenarios which (a) pose substantial memory re-
quirements on diagnostic search methods or (b) suffer from
too little memory. One example for (a) are problems in-
volving high-cardinality diagnoses, e.g., when two systems
are integrated and a multitude of errors emerge at once [5;
11]. Manifestations of (b) are frequently found in today’s era
of the Internet of Things (IoT), distributed or autonomous
systems, and ubiquitous computing, where low-end microp-
rocessors, often with only a small amount of RAM, are built
into almost any device. Whenever such devices should per-
form (self-)diagnosing actions [12; 13], memory-aware di-
agnosis algorithms are a must [14; 15].

Existing (sound and complete) best-first diagnosis search
methods require an exponential amount of memory in that
all paths in the search tree must be stored in order to gua-
rantee that the best one is expanded in each iteration. Hence,
they often disqualify for scenarios like (a) and (b) above. As
a remedy, we have devised a diagnosis search called Recur-
sive Best-First Hitting Set Search (RBF-HS), which is based

2Sequential diagnosis [10] aims at the gradual elimination of
spurious diagnoses through the suggestion of informative system
measurements, until some stop criterion is met, e.g., only one di-
agnosis remains. We say that sequential diagnosis relies on early
termination if it might already stop although multiple diagnoses
are still possible, e.g., if the probability of some diagnosis exceeds
some predefined threshold.



on Korf’s well-known Recursive Best-First Search (RBFS)
algorithm [16]. RBF-HS features all the desirable properties
of diagnostic searches, i.e., soundness, completeness, and
the best-first property, and is able to return an arbitrary fixed
number of the best existing solutions within linear memory
bounds. Moreover, RBF-HS is generally applicable regard-
less of the (monotonic) system description language or the
particular logical theorem prover used.

In extensive evaluations on minimum-cardinality diagno-
sis computation tasks over real-world diagnosis cases, we
compare the performance of RBF-HS with that of Reiter’s
HS-Tree, a state-of-the-art sound, complete and best-first di-
agnosis search that is as generally applicable as RBF-HS.
The results evince that RBF-HS is comparable with HS-Tree
in terms of runtime even though the latter requires signifi-
cantly (up to orders of magnitude) more memory.

2 Preliminaries
We first briefly characterize MBD concepts used throughout
this work, based on the framework of [17; 18] which is (slig-
htly) more general [19] than Reiter’s theory [20].3

Diagnosis Problem. We assume that the diagnosed system,
consisting of a set of components {c1, . . . , ck}, is described
by a finite set of logical sentencesK∪B, whereK (possibly
faulty sentences) includes knowledge about the behavior of
the system components, and B (correct background know-
ledge) comprises any additional available system knowledge
and system observations. More precisely, there is a one-to-
one relationship between sentences ax i ∈ K and compo-
nents ci, where ax i describes the nominal behavior of ci
(weak fault model). E.g., if ci is an AND-gate in a circuit,
then ax i := out(ci) = and(in1(ci), in2(ci)); B in this case
might contain sentences stating, e.g., which components are
connected by wires, or observed circuit outputs. The inclu-
sion of a sentence ax i in K corresponds to the (implicit)
assumption that ci is healthy. Evidence about the system be-
havior is captured by sets of positive (P ) and negative (N )
measurements [10; 20; 21]. Each measurement is a logical
sentence; positive ones p ∈ P must be true and negative
ones n ∈ N must not be true. The former can be, depending
on the context, e.g., observations about the system, probes
or required system properties. The latter model properties
that must not hold for the system, e.g., if K is a biological
knowledge base to be debugged, a negative test case might
be ∀Xbird(X) → flies(X) (“every bird flies”). We call
〈K,B,P ,N 〉 a diagnosis problem instance (DPI).

Example 1 (Diagnosis Problem) Tab. 1 depicts a DPI sta-
ted in propositional logic. The “system” (which is the know-
ledge base itself in this case) comprises five “components”
c1, . . . , c5, and the “nominal behavior” of ci is given by the
respective axiom ax i ∈ K. There is neither any background
knowledge (B = ∅) nor any positive measurements (P = ∅)
available from the start. But, there is one negative measure-
ment (i.e., N = {¬A}), which postulates that ¬A must not
be an entailment of the correct system (knowledge base).
Note, however, that K (i.e., the assumption that all “com-
ponents” work nominally) in this case does entail ¬A (e.g.,

3The main reason for using this more general framework is its
ability to handle negative measurements (things that must not be
true for the diagnosed system) which are helpful, e.g., for diagno-
sing knowledge bases [21; 17].

K =
{ax1 : A→ ¬B ax2 : A→ B ax3 : A→ ¬C
ax4 : B → C ax5 : A→ B ∨ C }

B = ∅ P = ∅ N = {¬A}

Table 1: Example DPI stated in propositional logic.

due to the axioms ax 1, ax 2) and therefore some axiom in K
must be faulty (i.e., some “component” is not healthy).

Diagnoses. If the system description along with the positive
measurements (under the assumption K that all components
are healthy) is inconsistent, i.e.,K∪B∪P |= ⊥, or some ne-
gative measurement is entailed, i.e.,K∪B∪P |= n for some
n ∈ N , some assumption(s) about the healthiness of com-
ponents, i.e., some sentences in K, must be retracted. We
call such a set of sentences D ⊆ K a diagnosis for the DPI
〈K,B,P ,N 〉 iff (K\D)∪B∪P 6|= x for all x ∈ N ∪{⊥}.
We say that D is a minimal diagnosis for dpi iff there is no
diagnosis D′ ⊂ D for dpi . The set of minimal diagnoses is
representative of all diagnoses under the weak fault model
[22], i.e., the set of all diagnoses is equal to the set of all su-
persets of minimal diagnoses. Thus, diagnosis approaches
usually restrict their focus to only minimal diagnoses. We
furthermore denote by D∗ the actual diagnosis which pin-
points the actually faulty axioms, i.e., all elements ofD∗ are
in fact faulty and all elements of K \ D∗ are in fact correct.

Example 2 (Diagnoses) For our DPI in Tab. 1 we have
four minimal diagnoses, given by D1 := [ax 1, ax 3], D2 :=
[ax 1, ax 4], D3 := [ax 2, ax 3], and D4 := [ax 2, ax 5]. For
instance, D1 is a minimal diagnosis as (K \D1)∪B ∪P =
{ax 2, ax 4, ax 5} is both consistent and does not entail the
given negative measurement ¬A.

Diagnosis Probability Model. In case useful meta infor-
mation is available that allows to assess the likeliness of
failure for system components, the probability of diagnoses
(of being the actual diagnosis) can be derived. Specifically,
given a function pr that maps each sentence (system com-
ponent) ax ∈ K to its failure probability pr(ax ) ∈ (0, 1),
the probability pr(X) of a diagnosis candidate4 X ⊆ K
(under the common assumption of independent component
failure) is computed as the probability that all sentences
in X are faulty, and all others are correct, i.e., pr(X) :=∏

ax∈X pr(ax )
∏

ax∈K\X(1− pr(ax )).

Example 3 (Diagnosis Probabilities) Let the compo-
nent probabilities for the DPI in Tab.1 be 〈pr(ax 1), . . . ,
pr(ax 5)〉= 〈.1, .05, .1, .05, .15〉. Then, we can compute the
probabilities of all minimal diagnoses from Example 2 as
〈pr(D1), . . . , pr(D4)〉 = 〈.0077, .0036, .0036, .0058〉. For
instance, pr(D1) is calculated as .1∗(1−.05)∗.1∗(1−.05)∗
(1 − .15). The normalized diagnoses probabilities would
then be 〈.37, .175, .175, .28〉. Note, this normalization ma-
kes sense if not all diagnoses, but only minimal diagnoses
are of interest, which is usually the case in model-based di-

4Note, the probability (of being equal to the actual diagnosis)
of some X ⊆ K which is not a diagnosis is trivially zero. Still,
it is reasonable to define the probability pr for such sets as well.
The reason is that diagnosis searches like the one discussed in this
work grow diagnoses stepwise, starting from the empty set, and it
can make a substantial difference (in terms of performance), which
of those partial diagnoses are further explored when. To this end,
the probabilities can provide a valuable guidance.



agnosis applications for complexity reasons.

Conflicts. Useful for diagnosis computation is the notion
of a conflict [10; 20]. A conflict is a set of healthiness as-
sumptions for components ci that cannot all hold given the
current knowledge about the system. More formally, C ⊆ K
is a conflict for the DPI 〈K,B,P ,N 〉 iff C ∪ B ∪P |= x for
some x ∈ N ∪ {⊥}. We call C a minimal conflict for dpi iff
there is no conflict C′ ⊂ C for dpi .

Example 4 (Conflicts) For our running example, dpi , in
Tab. 1, there are four minimal conflicts, given by C1 :=
〈ax 1, ax 2〉, C2 := 〈ax 2, ax 3, ax 4〉, C3 := 〈ax 1, ax 3, ax 5〉,
and C4 := 〈ax 3, ax 4, ax 5〉. For instance, C4, in CNF equal
to (¬A ∨ ¬C) ∧ (¬B ∨ C) ∧ (¬A ∨ B ∨ C), is a con-
flict because adding the unit clause (A) to this CNF yields a
contradiction, which is why the negative test case ¬A is an
entailment of C4. The minimality of the conflict C4 can be
verified by rotationally removing from C4 a single axiom at
the time and controlling for each so obtained subset that this
subset is consistent and does not entail ¬A.

Relationship between Conflicts and Diagnoses. Conflicts
and diagnoses are closely related in terms of a hitting set
and a duality property [20]:
Hitting Set Property A (minimal) diagnosis for dpi is a (mi-

nimal) hitting set of all minimal conflicts for dpi .
(X is a hitting set of a collection of sets S iff X ⊆⋃

Si∈S Si and X ∩ Si 6= ∅ for all Si ∈ S)

Duality Property Given a DPI dpi = 〈K,B,P ,N 〉, X is a
diagnosis (or: contains a minimal diagnosis) for dpi iff
K \X is not a conflict (or: does not contain a minimal
conflict) for dpi .

3 RBF-HS Algorithm
The Idea. Korf’s heuristic search algorithm RBFS [16] pro-
vides the inspiration for RBF-HS. Historically, the main mo-
tivation that led to the engineering of RBFS was the problem
that best-first searches by that time required exponential
space. The goal of RBFS is to trade (more) time for (much
less) space by means of a “(re)explore-current-best & back-
track & forget-most & remember-essential & update-cost”
cycle. In this vein, RBFS works within linear-space bounds
while maintaining completeness and the best-first property.
Notation. RBF-HS is depicted by Alg. 1. It deals with no-
des, where each node n is a subset of or equal to a diagnosis
and corresponds to a set of edge labels along one branch
from the root of the constructed hitting set tree (cf. [20]).
Nodes can be unlabeled (initially, after being generated) or
labeled by either valid (node is a minimal diagnosis), closed
(node is a non-minimal or already computed minimal diag-
nosis), or by a minimal conflict (node is a subset of a diag-
nosis). There are two functions, f and F , that assign a cost
to each node, where f defines initial costs (f := pr ) and
remains constant throughout the execution of RBF-HS, and
F specifies backed-up (or: learned) costs and is subject to
change while RBF-HS runs.
Inputs and Output. RBF-HS accepts a DPI dpi =
〈K,B,P ,N 〉, a probability measure pr (see Sec. 2), and a
stipulated number ld of minimal diagnoses to be returned as
input arguments. It outputs the ld (if existent) most probable
(wrt. pr ) minimal diagnoses for dpi .

Note, for correctness reasons [18], the probability mo-
del pr must be cost-adjusted, i.e., pr(ax ) < 0.5 for all

Algorithm 1 RBF-HS
Input: . tuple 〈dpi, pr , ld〉 comprising

• a DPI dpi = 〈K,B,P,N 〉
• a probability measure pr that assigns a failure probability pr(ax) ∈

(0, 1) to each ax ∈ K (cf. Sec. 2), where pr is cost-adjusted; note: the
cost function f(n) := pr(n) for all tree nodes n
• the number ld of leading minimal diagnoses to be computed

Output: list D where D is the list of the ld (if existent) most probable (as per pr )
minimal diagnoses wrt. dpi , sorted by probability in descending order

1: procedure RBF-HS(dpi, pr , ld)
2: D← [ ], C← [ ]
3: C ← FINDMINCONFLICT(dpi)
4: if C = ∅ then
5: return D
6: if C = ’no conflict’ then
7: return [∅]
8: C← ADD(C,C)
9: RBF-HS’(∅, f(∅),−∞) . ∅ is the root node

10: return D

11: procedure RBF-HS’(n, F (n), bound)
12: L← LABEL(n)
13: if L = closed then
14: return−∞
15: if L = valid then
16: D← ADD(n,D) . new minimal diagnosis found
17: if |D| ≥ ld then
18: exit procedure
19: return−∞
20: Child_Nodes← EXPAND(n, L)
21: for ni ∈ Child_Nodes do
22: if f(n) > F (n) then . if true, n was already expanded before
23: F (ni)← min(F (n), f(ni))
24: else
25: F (ni)← f(ni)

26: if |Child_Nodes| = 1 then . add dummy node nd with F (nd) = −∞
27: Child_Nodes← ADDDUMMYNODE(Child_Nodes)
28: Child_Nodes← SORTDECREASINGBYF(Child_Nodes)
29: n1 ← GETANDDELETEFIRSTNODE(Child_Nodes) . n1 . . . best child
30: n2 ← GETFIRSTNODE(Child_Nodes) . n2 . . . 2nd-best child
31: while F (n1) ≥ bound ∧ F (n1) > −∞ do
32: F (n1)← RBF-HS’(n1, F (n1),max(bound, F (n2)))
33: Child_Nodes← INSERTSORTEDBYF(n1,Child_Nodes)
34: n1 ← GETANDDELETEFIRSTNODE(Child_Nodes) . n1 . . . best child
35: n2 ← GETFIRSTNODE(Child_Nodes) . n2 . . . 2nd-best child
36: return F (n1)

37: procedure LABEL(n)
38: for ni ∈ D do
39: if n ⊇ ni then . goal test, part 1 (is n non-minimal?)
40: return closed . n is a non-minimal diagnosis
41: for C ∈ C do
42: if C ∩ n = ∅ then . cheap non-goal test (is n not a diagnosis?)
43: return C . n is not a diagnosis; reuse C to label n
44: L← FINDMINCONFLICT(〈K \ n,B,P,N 〉)
45: if L = ’no conflict’ then . goal test, part 2 (is n diagnosis?)
46: return valid . n is a minimal diagnosis
47: else . n is not a diagnosis
48: C← ADD(L,C) . L is a new minimal conflict (/∈ C)
49: return L

50: procedure EXPAND(n, C)
51: Succ_Nodes← [ ]
52: for e ∈ C do
53: Succ_Nodes← ADD(n ∪ {e}, Succ_Nodes)
54: return Succ_Nodes

ax ∈ K must hold. This can be accomplished for any given
pr by choosing an arbitrary fixed c ∈ (0, 0.5) and by setting
pradj (ax ) := c ∗ pr(ax ) for all ax ∈ K. Observe that this
adjustment does not affect the relative probabilities in that
pradj (ax )/pradj (ax ′) = k whenever pr(ax )/pr(ax ′) =
k, i.e., no information is lost in the sense that the fault pro-
bability order of components will remain invariant.

To effect that diagnoses of minimum cardinality (instead
of maximal probability) are preferred by RBF-HS, the pro-
bability model must satisfy pr(ax ) := c for all ax ∈ K for
some arbitrary fixed c ∈ (0, 0.5). Note, this is equivalent to



defining pr(n) := 1/|n| for all nodes n.
Trivial Cases. At the beginning (line 2), RBF-HS initializes
the solution list of found minimal diagnoses D and the list
of already computed minimal conflicts C. Then, two trivial
cases are checked, i.e., if no diagnoses exist (lines 4–5) or
the empty set is the only diagnosis (lines 6–7) for dpi . Note,
the former case applies iff ∅ is a conflict for dpi , which im-
plies thatK\∅ = K is not a diagnosis for dpi by the Duality
Property (cf. Sec. 2), which in turn means that no diagnosis
can exist since diagnoses are subsets of K and each superset
of a diagnosis must be a diagnosis as well (weak fault mo-
del, cf. Sec. 2). The latter case holds iff there is no conflict
at all for dpi , i.e., in particular, K is not a conflict, which is
why K \ K = ∅ is a diagnosis by the Duality Property, and
consequently no other minimal diagnosis can exist.

If none of these trivial cases is given, the call of FIND-
MINCONFLICT (line 3) returns a non-empty minimal con-
flict C (line 8 is reached), which entails by the Hitting Set
Property (cf. Sec. 2) that a non-empty (minimal) diagnosis
will exist. For later reuse (note: conflict computation is an
expensive operation), C is added to the computed conflicts
C, and then the recursive sub-procedure RBF-HS’ is cal-
led (line 9). The arguments passed to RBF-HS’ are the root
node ∅, its f -value, and the initial bound set to −∞.
Recursion: Abstract View. For better understanding, it is
instructive to look upon RBF-HS’ as a succession of the fol-
lowing blocks:
• node labeling (line 12),
• node elimination or addition to solutions (lines 13–19),
• node expansion (line 20),
• node cost inheritance (lines 21–25),
• child node preparation (lines 26–28), and
• recursive child node exploration (lines 29–36).

Recursion: Principle. The basic principle of the recursion
(RBF-HS’) is to always explore the open node (initially,
only the root node ∅) with highest F -value (initially, F -
values are f -values) in a depth-first manner, until the best
node in the currently explored subtree has a lower F -value
than the globally best alternative node (whose F -value is al-
ways stored by bound ). Then backtrack and propagate the
best F -value among all child nodes up at each backtracking
step. Based on their latest known F -value, the child nodes
at each tree level are re-sorted in best-first order of F -value.
When re-exploring an already explored, but later forgotten,
subtree, the F -value of nodes in this subtree is, if neces-
sary, updated through an inheritance from parent to child-
ren (cf. [16]). In this vein, a re-learning of already learned
backed-up F -values, and thus repeated and redundant work,
is avoided. Exploring a node n in RBF-HS means labeling
n and assigning it to the set of computed minimal diagno-
ses (collection D) if the label is valid , and to discard n (no
assignment to any collection) in case it is labeled closed . In
both these cases, the backed up F -value of n is set to −∞,
which prevents the algorithm to be misled in prospective
iterations by good F -values of these already explored no-
des. If n’s label is a minimal conflict C, then |C| child nodes
{n ∪ {c}|c ∈ C} are generated and recursively explored.
This recursive backtracking search is executed until either
D comprises the desired number ld of minimal diagnoses
or the hitting set tree has been explored in its entirety.
Sub-Procedures. The workings of the sub-procedures cal-
led throughout RBF-HS are:
• FINDMINCONFLICT(dpi) receives a DPI dpi =

〈K,B,P ,N 〉 and outputs a minimal conflict C ⊆ K
if one exists, and ’no conflict’ else. A well-known al-
gorithm that can be used to implement this function is
QUICKXPLAIN [23; 24].

• ADD(x, L) takes an object x and a list of objects L as
inputs, and returns the list obtained by appending the
element x to the end of the list L.

• ADDDUMMYNODE(L) takes a list of nodes L, ap-
pends an artificial node n with f(n) := −∞ to L, and
returns the result.

• GETANDDELETEFIRSTNODE(L) accepts a sorted list
L, deletes the first element from L and returns this de-
leted element.

• GETFIRSTNODE(L) accepts a sorted list L and returns
L’s first element.

• SORTDECREASINGBYF(L) accepts a list of nodes L,
sorts L in decending order of F -value, and returns the
resulting sorted list.

• INSERTSORTEDBYF(n, L) accepts a node n and a list
of nodes L sorted by F -value, and inserts n into L in a
way the sorting of L by F -value is preserved.

Finally, the LABEL function can be seen as a series of the
following blocks:
• non-minimality check (lines 38–40),
• reuse label check (lines 41–43), and
• compute label operations (lines 44–49).

Note that this LABEL function of RBF-HS’ is equal to the
one used in Reiter’s HS-Tree [20], except that the duplicate
check is obsolete in RBF-HS’. The reason for this is that
there cannot ever be any duplicate (i.e., set-equal) nodes in
memory at the same time during the execution of RBF-HS.
This holds because, for all potential duplicates ni, nj , we
must have |ni| = |nj |, but equal-sized nodes must be si-
blings (depth-first tree exploration) which is why ni and nj
must contain |ni| − 1 equal elements (same path up to the
parent of ni, nj) and one necessarily different element (label
of edge pointing from parent to ni and nj , respectively).
Properties. RBF-HS is sound, complete and best-first, and
allows to compute an arbitrary fixed number of diagnoses
while requiring only linear memory:5

Theorem 1. Let dpi = 〈K,B,P ,N 〉 be a DPI and let
FINDMINCONFLICT be a sound and complete method for
conflict computation, i.e., given dpi , it outputs a minimal
conflict for dpi if a minimal conflict exists, and ’no conflict’
otherwise. RBF-HS is sound, complete and best-first, i.e., it
computes all and only minimal diagnoses for dpi in descen-
ding order of probability as per the cost-adjusted probability
measure pr . Further, given a fixed number ld of diagnoses
to be computed, RBF-HS requires space in O(|K|).

3.1 RBF-HS Exemplification
The following example illustrates the workings of RBF-HS.

Example 5 (RBF-HS) Inputs. Consider a defective sy-
stem described by dpi := 〈K,B,P ,N 〉, where K =
{ax 1, . . . , ax 7} and no background knowledge or positive
and negative measurements are given, i.e., B,P ,N = ∅. Let
〈pr(ax 1), . . . , pr(ax 7)〉 := 〈.26, .18, .21, .41, .18, .40, .18〉
(note: pr is already cost-adjusted, cf. Sec. 3). Furt-
her, let all minimal conflicts for dpi be 〈ax 1, ax 2, ax 5〉,

5For more details and a proof of this theorem, see the extended
version of this paper at http://isbi.aau.at/ontodebug/publications.
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Figure 1: RBF-HS executed on example DPI (part I).

〈ax 2, ax 4, ax 6〉, 〈ax 1, ax 3, ax 4〉, and 〈ax 1, ax 5, ax 6, ax 7〉.
Assume we want to use RBF-HS to find the ld := 4 most
probable diagnoses for dpi . To this end, dpi , pr and ld are
passed to RBF-HS (Alg. 1) as input arguments.
Illustration (Figures). The way of proceeding of RBF-HS is
depicted by Figures 1 and 2, where the following notation is
used. Axioms ax i are simply referred to by i (in node and
edge labels). Numbers k© indicate the chronological node
labeling (expansion) order. Recall that nodes in Alg. 1 are
sets of (integer) edge labels along tree branches. E.g., node
9© in Fig. 1 corresponds to the node n = {ax 2, ax 4}, i.e., to

the assumption that components c2, c4 are at fault whereas
all others are working properly. The probability pr(n) (i.e.,
the original f -value) of a node n is shown by the black num-
ber from the interval (0, 1) that labels the edge pointing to
n, e.g., the cost of node 9© is 0.18. We tag minimal conflicts
〈. . . 〉 that label internal nodes by C if they are freshly com-
puted (expensive; FINDMINCONFLICT call, line 44), and by
R if they result from a reuse of some already computed and
stored (see list C in Alg. 1) minimal conflict (cheap; reuse
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exit procedure (|D| = 4 ≥ 4 = ld) ⇒ return D

Figure 2: RBF-HS executed on example DPI (part II).

label check; lines 41–43). Leaf nodes are labeled as follows:
“?” is used for open (i.e., generated, but not yet labeled) no-
des; X(Di) for a node labeled valid , i.e., a minimal diagno-
sis named Di, that is not yet stored in D; ×(Expl) for a node
labeled closed , i.e., one that constitutes a non-minimal diag-
nosis or a diagnosis that has already been found and stored
in D; Expl is an explanation for the non-minimality in the
former, and for the redundancy of node in the latter case, i.e.,
Expl names a minimal diagnosis in D that is a proper sub-
set of the node, or it names a diagnosis in D which is equal
to node, respectively. Whenever a new diagnosis is added
to D (line 16), this is displayed in the figures by a box that
shows the current state of D. For each expanded node, the
value of the bound variable relevant to the subtree rooted at
this node is denoted by a red-colored value above the node.
By green color, we show the backed-up F -value returned in
the course of each backtracking step (i.e., the best known



probability of any node in the respective subtree). Further,
f -values that have been updated by backed-up F -values are
signalized by green-colored edge labels, see, e.g., in Fig. 1,
the left edge emanating from the root node of the tree has
been reduced from 0.41 (f -value) to 0.09 (F -value) after
the first backtrack. Finally, F -values of parents inherited by
child nodes (line 23) are indicated by brown color, see the
edge between node 14© and node 15© in Fig. 2.
Discussion and Remarks. Initially, RBF-HS starts with an
empty root node, labels it with the minimal conflict 〈1, 2, 5〉
at step 1©, generates the three corresponding child nodes
{1}, {2}, {5} shown by the edges originating from the root
node, and recursively processes the best child node (left
edge, f -value 0.41) at step 2©. The bound for the subtree
rooted at node 2© corresponds to the best edge label (F -
value) of any open node other than node 2©, which is 0.25
in this case. In a similar manner, the next recursive step is
taken in that the best child node of node 2© with an F -value
not less than bound = 0.25 is processed. This leads to the
labeling of node {1, 4} with F -value 0.28 ≥ bound at step
3©, which reveals the first (provenly most probable) diagno-

sis D1 := [1, 4] with pr(D1) = 0.28, which is added to the
solution list D. Note that −∞ is at the same time returned
for node 3©. After the next node has been processed and the
second-most-probable minimal diagnosis D2 := [1, 6] with
pr(D2) = 0.27 has been detected, the by now best remai-
ning child node of node 2© has an F -value of 0.09 (leftmost
node). This value, however, is lower than bound . Due to
the best-first property of RBF-HS, this node is not explored
right away because bound suggests that there are more pro-
mising unexplored nodes elsewhere in the tree which have
to be checked first. To keep the memory requirements linear,
the current subtree rooted at node 2© is discarded before a
new one is examined. Hence, the first backtrack is executed.
This involves the storage of the best (currently known) F -
value of any node in the subtree as the backed-up F -value
of node 2©. This newly “learned” F -value is signalized by
the green number (0.09) that by now labels the left edge
emanating from the root. Analogously, RBF-HS proceeds
for the other nodes, whereas the used bound value is always
the best value among the bound value of the parent and all
sibling’s F -values. Please also observe the F -value inheri-
tance that takes place when node {2, 4} is generated for the
third time (node 15©, Fig. 2). The reason for this is that the
original f -value of {2, 4} is 0.18 (see top of Fig. 1), but the
meanwhile “learned” F -value of its parent {2} is 0.11 and
thus smaller. This means that {2, 4} must have already been
explored and the de-facto probability of any diagnosis in the
subtree rooted at {2, 4} must be less than or equal to 0.11.
Output. RBF-HS immediately terminates as soon as the ld -
th (in this case: fourth) minimal diagnosis D4 is located and
added to D. The list D of minimal diagnoses arranged in
descending order of probability pr is returned.

4 Evaluation
Dataset. As a test dataset for our experiments with RBF-HS
we used twelve diagnosis problems from the knowledge-
base debugging domain (Table 2) where RBF-HS’s featu-
res soundness, completeness and best-firstness are impor-
tant requirements to diagnosis searches [11; 18; 26]. These
problems were already analyzed in studies conducted by
other works, e.g., [17; 26; 27], and represent particularly

Table 2: Dataset used in the experiments (sorted by 2nd column).

KBK |K| expressivity 1) #D/min/max 2)

Koala (K) 42 ALCON (D) 10/1/3
University (U) 50 SOIN (D) 90/3/4
IT 140 SROIQ 1045/3/7
UNI 142 SROIQ 1296/5/6
Chemical (Ch) 144 ALCHF(D) 6/1/3
MiniTambis (M) 173 ALCN 48/3/3
Transportation (T) 1300 ALCH(D) 1782/6/9
Economy (E) 1781 ALCH(D) 864/4/8
DBpedia (D) 7228 ALCHF(D) 7/1/1
Opengalen (O) 9664 ALEHIF(D) 110/2/6
CigaretteSmokeExposure (Cig) 26548 SI(D) 1566*/4/7*
Cton (C) 33203 SHF 15/1/5

1): Description Logic expressivity, cf. [25];the higher the expressivity, the higher
is the complexity of consistency checking (conflict computation).

2): #D/min/max denotes the number/the min. size/the max. size of minimal di-
agnoses for the DPI resulting from each input KB K. If tagged with a ∗, a
value signifies the number/size determined within 1200sec using HS-Tree.

challenging cases in terms of the complexity of consistency
checking (e.g., a consistency check for SROIQ, cf. third
column of Table 2, is 2-NEXPTIME-complete [28]). As Ta-
ble 2 shows, the dataset also covers a spectrum of different
problem sizes (number of axioms or components; column
2), logical expressivities (column 3), as well as diagnostic
structures (number and size of minimal diagnoses; column
4). Note that every model-based diagnosis problem (accor-
ding to Reiter’s original characterization [20]) can be repre-
sented as a knowledge-base debugging problem [19], which
is why considering knowledge-base debugging problems is
without loss of generality.
Experiment Settings. We evaluate RBF-HS in relation to
Reiter’s HS-Tree [20], which is a state-of-the-art sound,
complete and best-first diagnosis search that is as generally
applicable as RBF-HS, due to its independence from the
used theorem prover and from the logical language used to
describe the diagnosed system.

In our experiments, we considered a multitude of diffe-
rent diagnosis scenarios. A diagnosis scenario is defined by
the set of inputs given to Alg. 1, i.e., by a DPI dpi , a num-
ber ld of minimal diagnoses to be computed, as well as a
(cost-adjusted) setting of the component fault probabilities
pr . The DPIs for our tests were defined as 〈K, ∅, ∅, ∅〉, one
for each K in Tab. 2. That is, the task was to find a minimal
set of axioms (faulty components) responsible for the incon-
sistency of K, without any background knowledge or mea-
surements initially given (cf. Example 5). For the parameter
ld we used the values {2, 6, 10, 20}. The fault probability
pr(ax ) of each axiom (component) ax ∈ K was specified
in a way the diagnosis search returns minimum-cardinality
diagnoses first (cf. Sec. 3). As a logical theorem prover, we
adopted Pellet [29].

To simulate as realistic as possible diagnosis circumstan-
ces, where the actual diagnosis (i.e., the de-facto faulty ax-
ioms) needs to be isolated from a set of initial minimal di-
agnoses, we ran five sequential diagnosis [10; 17] sessions
for each diagnosis scenario defined above. At this, a diffe-
rent randomly chosen actual diagnosis was set as the target
solution in each session. Note, running sequential diagnosis
sessions instead of just applying a single diagnosis search
execution to the DPIs listed in Table 2 has the additional ad-
vantage that multiple diagnosis searches, each for a different
(updated) DPI, are executed during one sequential session
and flow into the experiment results, which gives us a more
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Figure 3: Experiment Results: x-axis shows KBs from Table 2 and
parameter ld ∈ {2, 6, 10, 20}. y-axis pictures factor of memory
saved and factor of more time needed by RBF-HS (vs. HS-Tree).

representative picture of the algorithms’ real performance.
A sequential diagnosis session can be conceived of ha-

ving two alternating phases, that are iterated until a sin-
gle diagnosis remains: diagnosis search, and measurement
conduction. More precisely, the former involves the deter-
mination of ld minimal diagnoses D for a given DPI, the
latter the computation of an optimal system measurement
(to rule out as many spurious diagnoses in D as possi-
ble), as well as the incorporation of the new knowledge re-
sulting from the measurement outcome into the DPI. Mea-
surement computation is accomplished by means of a me-
asurement selection function which gets a set of minimal
diagnoses D as input, and outputs one system measurement
such that any measurement outcome eliminates at least one
spurious diagnosis in D. In our experiments, a measure-
ment was defined as a true-false question to an oracle [5;
17; 18; 27], e.g., for a biological KB one such query could
be Q := Bird v FlyingAnimal (“does every bird fly?”).
Given a positive (negative) answer, Q is moved to the po-
sitive (negative) measurements of the DPI. The new DPI
is then used in the next iteration of the sequential diagno-
sis session. That is, a new set of diagnoses D is sought
for this updated DPI, an optimal measurement is calcula-
ted for D, and so forth. Once there is only a single mi-
nimal diagnosis for a current DPI, the session stops and
outputs the remaining diagnosis. To determine measure-
ment outcomes (i.e., to answer generated questions), we
used the predefined actual diagnosis, i.e., each question
was automatically answered in a way the actual diagnosis
was not ruled out. As a measurement selection function we
adopted the commonly used entropy (ENT) heuristic [10;
17], which selects a measurement with highest information
gain.

To sum up: We ran five diagnosis sessions, each sear-
ching for a randomly specified minimal diagnosis, for each
algorithm among RBF-HS and HS-Tree, for each DPI from
Tab. 2, and for each number of diagnoses ld ∈ {2, 6, 10, 20}
to be computed (in each iteration of the session, i.e., at each
call of a diagnosis search algorithm).
Experiment Results are shown by Figure 3, which com-
pares the runtime and memory consumption we measured
for RBF-HS and HS-Tree averaged over the five performed
sessions (note the logarithmic scale). More specifically, the
figure depicts the factor of less memory consumed by RBF-
HS (blue bars), as well as the factor of more time needed by
RBF-HS (orange bars), in relation to HS-Tree. That is, blue
bars tending upwards (downwards) mean a better (worse)
memory behavior of RBF-HS, whereas upwards (down-
wards) orange bars signify worse (better) runtime of RBF-
HS. For instance, a blue bar of height 10 means that HS-Tree
required 10 times as much memory as RBF-HS did in the
same experiment; or a downwards orange bar representing
the value 0.5 indicates that RBF-HS finished the diagnosis

search task in half of HS-Tree’s runtime. Regarding the ab-
solute runtime and memory expenditure (not displayed in
Figure 3) in the experiments, we measured a min/avg/max
runtime of 0.04/24/744sec as well as a min/avg/max space
consumption of 9/17.5K/1.3M tree nodes.

We make the following observations based on Figure 3:6

(1) More space gained than extra time expended: Whene-
ver the diagnosis problem was non-trivial to solve, RBF-HS
trades space favorably for time, i.e., the factor of space sa-
ved is higher than the factor of time overhead (blue bar is
higher than orange one).

(2) Substantial space savings: Space savings of RBF-HS
range from significant to tremendous, and often reach va-
lues larger than 10 and up to 50. In other words, the memory
overhead of HS-Tree compared to RBF-HS for the same di-
agnostic task reached up to 4900 %.

(3) Often also favorable runtime: In 40 % of the cases RBF-
HS exhibited even a lower or equal runtime compared with
HS-Tree. In fact, the runtime savings achieved by RBF-HS
reach values of up to more than 88 % (case D,20) while at
the same time often saving more than 90 % of space. Note,
also studies comparing classic (non-hitting-set) best-first se-
arches have observed that linear-space approaches can out-
perform exponential-space ones in terms of runtime. One re-
ason for this is that, at the processing of each node, the ma-
nagement (node insertion and removal) of an exponential-
sized priority queue of open nodes requires time linear in the
current tree depth [30]. Hence, when the queue management
time of HS-Tree outweighs the time for redundant node re-
generations expended by RBF-HS, then the latter will out-
perform the former.

(4) Performance independent of number of computed diag-
noses: The relative performance of RBF-HS versus HS-Tree
appears to be largely independent of the number ld of com-
puted minimal diagnoses.

(5) Performance dependent on diagnosis problem: The gain
of using RBF-HS instead of HS-Tree gets the larger, the har-
der the considered diagnosis problem is. This tendency can
be clearly seen in Figure 3 where the diagnosis problems on
the x-axis are sorted in ascending order of RBF-HS’s me-
mory reduction achieved, for each value of ld . Note that
roughly the same group of (more difficult / easy to solve)
diagnosis problems ranks high / low for all values of ld .

5 Conclusions and Future Work
We introduced RBF-HS, a general (reasoner-independent
and logics-independent) diagnosis (or: hitting set) search
that computes minimal diagnoses (hitting sets) in a sound
and complete way, and enumerates them in best-first order
as prescribed by some preference function (e.g., minimum
cardinality, maximal probability). In contrast to existing sy-
stems in model-based diagnosis, RBF-HS guarantees these
three properties under linear-space memory bounds.

In experiments on a corpus of real-world diagnosis pro-
blems of various size, reasoning complexity, and diagnos-
tic structure, we put RBF-HS to the test on minimum-
cardinality diagnosis computation tasks. At this, we compa-

6Note, both RBF-HS and HS-Tree always return exactly the
same diagnoses because they provenly have the same features
(soundness, completeness, best-firstness). Hence, any savings ob-
served do not arise at the cost of losing any theoretical guarantees.



red RBF-HS against HS-Tree, a state-of-the-art sound, com-
plete and best-first hitting set algorithm which is equally ge-
neral (i.e., reasoner-independent and logics-independent) as
RBF-HS. The results testify that: (1) RBF-HS achieves sig-
nificantly higher space savings than time losses in all non-
trivial cases, and the performance gains tend to increase with
increasing problem size and complexity; (2) in many cases,
RBF-HS’s improvements of memory costs are enormous,
reaching savings of up to 98 %; (3) the memory advantages
reached by RBF-HS mostly do not come at the cost of no-
table runtime increases; (4) in four out of ten cases, the run-
time of RBF-HS was even lower than that of HS-Tree, and
runtime savings reached values of up to more than 88 %.

Future work topics include (1) further evaluations of
RBF-HS, e.g., when used to compute most probable diagno-
ses, in combination with other measurement selection heu-
ristics [31; 32; 33; 34], or on diagnosis problems from other
domains, such as spreadsheet [35] or software debugging
[36], and (2) the integration of RBF-HS into our debugging
tool OntoDebug7 [37].
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