UNIVERSITAT

l" KLAGENFURT

FAKULTAT FUR TECHNISCHE WISSENSCHAFTEN

Patrick Rodler

Don’t Treat the Symptom, Find the Cause!

Efficient Artificial-Intelligence Methods
for (Interactive) Debugging

HABILITATION THESIS
Subject Area: Computer Science

Specialization: Artificial Intelligence

Alpen-Adria-Universitat Klagenfurt

Klagenfurt, December 2022

Abstract

In the modern world, we are permanently using, leveraging, interacting with, and relying upon systems
of ever higher sophistication, ranging from our cars, recommender systems in e-commerce, and networks
when we go online, to integrated circuits when using our PCs and smartphones, the power grid to en-
sure our energy supply, security-critical software when accessing our bank accounts, and spreadsheets for
financial planning and decision making. The complexity of these systems coupled with our high depen-
dency on them implies both a non-negligible likelihood of system failures, and a high potential that such
failures have significant negative effects on our everyday life. For that reason, it is a vital requirement to
keep the harm of emerging failures to a minimum, which means minimizing the system downtime as well
as the cost of system repair. This is where model-based diagnosis comes into play.

Model-based diagnosis is a principled, domain-independent approach that can be generally applied
to troubleshoot systems of a wide variety of types, including all the ones mentioned above, and many
more. It exploits and orchestrates i.a. techniques for knowledge representation, automated reasoning,
heuristic problem solving, intelligent search, optimization, stochastics, statistics, decision making under
uncertainty, machine learning, as well as calculus, combinatorics and set theory to detect, localize, and
fix faults in abnormally behaving systems.

In this thesis, we will give an introduction to the topic of model-based diagnosis, point out the major
challenges in the field, and discuss a selection of approaches from our research addressing these issues.
For instance, we will

* present methods for the optimization of the time and memory performance of diagnosis systems,

* tackle the improvement of the usefulness and usability of debuggers,

* introduce efficient techniques for a semi-automatic debugging by interacting with a user or expert,

* reveal results of profound theoretical and empirical analyses,

* address how to conquer particularly challenging diagnostic use cases,

* make recommendations as to the best use, configuration, and combination of diagnostic algorithms,

* provide assistance for other researchers and practitioners by a survey and didactic treatises,

* critically call into question and scrutinize techniques and practices adopted in the field,

* describe our full-fledged debugging tool that incorporates more than a decade of research, and

* demonstrate how our methods can be effectively harnessed in important application domains such

as optimal scheduling, spreadsheet debugging, or the quality assurance of the Semantic Web.

Contents

List of Tables 1
List of Figures 1
1 Introduction and Preliminaries 3
1.1 Model-Based Diagnosis e 3

1.2 Sequential Diagnosis e e 8

1.3 Diagnostic Tasks e 10

1.4 Application Areas e 11

1.5 RelatedResearch Fields 12

1.6 A Generic (Interactive) Diagnosis System 0oL 14

1.7 Research Challengesand Goals 15

2 Our Research: Overview 19
2.1 From the Diagnosis System Perspective 19

2.2 From the Type of Research Perspective 19

2.3 Works Included in this Thesis: Ina Nutshell 20

3 Our Research: Details 23
3.1 Diagnosis Computation e e e e e e 23
3.1.1 Memory-Limited Diagnosis Computation 23

3.1.2 DynamicHS: Optimizing Reiter’s Hitting-Set Tree for Sequential Diagnosis . . . 25

32

3.3

3.4

35

3.1.3 StaticHS: Reducing Costs by Solving a Generalized Sequential Diagnosis Problem 26
3.1.4 On the Impact of Diagnosis Computation Strategies

on Diagnostic Decision Making 28
3.1.5 A Taxonomy and Classification of Diagnosis Computation Algorithms 30
Query Computation and Selection 31
3.2.1 Proposal and Theoretical Analysis of Query Selection Heuristics 31
3.2.2 Empirical Analysis of Query Selection Heuristics 33
3.2.3 Efficient Query Computation and Selection by Systematic Search 34
User Studies and Debugging Tool, 36
3.3.1 User Study: Are Query-Based Debuggers Really Helping Users? 36
3.3.2 On User Types, Assumptions, Optimization Criteria, and How to Make Query-

Based Debugging Simpler and More Efficient 37
3.3.3 OntoDebug: A Full-Fledged Ontology Debugging Tool 39
Diagnostic Reasoning L 41
3.4.1 Optimization by Randomization for Hard Diagnostic Problem Cases 41
3.4.2 A Formal Proof and Simple Explanation of the Seminal QuickXplain Algorithm 43
Diagnostic Modeling e 44

3.5.1 On Modeling Techniques for Spreadsheet Debugging:
A Theoretical and Empirical Analysis 44

3.5.2 Reducing Model-Based Diagnosis to Knowledge Base Debugging
Bibliography

A Papers Included in the Habilitation Thesis

List of Tables

2.1
2.2
23

Research works grouped based on the addressed aspect(s) of a generic diagnosis system .
Research works grouped by type of paper
Overview of the research works included in this thesis

List of Figures

1.1
1.2
1.3
1.4
L5
1.6
1.7
1.8
1.9
1.10
3.1
32
3.3
34
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16

Full adder example: Components, system description, observations, predictions
Full adder example: Minimal conflicts
Full adder example: Minimal diagnoses
Full adder example: Diagnosis computation using HS-Tree
Full adder example: Sequential diagnosis, situation after the first measurement
Model-based diagnosis application domains
Related fields that influence model-based diagnosis
Related fields influenced by model-based diagnosis
Generic (sequential) diagnosis system: Modules, external entities, functionality
Generic (sequential) diagnosis system: Problems, research challenges, goals
Meaning of the accentuations used in Figures 3.2-3.16.
Memory-limited diagnosis computation
DynamicHS—Streamlining Reiter’s hitting-set tree for sequential diagnosis
StaticHS—Reducing costs by solving a generalized sequential diagnosis problem
On the impact of diagnosis computation strategies on diagnostic decision making
A taxonomy and classification of diagnosis computation algorithms
Proposal and theoretical analysis of query selection heuristics
Empirical analysis of query selection heuristics
Efficient query computation and selection by systematicsearch
Userstudy o o o e e e e e e e e e e
How to make query-based debugging simpler and more efficient
OntoDebug—A full-fledged ontology debuggingtool
Optimization by randomization for hard diagnostic problem cases
A formal proof and simple explanation of the QuickXplain algorithm
On modeling techniques for spreadsheet debugging
Reducing model-based diagnosis to knowledge base debugging

20
21

Chapter 1

Introduction and Preliminaries

We first provide a short and example-driven introduction to model-based diagnosis, the overarching topic
of this thesis. Then, we outline the main ideas behind sequential diagnosis, a research area dedicated
to efficient interactive diagnosis. Next, we describe the principal diagnostic tasks of interest, shed light
on application areas, and discuss links to related research domains. Finally, we expound the structure,
modules and way of functioning of a generic (interactive) diagnosis system, based on which we explain
the main research challenges and goals in the field tackled by our works described in later chapters.

Please note that we intentionally keep the discussion of the preliminaries on a higher level of abstrac-
tion and abstain from a very formal and detailed treatment in this chapter, whose main aim is to give the
reader an intuition and overview of the topic. More in-depth accounts of technicalities can be found in
the papers included in this thesis (cf. Appendix A).

1.1 Model-Based Diagnosis

Model-based diagnosis [Rei87, dKW87] is a popular, well-understood, domain-independent and prin-
cipled paradigm for troubleshooting malfunctioning systems of a wide variety of types, such as physical
devices, software, knowledge bases, or vehicles. The theory of model-based diagnosis [Rei87] assumes a
system (e.g., a circuit) that is composed of a set of components (e.g., gates), and a system description (e.g.,
a logical knowledge base characterizing the circuit). The latter is expressed in a formal (logical) language
and can be used to derive the expected behavior of the system by means of automated deduction systems.
If the predicted system behavior, under the assumption that all components are functioning normally, is
not in line with observations made or measurements conducted about the system, the goal is to locate the
abnormal system components that are responsible for this discrepancy.

Example 1.1 (System description, components, observations, predictions) Consider the faulty full
adder (cf. [Rei87]) depicted in Fig. 1.1. We have five system components, comprising two xor-gates
(X1, X2), two and-gates (A1, Az), and one or-gate (O1). Moreover, we have observations of the circuit’s
inputs (1,0,1) and outputs (sum bit equal to 1 and carry bit equal to 0). No measurements are given. The
system description could, e.g., be formulated as a logical knowledge base, specifying the (normal) behav-
ior of all gates, which gates are connected by wires, as well as relevant general domain knowledge. E.g.,
for the xor-gate X, we would have the logical axiom ok(X;) — out(X1) = zor(iny(X1), ina(X1))
where out(G) describes the value at the output terminal of gate G, ini(G), in2(G) denote the two
input values of gate GG, zor is the standard xor-function, and ok is a distinguished predicate used to
state that a component is functioning normally. Further, the connection between, e.g., the xor-gates
X1 and X, is specified by the axiom out(X;) = ini(Xz2). An example of a general domain ax-
iom is (1 = 0), which expresses that the constants 1 and 0 are different, i.e., if we derive that the
value at some gate terminal is both 1 and 0, then we obtain a contradiction. Now, using a theorem

4 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

-

A2

? o1
/)

Figure 1.1: Full adder example: Components (orange boxes), observations (blue numbers), predictions under
the assumption of normally behaving components (green numbers), and consistency check between observed
and predicted values (red inequality signs; red flashes indicate inconsistency). The system description is a
formal characterization of the depicted circuit, e.g., a set of logical sentences expressing the (normal) behavior
of the components, their interrelations, as well as other relevant domain knowledge.

prover to predict the circuit’s outputs given its inputs, while assuming all five gates to be normal, i.e.,
{0k(X71), 0k(X2), 0k(A1), 0k(A2), 0k(O1)}, we obtain a contradiction. In particular, we deduce that
the sum bit must be 0, and the carry bit must be 1, which however is inconsistent with the given obser-
vations of the two outputs. As a conclusion, we know that some component must be abnormal, i.e., the
ok(@) assumption for some gate(s) G must be retracted to restore consistency between predictions and
observations. O

Different Interpretations of the Diagnosis Problem. In general, the are two main interpretations of
the system description on the one hand, and the observations and measurements on the other. First, as
illustrated in Example 1.1, the system description might constitute the correct specification of a system
(e.g., a physical device) in which case the observations and measurements represent evidence about the
actual system (the real device) implementing the specification. We term this interpretation of system
model vs. evidence as correct vs. actual. Second, the system description might correspond to a model of a
faulty artifact (e.g., a buggy program) in which case the observations and measurements are specifications
of the intended system behavior (e.g., giving evidence what the correct program should do), and the
“normal” behavior of components (e.g., lines of code) is the description of the components just as they
are given in the faulty artifact. We refer to this interpretation as actual vs. intended.

Diagnosis Problem Instance and Diagnoses. Given a diagnosis problem instance (DPI)—consisting
of the system description, the system components, the observations and the measurements—a (minimal)
diagnosis is a (minimal®) set of components that, when assumed abnormal, while all other components
are assumed normal, leads to consistency between the system description (predicted behavior) and the
observations and measurements (real/intended behavior). Simply put, a diagnosis is an explanation for
the observed or measured system misbehavior, and a minimal diagnosis is an explanation that assumes
a minimal set of components to be abnormal. In practice, for reason of computational efficiency and
obeying the principle of parsimony [Rei87], the focus of diagnosis research and tools is often restricted
to minimal diagnoses. The set of minimal diagnoses is representative of all diagnoses given the common
weak fault model [dKMR92] setting where the system description characterizes only the normal, and no
abnormal, behavior of components. This is also the diagnostic setting we consider throughout this work.
Conflicts and Hitting-Set Property. Computing (minimal) diagnoses requires checking the consistency
of different component (ab)normality assumptions with the observations and measurements. Basically,
the relevant search space spans all subsets of the set of system components, which makes an exhaustive
exploration infeasible in all but the simplest cases. However, a more focused generation of diagnoses is

IWhenever we speak of minimality, we mean minimality wrt. set inclusion.

1.1. MODEL-BASED DIAGNOSIS 5

Figure 1.2: Full adder example: Minimal conflicts.

enabled by the notion of a conflict. Intuitively, when the windshield wipers of our car do not work, the
attention of the diagnostic analysis can concentrate on a small subset of the car’s components, e.g., the
motor of the wipers, or the connecting cables, but not, say, on parts of the car’s engine or the braking
system, because they do not influence the observed behavior of the car [VLP08, Chap. 10]. That is,
observations are usually not only inconsistent with the system description under the assumption that all
components are normal, but already when an (often relatively) small subset of the components is assumed
fault-free. In more technical terms, a (minimal) conflict is a (minimal) set of system components that,
when assumed normal, leads to an inconsistency between the system description and the observations
and measurements. So, at least one component in each (minimal) conflict must be assumed abnormal
in order to explain the system misbehavior. This directly leads us to the hitting-set relationship between
conflicts and diagnoses [Rei87]: A (minimal) diagnosis is a (minimal) hitting set of all minimal conflict
sets. Given a collection of sets S, X is a (minimal) hitting set of S iff (X is a minimal set such that) X
includes only elements occurring in sets of S and X has a non-empty intersection with each set in S.

Example 1.2 (Conflicts and diagnoses) For our full-adder problem in Fig. 1.1, we find two minimal
conflicts, i.e., C = {C1,Ca} = {(X1, Xa), (X1, Az, 01)}, as illustrated in Fig. 1.2.2 E.g., C; is a conflict
because, assuming the two xor-gates X, Xs to be functioning normally, (/) we can derive from the two
inputs (in1(X1), in2(X1)) = (1,0) of X; that the output out(X;) of X; must be equal to 1, and (2) from
out(X7) = in1(Xa) = 1 as well as iny(X2) = 1, we can deduce that out(X2) = 0, which means a
contradiction to the observed value out(X3) = 1. The minimality of the conflicts follows from the fact
that, once we omit one of the normality assumptions for X; or X5, we cannot derive out(Xs) = 0
anymore. An analogous argumentation is applicable for the second conflict Cs.

By computing all minimal hitting sets for C, we can determine all minimal diagnoses D = {D;, Do,
D5} = {[X1], [A2, X2],[O1, X2]}, as shown by Fig. 1.3. E.g., diagnosis D corresponds to the assump-
tion {—0k(X1), 0k(X2), 0k(A1), 0k(Asz), 0k(O1)}. This assumption explains the faulty behavior of the
full-adder because, when assuming X to be abnormal (i.e., ~0k(X7)), which is equivalent to dropping
the restriction out(X1) = zor(ini(X1), in2(X1)) imposed on the behavior of X; (cf. Example 1.1),
none of the two predictions out(X2) = 0, out(O1) = 1 which contradict the observations can be in-
ferred. In other words, the system description under this assumption is consistent with the observations.
This is exactly the definition of a diagnosis. Minimality of the diagnosis D; can be directly seen by ob-
serving that the only proper subset [] (the empty diagnosis which assumes none of the components faulty)
of [X] is not a diagnosis (cf. the argumentation in Example 1.1). U

Classical Algorithms for Diagnosis and Conflict Computation. As a consequence of the hitting-set
property discussed above, conflicts can help to largely restrict the search space for diagnoses, and also
permit the computation of diagnoses in a particular order of preference or plausibility. The two most

2Throughout this work, we denote conflicts by angle brackets and diagnoses by squared brackets.

6 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

C7RE>

J
b
NQJ

»»

(" e S S)
f—» 3 | description

Figure 1.3: Full adder example: Minimal conflicts and minimal diagnoses.

common such notions of diagnostic preferability are minimum-cardinality (i.e., those diagnoses assuming
the fewest faulty components are favored) and maximal probability (i.e., the most likely diagnoses based
on, e.g., known component failure rates are deemed most plausible). Notably, it is often not necessary to
generate all (minimal) conflicts if the goal is to find only a set of the most-preferred minimal diagnoses.

One prominent and commonly adopted algorithm for diagnosis computation based on conflicts is
Reiter’s HS-Tree [Rei87]. It constructs a node- and edge-labeled tree in breadth-first manner (cf. Fig. 1.4).
Each internal tree node n is labeled by a minimal conflict which has an empty intersection with path(n),
the set of edge labels along the path from the root to n (where path(n) = () for the root node n). If there
is no such conflict, path(n) is a diagnosis (as it must already hit all minimal conflicts) and is labeled by

(a) X (5p,) if there is some already found minimal diagnosis D; with D; C path(n) (i.e., path(n) is a
non-minimal diagnosis and node n is closed, i.e., becomes a leaf node), or
(b) V' (p,) else, where the index (D;) indicates that path(n) is the i-th found minimal diagnosis denoted
by D; (i.e., path(n) is a minimal diagnosis3 and node n is closed, i.e., becomes a leaf node).
Each node labeled by a minimal conflict C = {e¢y,..., ¢} has k outgoing edges, each labeled by a
different element ¢; from C and pointing to a newly generated node. Before labeling a node n, the
algorithm tests if there is another node n’ with path(n’) = path(n), and if so, n is labeled by x, i.e.,
node n is closed and becomes a leaf node (because in terms of its path it is a duplicate and hence can
be discarded). Finally, when the tree 1" is completed, i.e., there are no more unlabeled nodes, the set of
minimal diagnoses is exactly given by Solyg := {path(n) |n is labeled by v'}.

In fact, the execution of HS-Tree can be stopped at any point in time; in this case, Sol s will comprise
a set of most preferred diagnoses (those with minimal cardinality). Since conflict computation, taking
into account the involved theorem prover calls, is usually the most expensive operation in the HS-Tree
algorithm, all minimal conflicts computed throughout the tree construction process are stored, and before
a conflict is freshly computed for a node, the collection of stored conflicts is scanned for a suitable conflict
with an empty intersection with the current node’s path.*

Literature offers a variety of algorithms for conflict computation (cf. e.g., [Rod22c]). One of the most
commonly used in model-based diagnosis is the seminal QuickXplain algorithm [Jun04, Rod22c] (cf.
Example 1.4 and Sec. 3.4.2). It performs a recursive divide-and-conquer analysis of the set of system
components and requires per computed minimal conflict a number of calls to a consistency checker that
is linear in the number of system components. Hence, HS-Tree requires O(|Sol fz| + |COMPS| *n¢) con-
sistency checks, one for each diagnosis D; (v' label) to verify that it hits every conflict, plus O(|cOMPS|)
calls per computed minimal conflict, where COMPS denotes the set of system components and n¢ the
number of computed minimal conflicts throughout the execution of HS-Tree. Note, no theorem prover

30bserve that path(n) must indeed be a minimal diagnosis in this case since the check in (a) was negative and due to the
breadth-first tree construction, which guarantees that all nodes n’ with path(n’) C path(n) must already have been processed (and
all diagnoses of lower cardinality must already have been found) before n is labeled.

4Please refer to, e.g., [Rod22b] for a more elaborate discussion and a precise algorithmic description of HS-Tree.

1.1. MODEL-BASED DIAGNOSIS 7

)

(XpAz’ 01)("
@ ® @
‘/(Dl) (X1, X,
v N
®, ®, @ ®,
(D) 0, Dy D,

Figure 1.4: Full adder example: Diagnosis computation using HS-Tree. Blue font...minimal conflicts; green
shaded areas...paths that are minimal diagnoses; green font...node labels for minimal diagnoses; red font...node
labels for non-minimal diagnoses; yellow circles...order of node processing (breadth-first); orange font...label
indicating if conflict is freshly computed (C) or reused from stored conflicts (R).

calls are necessary to determine non-minimal diagnoses or duplicate paths (x labels), cf. [Rod22b].

Example 1.3 (Diagnosis computation using HS-Tree) Reconsider our full-adder example from Fig. 1.1.
The tree built by the HS-Tree algorithm for this problem is displayed by Fig. 1.4. The set of computed di-
agnoses is indeed equal to all minimal diagnoses (cf. the set D discussed in Example 1.2). The algorithm
requires two conflict computations (eight plus five consistency checks, cf. Example 1.4) and three addi-
tional consistency checks (to prove that the branches marked with v are diagnoses). For more complex
systems with a large set of components, this conflict-based computation can make a huge difference as
compared to a brute-force exploration of the diagnosis search space, as the size and number of minimal
conflicts is often relatively small. Note, to compute only one preferred diagnosis, say, a minimum-
cardinality diagnosis assuming the fewest abnormal components (in this case [X1]), the computation of a
single minimal conflict would suffice in this particular example. O

Example 1.4 (Conflict computation using QuickXplain) The idea underlying conflict computation
by means of QuickXplain can be illustrated as follows. Consider, e.g., the node labeled at time point 3)
in HS-Tree (cf. Fig. 1.4). To determine the minimal conflict (X7, X5} to label this node, QuickXplain will
execute the Steps (1)—(5) shown below. Each step involves one consistency check using a suitable (sound
and complete) theorem prover. First, note that the goal when labeling the node with the number (3) in the
HS-Tree is finding a minimal conflict that has an empty intersection with the node’s path { A2 }. In other
words, we need to determine a minimal conflict that is a subset of the set S including all components
minus the node’s path, ie., S = {A1,01, X1, Xa} = {A1, 42,01, X1, X2} \ {42}. So, in Step (1),
QuickXplain checks whether a conflict is contained in S by testing whether the assumption that all the
four components in .S are normal is consistent with the observations (below we highlight the components
assumed normal and taking part in the consistency check by a single underlining). The result is negative
(i.e., “inconsistent”, shown by a ()) which means that there is at least one (minimal) conflict among the
subsets of S. Let us refer to the minimal conflict that will be found by QuickXplain by C. In Step (2), the
algorithm partitions S into two equal-sized subsets and tests whether the left subset, { A1, O; }, is already
a conflict. Since the normality assumption of these two components does not contradict the observations
(i.e., we obtain “consistent”, signified by the (), it can be inferred that some component from { X7, X}
must be in C. Hence, QuickXplain starts to analyze the right subset { X, X5} and recursively splits this
set in two equally-sized subsets, {X; } and {X>}, and adds the left set { X} to the normally assumed
components for the next consistency check performed in Step (3). We find that this check is positive ((3)),

8 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

which implies that X5 is in C (denoted by a double underlining in the illustration below). Intuitively, Xo
must be in C as it is known from Step (1) that {A;, Oy, X1, X2} contains a conflict, and from Step (3)
that, once X5 is removed, the set does not comprise any conflicts. In Step (4), a consistency test for (the
normality assumption of) {A;,O1, X5} is executed to figure out whether the left subset, {X;}, is not
needed to build a conflict given the knowledge that the right subset, { X2}, is in the conflict. However,
we observe that consistency is given ((+)), which entails that X; must be in C as well (due to an analogue
argumentation as given for X>). Now, as it has been derived that both X; and X5 are in C, the algorithm
tests in Step (5) if the left subset of S, i.e., {41,041}, is still relevant for the conflict in the light of
this knowledge. Since the consistency check returns negatively (), QuickXplain deduces that both
components Ay, Oy are irrelevant to C and returns the minimal conflict C = (X3, X5) as a final result.
We observe that the computation of C takes five consistency checks. Likewise, we find that the
computation of the conflict ¢’ := (X3, A2, 01) at node (D) in Fig. 1.4, given the list of components

[A1, As, O1, X1, X5], requires eight theorem prover calls. O
(1) [A1,01,X1,X2] O — theset{A4;,01, X1, X5} includes a conflict
) [A1,01,X1,X5] ® — some element from {X, X5} isinC
3) [A41,01,X1,X3] ® — XyisinC
) [A41,01,X1,X3] ® — XpisinC
5) [A1,01,X1,X5] © — A, OparenotinC

1.2 Sequential Diagnosis

When a system malfunction is detected, there is in many cases not enough information available to lo-
cate the real cause unambiguously. Rather, one often faces a substantial number of different (minimal)
diagnoses given the initial system observations and measurements. However, only one of the diagnoses,
which we refer to as the actual diagnosis, pinpoints the (unknown) actually faulty components. All other
diagnoses are spurious in that they assume at least one actually normal component to be faulty, or at least
one actually faulty component to be normal, or both.

One strategy to handle multiple diagnoses is to adopt techniques to rank or restrict the computed di-
agnoses based on some informative criterion such as maximal probability or minimal cardinality [dK91].
Whereas such techniques can be very powerful if the actual diagnosis appears (early) in the solution list,
they cannot give the user a guarantee that the actually faulty components will be located (efficiently).

This is where sequential diagnosis techniques [dKW87] enter the stage. Their aim is to collect addi-
tional information about the system in order to gradually rule out spurious diagnoses and thereby reduce
the diagnostic uncertainty. More specifically, sequential diagnosis approaches iteratively pose queries to
an oracle (e.g., an electrical engineer in case of a malfunctioning circuit, or a domain expert in case of a
faulty knowledge base). At this, queries are selected in a way that each query answer elicits some new
information about the diagnosed system that allows to discriminate between diagnoses. Depending on
the system type, queries can capture, e.g., system tests (given specific inputs of the system, determine the
resulting outputs), probes (make a measurement at a particular location in the system), or expert questions
(answer a question about the intended behavior of the system) [Rod22i].

The basic technical idea behind queries is to exploit the fact that different diagnoses predict different
system behaviors or properties (e.g., intermediate values or outputs). Observing a system aspect for
which the predictions of multiple diagnoses disagree then leads to the invalidation of those diagnoses
whose predictions are inconsistent with the query answer. Since the determination of optimal queries
(which minimize the overall effort for the interacting oracle) is NP-hard [PA90], sequential diagnosis
methods often have to rely on myopic strategies to estimate the favorability of different query candidates.
One approach is to evaluate the quality of queries in terms of the utility of the expected situation after

1.2. SEQUENTIAL DIAGNOSIS 9

1 (A
))a A
0) -7
N 1
1 “ 22 {0)
D,
o) D 0
/

(a) First measurement is out(Az) = 0.

| A~

0)x1 \

new diagnosis

(b) First measurement is out(A2) = 1.

Figure 1.5: Full adder example: Sequential diagnosis, situation after the first measurement.

knowing their answer, taking into account features such as the number of invalidated diagnoses, or the
estimated additional oracle effort. Such one-step-lookahead analysis [AKRS92] based on query selection
heuristics has proven to constitute a particularly favorable trade-off between computational efficiency
and diagnostic effectivity, and is today state-of-the-art in sequential diagnosis. Accordingly, a range of
heuristics that quantify the goodness of queries based on various information-theoretic considerations
have been proposed in literature [Mor82, dKW87, PA90, SFFR12, RSFF13, Rod16b, Rod17, RS18c].
A generic sequential diagnosis process can be roughly thought of as a recurring execution of
(1) the computation of a set of (preferred) minimal diagnoses,
(2) the selection of the most informative query according to some query selection heuristic based on
the computed diagnoses,

(3) the presentation of the computed query to the oracle which provides a query answer, and

(4) the exploitation of the query outcome to refine the system knowledge.
This iterative process continues until sufficient diagnostic certainty is obtained, e.g., only one minimal
diagnosis (with overwhelming probability) remains.

Example 1.5 (Sequential diagnosis) Reconsider our full-adder from Fig. 1.1. As expounded in Exam-
ple 1.2, the initial system knowledge in terms of observations and measurements leaves the user (e.g., an
electrical engineer) with three minimal diagnoses. Let us assume that in the past the failure rate of the
or-gates has been registered to be higher than for other types of gates. In the light of this meta information,
diagnosis D3 = [X2, O1] would appear to be the most likely and plausible. However, let us also suppose
that the intention is to avoid the potential cost involved in the unnecessary replacement of healthy gates
as well as the cost of missing the replacement of faulty gates as a consequence of choosing a diagnosis

10 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

that turns out not to be the actual fault explanation. To this end, the user might decide to use a sequential
diagnosis engine as an aid to efficiently locate the real fault with certainty.

Initiating the sequential diagnosis process given the known diagnoses D = {D;, D5, D3} (cf. Exam-
ple 1.2), a query selection engine might propose a query asking the engineer to measure the voltage at the
wire out(As) that connects the gates Ao and O;. The rationale behind this query could be to differentiate
between the most probable diagnosis D3 (being the only diagnosis including the or-gate) and the remain-
ing diagnoses {D1, Dy }. Note that this query has the property of eliminating one of the known diagnoses
irrespective of the oracle’s answer; that is, already before the query outcome is known, it is guaranteed
that the query will bring relevant information for diagnosis discrimination. In various diagnostic scenar-
ios, it is demanded of query selection engines to generate only such discriminating queries.

Let us now analyze the effects the two possible query answers, out(As) = 0 and out(Az2) = 1, have
on the minimal conflicts and diagnoses. Given out(Az2) = 0, we learn that at least one of { X7, A2} must
be at fault, since assuming both of them to work nominally, the output of X (inputs 1 and 0) would be 1,
and the output of A, (inputs 1 and 1) would be 1 as well. Fig. 1.5a shows the implication of this reasoning,
i.e., the “shrinkage” of the minimal conflict C5 to (X3, As), which causes the invalidation of diagnosis
D, (as can be easily seen by means of the hitting-set relationship between diagnoses and conflicts). If, on
the other hand, the oracle measures out(Az) = 1, the conflict C; reduces to (O;) because we now know
that one of its inputs is 1 (query answer) and its output is 0 (observation), which entails that O; must be
abnormal. This means that, of the original minimal diagnoses, only D3 remains valid. However, notably,
in this case we detect that a new diagnosis, Dy = [X7, O1], has emerged as a superset of D;. In general,
it holds that each minimal diagnosis after the query answer is incorporated into the system knowledge is
either one of the original minimal diagnoses or a proper superset of some original minimal diagnosis.

For any outcome we might have got for the first query, the debugger would suggest a measurement at
out(X1) as a second query. Regardless of its outcome, diagnostic certainty will be obtained. To see this,
let us consider all four cases: First, for the situation out(As) = 0 (Fig. 1.5a), we have:

o If out(X1) = 0, the new minimal conflicts are given by C = {(X1)}. Le., D1 = [X1] is the only

remaining minimal diagnosis.

e If out(X;) = 1, the new minimal conflicts are given by C = {(X5), (42)}. Le., Dy = [Xa, Ao] is

the only remaining minimal diagnosis.
Second, for the situation out(As) = 1 (Fig. 1.5b), we get:

* If out(X;) = 0, the new minimal conflicts are given by C = {(X1), (O1)}. Le., Dy = [X1,01] is

the only remaining minimal diagnosis.

* If out(X1) = 1, the new minimal conflicts are given by C = {(X3), (O1)}. Le., D3 = [X2,01] is

the only remaining minimal diagnosis.
Hence, the user is overall required to make two measurements in the circuit in order to determine the
actual diagnosis with full certainty. O

1.3 Diagnostic Tasks

In model-based diagnosis, there are three main tasks [vLP08, Chap. 10]:

e fault detection (is there a fault? / is some component faulty?),

e fault localization (where is the fault? / which components are faulty?), and

e fault identification and repair (what is faulty with each component? / how to fix it?).
Except for the case where faulty components are simply replaced by new ones, all these three steps are
usually necessary for the successful debugging of an abnormal system, and they are executed in the order
they are listed. Fault localization can be seen as a core phase in model-based diagnosis as it incorporates a
fault detection step (localization is only relevant once it has been ascertained that faults are indeed present
in the system), and its outcome represents one solution to the repair problem (in terms of a simple, but
often still reasonable and efficient component replacement). Given a strong fault model, where the system
description, besides the normal behavior, also specifies abnormal component behavior(s) called fault

1.4. APPLICATION AREAS 11

o e e e ourapp[ication ————————————————— =

4 f N
ocus \
oN 3 — = 1
formal ot AN e '\]
systems | ﬁ ot~ /[scheduling e e N
» \ g ® ’,’,‘/’ / 2 problems &_: - i ; 4 1
~~~~~~ S e @ b N
vehicles @43 &m :
|
g 1
O O 1
- ~ i

pd  Model-based ‘- | our fresearch

thod - o X
ji e e Diagnosis E 1A St

cyberphysical TR S
systems

physical
systems

) 4

4

o —

'
e

e

4

- - o e e

Figure 1.6: Model-based diagnosis application domains grouped into categories (clouds), differentiation be-
tween specific (violet) and general (green) methods, and illustration of research and application focus (light
green and light orange) of the works included in this thesis. The bold green dashed line and checkmark sign in-
dicate that general methods aim at preserving maximal generality in order to be (at least in principle) applicable
to any model-based diagnosis application, which is not the case for specific methods (as exemplarily visualized
by the violet dashed line).

modes, the fault identification task (find a fault mode assignment for each component that is consistent
with the observations and measurements) might be directly tackled as a second step in the process, without
first locating the fault. A more detailed discussion of this is beyond the scope of this work and can be
found in [vLPO8, Chap. 10]. In any case, the fault identification and repair step will usually require
domain expertise in terms of a more detailed insight into the functioning, structure, construction, etc. of
the components. The works included in this thesis cover all three above-mentioned tasks, however with a
focus on the fault localization problem.

1.4 Application Areas

Model-based diagnosis can be and has been applied to a myriad of different application areas. As sug-
gested by Fig. 1.6, we might categorize some of the prominent use cases into

* formal systems (e.g., software, spreadsheets, knowledge bases, ontologies, networks, scheduling

problems, recommender systems, constraint satisfaction problems, or configuration systems),

* vehicles (e.g., drones, aircrafts, or cars),

* cyberphysical systems (e.g., power grids, traffic control systems, or robots), and

* physical systems (e.g., office machines, medical devices, circuits, hardware systems, or turbines).
While the provision of a suitable system model might sometimes be one of the most challenging steps
towards diagnosing (e.g., physical) systems when relying on the “correct vs. actual” interpretation of
the diagnosis problem (cf. Sec. 1.1), a readily usable system model can often be directly extracted from
the buggy system in an automatic way when considering the “actual vs. intended” perspective on the
problem. The latter strategy is often applicable to formal systems, which constitute the primary focus of
our empirical evaluations conducted in the course of the works included in this thesis.



12 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

Automated reasoning
(deductive, abductive)

Algorithms and
data structures

Intelligent search
Complexity theory

Machine learning,
Active learning

[ Knowledge representation

[ Heuristic problem solving

- Model-based
Stochastics, . .
Statistics Diagnosis

(System/User)
modeling

Reasoning and
decision making
under uncertainty

Set theory

Figure 1.7: (Some) related subjects and fields that influence model-based diagnosis research.

In general, any system that is decomposable into a set of components and amenable to a formal
description in a decidable monotonic knowledge representation language, for which sound and complete
theorem provers (for consistency checking) exist, is a potential use case for model-based diagnosis.

Whereas model-based diagnosis is a generally applicable and domain-independent framework, this
does not automatically mean that all implementations of the framework, i.e., model-based debugging ap-
proaches and tools, are built so as to maintain the maximal generality. As suggested in [Rod22d], we
might discern specific and general diagnosis methods (cf. Fig. 1.6). The former are designed to har-
ness specifics of a particular (class of) system type(s) in order to streamline the diagnosis process while
accepting a somewhat narrowed down application scope of the approach. The latter, by contrast, aim
at maintaining a maximally broad applicability by making no assumptions about the (structure, type, do-
main, etc. of the) diagnosed system, the language used to describe the system, or the inference mechanism
used. The largest part of the works included in this thesis belong to the latter category and can in principle
be generally applied to any model-based diagnosis problem as per Reiter’s theory [Rei87]. As regards
applications, our research works mainly target ontology and knowledge base debugging, spreadsheet di-
agnosis, as well as over-constrained scheduling problems (cf. Fig. 1.6).

1.5 Related Research Fields

Model-based diagnosis is a core discipline in model-based problem solving, which is embedded in the
field of knowledge representation and reasoning, a large and important sub-area of artificial intelligence.
By reason of its profound mathematical and theoretical foundations, the great variety of its applications,
the consideration of hard combinatorial and set theoretic problems, the broad range of proposed algo-
rithms, the diversity of possible diagnostic scenarios, the partial observability and uncertainty usually
involved in the process, the usefulness of machine learning techniques to boost diagnostic performance,
and many others, model-based diagnosis has intersections with a multitude of other research areas. It is
both influenced by and does itself influence a range of other fields, where Fig. 1.7 and Fig. 1.8 give an
overview of some of them.

Prominent influencing fields are, by the very nature of model-based diagnosis, of course knowledge
representation, reasoning, and modeling techniques, as these fields deal with languages and ways to ex-
press system descriptions and with efficient automated deduction techniques on top of these formalisms
for model-based consistency checking. Discrete-mathematical subjects such as combinatorics and set the-
ory, as well as complexity theory, stochastics, and algorithms and data structures are central to theoretical
analyses in the field. Moreover, given the NP-hardness and thus general intractability of the problems ad-
dressed in model-based diagnosis (e.g., diagnosis computation or query optimization), heuristic problem



1.5. RELATED RESEARCH FIELDS 13

Hitting Set /
Set Cover problem
(NP-complete
problem solving)

Duality-based problem
solving and optimization

Machine learning
(e.g., explainable Al)
Sequential
decision making
Reasoning under
uncertainty

Software
engineering
Recommender
systems

Figure 1.8: (Some) related subjects and fields that are influenced by model-based diagnosis research.

Minimal Subset subject to
Monotone Predicate
(MSMP) problem

Semantic Web,
Ontology quality
assurance

Model-based
Diagnosis

(Max)SAT,
(Max)CSP

(Re)scheduling,
(Re)configuration

Robotics

solving and intelligent search techniques as well as machine learning approaches can in some settings be
vital to the development of practical and successful diagnosis methods. Finally, statistics and uncertain
reasoning play a pivotal role in dealing with the problem of intelligent and reasonable decision making
given only partial information.

On the other hand, also model-based diagnosis research has contributed to advancements in several
fields. First, there are the various domains it has been successfully applied in, such as robotics, rec-
ommender systems, software engineering, the Semantic Web, ontology engineering, as well as schedul-
ing and configuration problems. Apart from its application-related impact, model-based diagnosis has
brought up substantial theoretical findings and algorithmic solutions that (can) provide valuable ideas and
insights for, or propel the state-of-the-art of important research domains. Examples are the hitting-set
(and the closely related set-cover) problem, which is one of the key problems studied in model-based
diagnosis due to the hitting-set relationship between diagnoses and conflicts (cf. Sec. 1.1). Worth men-
tioning in this context is also the field of duality-based problem solving and optimization, as characterized
in [Slal4]. Here, the problem of finding a (cost-)optimal set from a collection X = {51, ..., S)} of sub-
sets S; of some universe U is investigated, and suggested to be tackled by using best-first hitting set
computation (e.g., [Rei87, Rod15]) over the dual collection X* of X. At this, X* is defined as the
collection including all subsets S7 of U whose complement U \ S7 is not in X. Since the collection
of diagnoses is dual to the collection of conflicts, and vice versa, progress in conflict-based diagno-
sis computation can often be directly exploited for arbitrary duality-based computation or optimization
problems. Other prominent notions linked by such a duality relationship are, e.g., minimal unsatisfi-
able subsets vs. minimal correction subsets of clauses in a CNF [BK15], which are highly relevant to
SAT research [BHMWO09], or conflicts vs. relaxations in the context of constraint satisfaction problems
[JunO4]. Another interesting observation is that the computation of both minimal diagnoses and mini-
mal conflicts is an instance of the so-called Minimal Subset subject to a Monotone Predicate (MSMP)
problem [MJB13]. As a consequence, efficient methods for diagnosis and conflict calculation, if suffi-
ciently general (cf. Sec. 1.4 and [Rod22c]), also constitute solutions to this more general MSMP problem.
Instances of the latter include, e.g., minimal unsatisfiable subsets, minimal unsatisfiable cores, minimal
correction subsets, prime implicants and implicates, as well as justifications and most concise optimal
queries to an oracle [dKW87, Mar95, BL03, DHNO06, Horl1, Rod22i]. Furthermore, techniques from
model-based diagnosis are relevant to sequential decision making, reasoning under uncertainty, and ma-
chine learning. Particularly noteworthy in this regard is the more recent field of explainable AI which has
been gaining increasing attention and interest throughout the last years and which is devoted to supply-



14 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

Input: SD, COMPS, OBS, MEAS

(SEQUENTIAL) DIAGNOSIS SYSTEM

Query
Generation

DPI

Diagnosis

Engine

Meta Information

Logical Reasoner

Output: Diagnosis D*

Figure 1.9: Generic (sequential) diagnosis system: Inputs, outputs, modules, stored information, external
entities, and functionality. The orange dashed line shows the elements additionally present if the debugging
system targets sequential diagnosis. A circle of two red arrows indicates that the operation executed by the
respective entity is potentially expensive (e.g., wrt. time, memory, cost, or effort). The yellow circled numbers
visualize the process flow; the depicted loop is reiterated until a predefined stop criterion is satisfied.

ing users of artificial intelligence and especially machine learning tools with understandable and useful
explanations for generated outputs. Finally, the principles underlying model-based diagnosis approaches
share several crucial parallels with other model-based problem solving techniques such as system design,
(re)configuration, or failure-modes-and-effects analysis [VLPOS, Chap. 10]. Thus, ideas and approaches
for one area can be fruitful and beneficial also for the others.

1.6 A Generic (Interactive) Diagnosis System

In order to get a feel for the problems, challenges, and research goals in the context of (sequential) model-
based diagnosis (discussed in Sec. 1.7), it is instructive to examine, on a sufficiently abstract level, the
structure, modules, properties, and other aspects shared by most, if not all, (interactive) diagnosis tools
and approaches. To this end, let us consider a generic diagnosis system, as depicted in Fig. 1.9:

Structure and external entities: On the structural level, we have the diagnosis system and two entities
outside of the system, viz the oracle (or: user) and the logical reasoner. Within the system, we discern
two databases (in the most abstract conceptual sense), one storing the current diagnosis problem instance
(DPI), and the other storing any meta information relevant to the modules in the system or to the present
diagnostic scenario or application. Often, the meta information encompasses, e.g., fault information (such
as component failure rates), parameter settings for algorithms (e.g., stopping or optimization criteria),
heuristics (e.g., for query selection), or general preferences or configurations of the diagnosis system
(e.g., which type of queries to ask [Rod22f], or which type of problem to solve [RH18b]). In addition,
the system incorporates three modules, viz a diagnosis engine, a query generation unit, as well as a
query selection component. Note that, in case the diagnosis system is not intended for the purpose of
sequential diagnosis, it does not need to include the query generation and query selection modules, and
no communication with an oracle is necessary during the process (see the orange dashed line in Fig. 1.9).

Inputs and outputs (cf. green and violet font in Fig. 1.9): The inputs to a diagnosis system are, first, a
diagnosis problem instance (DPI) capturing the initial state of knowledge about the diagnosed system in
terms of the system description (SD), the components (COMPS), as well as the observations (OBS) and



1.7. RESEARCH CHALLENGES AND GOALS 15

measurements (MEAS), cf. Sec. 1.1. Technically, SD, OBS, and MEAS will each be a set of sentences in
a specific formal (often: logical) language, such as propositional logic, predicate calculus, description
logics, finite-state machines, differential equations, or constraints, and COMPS a set of the system compo-
nents of interest to the diagnostic task. Second, the user might (often: optionally) provide available meta
information as described above. The output of a diagnosis system can in general take manifold shapes,
depending on the type, application context, purpose, goal, way of deployment, etc. of the diagnosis sys-
tem as well as of the user’s preferences (cf. [Rod22d]). Usually, the output will be either one (often:
minimal or preferred) diagnosis, or an (often: small) set of diagnoses (often: sorted by some preference
criterion).

Process flow (cf. yellow circled numbers in Fig. 1.9, and enumeration (1)—(4) in Sec. 1.2): Given the
DPI and potentially some relevant meta information such as fault probabilities, a preference criterion,
a number of diagnoses to compute, a timeout, or other algorithm-specific parameters, the first step, ac-
complished by the diagnosis engine, is the computation of a set of so-called leading minimal diagnoses
[dKW89], which are often the most preferred diagnoses, i.e., the most probable or minimum-cardinality
ones. If the system is not sequential, then these diagnoses might be directly presented to the user (perhaps
in the form of a ranking) for further inspection or processing. Otherwise, in a second step, the leading
diagnoses are forwarded to the query generation unit, which usually generates a set of query candidates.
The complexity of this step can range from trivial (e.g., if the possible queries, such as probing points
in the form of wires in a circuit, are immediately extractable from the system description [dKW87]) to
very sophisticated (e.g., if queries, such as possible expert questions in ontology debugging, are implicit
and computationally hard to extract [Rod22i]). In a third step, the query selection component filters the
query candidates for the best (or a sufficiently good) query according to some (heuristic) measure given
as a part of the meta information. The best query is then, in a fourth step, posed to the oracle, which
performs according measurements, probes, tests, etc. in case of a tangible system under inspection, or
thinks about the correct answer to a given expert question in case of a formal system to be debugged. The
oracle is usually assumed to be capable or knowledgable enough to answer an adequate fraction of the
possible queries such that the sequential diagnosis session can reasonably proceed (after an acceptable
number of queries are perhaps skipped and replaced by alternative ones). The provided answer of the
oracle along with the asked query is then used to formulate a (logical) sentence to be added to the DPI in
terms of a new measurement in the course of the fifth and sixth steps. This loop is continued until some
stop criterion is met, e.g., an adequate degree of diagnostic certainty is achieved (cf. Sec. 1.2).

1.7 Research Challenges and Goals

Let us now take a look at the generic diagnosis system discussed in the previous section through the eyes
of a researcher, by evaluating components and other aspects of the system regarding their influence on
the diagnostic performance in terms of time, memory or other costs, and on the diagnostic effectivity in
terms of the quality of the produced outputs. The result of this analysis is displayed in Fig. 1.10.

External entities: Both the calls to a logical reasoner and the consultations of an interacting oracle are
usually among the most expensive “operations” throughout a diagnosis session. Since both these entities



16 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

Maximize performance!
(time, memory, quality of output)

Input: SD, COMPS, OBS, MEAS

Maximize Expensive!
performance!\ !
(time, memory, ~__ (SEQUENTIAL) DIAGNOSIS SYSTEM O
quality of output) = Query Selection
= Queries Best Query
I Query \
Optimize system model! d Generatlon
(accuracy, efficiency) Query+Answer Answer
| Oracle
DPI
. New Measurement
Expensive! / Diagnoses — Minimize effort!
& 5 - (few + inexpen-
sive queries)
Diagnosis Input
Engine
. Meta Information
Logical Reasoner |
Minimize calls! / Output: Diagnosis D*

Maximize « Parameter tuning

performance! « Study of heuristics

(time, memory, « Optimal exploitation

quality of output) of fault information

Figure 1.10: Generic (sequential) diagnosis system: Problems as well as research challenges and goals. Black
boxes illustrate that the respective entity can (often) not be directly influenced by the diagnosis system, i.e., is
considered a black-box with a defined output given a defined input, but unknown internals. The meaning of
red boxes is that the respective entities can be actively shaped in that they are the result of design choices when
building the diagnosis system, i.e., their internals can basically be implemented, organized and configured at
will. Thick red arrows indicate that the communication described by this arrow is generally expensive. The
research challenges and goals are depicted by red-colored text.

are frequently (and also in the works included in this thesis) viewed as black-boxes?, i.e., as functions with
unknown internals that yield a defined output given a defined input, an important goal towards efficient
model-based diagnosis is to minimize the communication with both the reasoner and the query-answering
oracle (cf. the thick red arrows in Fig. 1.10).

Internal components: For the three modules performing computations, i.e., the diagnosis engine, the
query generation, and the query selection, the objective is to maximize their time and memory perfor-
mance as well as the the quality of their output, where the definition of quality might depend on, e.g.,
the user’s preferences, the meta information, the given diagnostic scenario, or the used algorithms. In
addition, diagnosis-specific gains can also be achieved by leveraging modifications of the stored data,
i.e., the meta information and DPI. Concerning the latter, since there are always multiple possible ways
of modeling one and the same thing, one goal could be to find a representation of the diagnosed system
that optimally balances diagnostic accuracy (reasonable number of generated diagnoses) with diagnostic
efficiency (reasonable diagnosis computation time). Regarding the meta information, possible goals are,

SRegarding the logical reasoner, [Rod22d] gives an overview of some prominent diagnosis approaches, while also showing
that most of them view the reasoner as a black-box. Alternatively, one can consider a reasoner as a so-called glass-box, where the
idea is to streamline the reasoner’s internals towards more efficient computations relevant to the diagnostic task (e.g., by extracting
conflicts as a byproduct of negative consistency checks). Studies contrasting black-box and glass-box techniques can be found, e.g.,
in [Horl11, Kal06]. Roughly, their conclusion is that the latter usually outperform the former wrt. computation time. On the other
hand, advantages of black-box methods are their (/) robustness (no sophisticated, error-prone modifications of complex reasoning
algorithms), (2) simplicity (internals of reasoner irrelevant), (3) flexibility (e.g., one can use a portfolio reasoning approach by
switching to the most efficient reasoner in a simple plug-in fashion depending on the language used to describe the diagnosed
system [RGH12]), and (4) up-to-dateness (which allows users to directly benefit from advances in general research on automated
reasoning). Concerning the interacting oracle, it was shown that making suggestions to the user wrt. their answering behavior
(e.g., by soliciting additional inputs or explanations) can bring a significant boost in terms of fault localization efficiency [Rod22f].
Similar to the case of the logical reasoner, this could be seen as an interpretation of the oracle as a “glass-box”. Nevertheless,
presumably for simplicity, it appears that most methods in the literature regard the oracle as a black-box.



1.7. RESEARCH CHALLENGES AND GOALS 17

e.g., to find optimal configurations of the algorithms involved in the diagnosis process, optimal settings
that suit a particular (group of) user(s) best, optimal heuristics (e.g., for query selection) to employ based
on the given diagnosis scenario, or the optimal usage of the given (and possibly misleading [RSFF13])
fault information in the process.

Summary: These considerations boil down to the following research objectives (cf. red text in Fig. 1.10):

* Diagnosis engine: Maximize the performance wrt. time, memory and output quality.

* Query generation: Maximize the performance wrt. time, memory and output quality.

* Query selection: Maximize the performance wrt. time, memory and output quality.

* DPI: Optimize the system model wrt. diagnostic accuracy and efficiency.

* Meta information: Optimize the provided data for best diagnostic performance.

* Logical reasoner: Minimize the expense of communications with the reasoner.

* Oracle: Minimize the expense for the oracle wrt. time, effort, and other costs.
The research works included in this thesis consider all these research objectives, i.e., they cover all mod-
ules and aspects of the discussed generic diagnosis system. The contributions of these works will be
explored in more detail in the upcoming chapters.






Chapter 2

Our Research: Overview

The aim of this chapter is to give the reader a concise overview of the conducted research in which the
author of this thesis was involved. First, we approach this task in two orthogonal ways, by synopsizing the
research works (i) in Sec. 2.1, from the perspective of the aspects of a generic diagnosis system that are
addressed, as well as (ii) in Sec. 2.2, regarding their type (e.g., whether the respective paper is theoretical,
empirical, application-related, etc.). Finally, in Sec. 2.3, we focus our attention on the works included in
this thesis and outline them from the two perspectives (i) and (ii), along with other relevant information.

2.1 From the Diagnosis System Perspective

Recalling the generic diagnosis system explicated in Sec. 1.6 and the associated research problems dis-
cussed in Sec. 1.7, Tab. 2.1 enumerates our research works grouped by the diagnosis system aspect (and
related research objective) that was addressed in the respective paper. Note that several papers consider
multiple system aspects and thus occur in different groups. As the table shows, we have been active along
various lines of research, and we devoted our research to all research objectives identified above. This
is a result of our holistic perspective on the model-based diagnosis field and of our overarching goal to
advance the state-of-the-art of diagnosis systems along different dimensions.

2.2 From the Type of Research Perspective

To be able to better categorize and assess the conducted research, it can be helpful to view the works from
another different angle. To this end, Tab. 2.2 lists the research works grouped by the type of the respective
paper. At this, we discern
* papers proposing novel methodologies or algorithms (Methodology/Algorithm),
* application papers which are—notwithstanding the generality of the suggested approaches, cf.
Sec.1.4—devoted to one particular application of model-based diagnosis, (Application),
* explanatory papers of didactic or survey nature (Explanatory/Didactic/Survey),
 empirical papers including comprehensive experimental evaluations or user studies (Empirical),
* papers including substantial theoretical results such as algorithm derivations, correctness proofs or
complexity analyses (Theoretical),
* critical papers that fundamentally challenge the state-of-the-art (Critical), and
* tool papers describing, analyzing, evaluating, and differentiating debugging tools (7ool).
The table demonstrates that our research activities not only consider different research avenues, but
have also produced a heterogeneous collection of works in terms of the nature of the publications.

19



20

Aspect of Diagnosis System

CHAPTER 2. OUR RESEARCH: OVERVIEW

Research Works where Aspect is Addressed

Diagnosis Engine

Query Generation
Query Selection
DPI

Meta Information

Logical Reasoner
Oracle

[HINT22, Rod22a, Rod22b, Rod22¢c, Rod22d, Rod22e, Rod22g, Rod21a, Rod21b, RTJ21,
Rod20a, Rod20c, Rod20d, Rod20e, RE20, RT20, Rod19, RJSF19, RH18a, RH18b, SRS18a,
Rod16a, Rod15, SFRF14a, SFRF14c, SFRF12]

[Rod22a, Rod22f, Rod22i, Rod20b, RE19a, RE19b, RE19¢, Rod17, RSS17a, RSS17b, Rod16a,
Rod16b, Rod15, SFFR12]

[Rod22a, Rod22f, Rod22g, Rod22i, RE20, RE19b, RS18a, RS18c, Rod17, RSS17a, RSS17b,
Rod16b, Rod15, SFRF14b, SEFRF14c, RSFF13, RSFF12, SFFR12, SFRF12]

[HINT22, Rod22b, Rod21a, Rod20c, RISF19, RH18b, SRS18a, SRS 18b, SRS 18c, RS17]
[Rod22a, Rod22b, Rod22d, Rod22e, Rod22f, Rod22g, Rod22h, Rod22i, Rod21a, RE20,
RISF19, RE19¢c, RS18a, RS18c, SRS18a, Rod17, Rodl5, SFRF14b, SFRF14c, RSFF13,
RSFF12, SFFR12, SFRF12, RSFF11]

[Rod22b, Rod22¢, Rod22d, Rod21a, RTJ21, Rod20c, RT20]

[Rod22f, RE19a, RE19b, RE19c, RISF19, SRS18a, SRS 18b, SRS 18¢]

Table 2.1: Research works grouped based on the addressed aspect(s) of a generic diagnosis system. Per group
(i.e., table row), works are arranged chronologically and sorted by author name(s). All works with year tokens
larger or equal to “16” have been carried out during the author’s habilitation period; we also include earlier
works in the lists in order to give a more complete, reasonable and illustrative picture of the author’s research.

Type of Work

Research Works of this Type

Methodology/Algorithm

Application
Explanatory/Didactic/Survey
Empirical

Theoretical

Critical
Tool

[HINT22, Rod22a, Rod22b, Rod22d, Rod22e, Rod22f, Rod22g, Rod22h, Rod22i, Rod21a,
Rod21b, RTJ21, Rod20a, Rod20b, Rod20c, Rod20d, Rod20e, RE20, RT20, Rod19, RE19a,
RE19c, RISF19, RH18a, RH18b, Rod17, RSS17a, RSS17b, Rod16b, RSFF13, RSFF12,
SFRF12, RSFF11]

[HINT22, Rod22f, RTJ21, RT20, RE19a, RE19c, RISF19, RS18c, SRS18a, SRST18b,
SRS 18c, RSFF12, SFFR12, SFRF12, RSFF11],

[Rod22¢c, Rod22d, SRS18a, SRSt 18c, Rod17]

[HIN122, Rod22a, Rod22b, Rod22e, Rod22f, Rod22g, Rod22h, Rod22i, Rod21a, Rod21b,
RTJ21, Rod20c, Rod20d, Rod20e, RE20, RT20, RE19a, RE19¢, RISF19, RS18a, RH18a,
RH18b, RS18c, Rod17, SFRF14c, RSFF13, SFFR12, SFRF12, RSFF11]

[HIN*22, Rod22a, Rod22b, Rod22c, Rod22d, Rod22e, Rod22f, Rod22h, Rod22i, Rod21a,
RTJ21, Rod20c, RT20, RH18b, Rod17, RS17, RSS17a, RSS17b, Rod16a, Rod16b, Rod15,
SFRF14c, RSFF13, SFFR12, SFRF12, RSFF11]

[Rod22f, Rod22g, RISF19]

[Rod22d, RISF19, SRS18a, SRSt 18b, SRSt 18c¢]

Table 2.2: Research works grouped by type of paper. Per group (i.e., table row), works are arranged chrono-
logically and sorted by author name(s). All works with year tokens larger or equal to “16” have been carried
out during the author’s habilitation period; we also include earlier works in the lists in order to give a more
complete, reasonable and illustrative picture of the author’s research.

2.3 Works Included in this Thesis: In a Nutshell

Let us now have a look at the summary of the research works included in this thesis given by Tab. 2.3. The
table can be read row-wise to learn about the main focus and type of a particular paper, and column-wise
to find the papers that address a particular system aspect or are of a particular type. Note that many of the
papers consider more than the system aspects mentioned in the table, but for clarity the table indicates
only the topics that constitute the papers’ emphasis (please see Tab. 2.1 and for an overview that considers
also secondary matters investigated by the papers).



2.3. WORKS INCLUDED IN THIS THESIS: IN A NUTSHELL 21
R ch Work Included in Thesis Di is System Aspects in Focus Type of Work
z
: =
= S
g £ = £ g o S
& = 8 < S B 17}
£ 5 3 E 2 & 2
4 2 3 g ¥ = = =
2 2 3 S = = £ 8 7 2
Z O w == s 0§ T R -
= -] ) S 9 = = @ =1
g & s & T | & & F &8 £
=) g g E < 1) 8 = 2 = g ] = i)
= ) = = s £ 8
Paper Cat. Venue CA SA& © & a4 2 =2 O|=2 << & m F O =
[Rod22e¢] A Artificial Intelligence v v v v v v
[Rod22f] A Knowledge-Based Systems v v v v v | v Y v v v
[Rod22b] A Information Sciences v v v v v v v v
[Rod22c] A Artificial Intelligence Review v~ v v v v v
[Rod22i] (A) Artificial Intelligence (*) v v v v v v v
[HINT22] (A) Artificial Intelligence (**) v v v v v v
[Rod22g] A AAAI v v v v v v v
[Rod22d] C DX v v v v v v v
[RTJ21] A KR v v v v v v
[Rod20c] A ECAI v v v v v v v v
[RISF19] A Knowledge-Based Systems v v v v v v v | v v v v
[RH18b] A SoCS v v v v v v
[RS18c] A RuleML+RR v v v v
[SRS18a] B FolKS v v v v v v v v v v
[Rod17] C DX v v v v v v v v
[RS17] C DX v 7 v

Table 2.3: Overview of the research works included in this thesis (left table sector), based on the aspect of a
generic diagnosis system mainly addressed in the paper (middle table sector) and the paper type (right table
sector). Meaning of the columns:

(Venue) quotes the publication venue of the respective paper, where journal names are given in full while
conference names are abbreviated to keep the table size manageable (the reader is kindly asked to refer to the
bibliography for the full names); a single asterisk (*) means that the work is currently under revision, and the
double asterisk (**) signifies that the work will be submitted shortly.

(Cat.) gives the rating of the publication venue of the paper (according to its classification in the expert-curated
public research database “FoDok” of the University of Klagenfurt), where “A” refers to top-tier journals (Q1
on Scimago Journal & Country Rank) or top-tier international conferences (acceptance rate below 0.33), “B”
means good journals (Q2 on Scimago Journal & Country Rank) or good international conferences (acceptance
rate below 0.66), while all works not falling in categories A or B are classified by “C”; the rating is parenthesized
for not yet published works.

(CA) indicates whether the author of this thesis is a corresponding author of the respective paper.

(SA) marks whether the author of this thesis is the single author of the respective work.






Chapter 3

Our Research: Details

In this chapter, we give some more details about the research papers included
in this thesis. We thematically subdivide the discussion into five topics, each Legend:
discussed in one of the Sections 3.1-3.5. Each of these sections is organized
into subsections, one for each publication. The description of each paper is

structured into three parts. First, we provide one figure for each publication Aspects
which illustrates the aspects of the generic diagnosis system addressed as well addressed
as the research goals aimed at (cf. Figures 3.2-3.16). The legend pertinent ===
to these figures is shown in Fig. 3.1. Second, we treat its contents, where 1 Goals I

we briefly review the paper’s highlights by sketching the paper’s motivation,
contributions as well as results.® Third, we provide some meta information
about each work including the publication venue, its scientific classification’
(cf. Tab. 2.3), the contributions of the author of this thesis to the paper as well
as other publications on the topic where the author of this thesis was involved.
All papers covered in this chapter can be found in Appendix A.

Figure 3.1: Mean-
ing of the accentu-
ations used in Fig-
ures 3.2-3.16.

3.1 Diagnosis Computation

3.1.1 Memory-Limited Diagnosis Computation

Publication: System Aspects and Goals Addressed See Fig. 3.2.

Publication: Contents in a Nutshell

Motivation: Various model-based diagnosis scenarios require the computation of the most preferred mini-
mal diagnoses. These diagnoses can be helpful, e.g., for a reasonable decision making and a well-founded
early termination in the course of a sequential diagnosis process [Rod22g]. Existing algorithms that are
sound (i.e., output only minimal diagnoses) and complete (i.e., can return all minimal diagnoses), how-
ever, require exponential space to achieve this task. This can prevent the application of these techniques
to diagnosis settings which, e.g., pose substantial memory requirements on the diagnostic methods, or
suffer from too little memory.

Contributions: To enable successful diagnosis both on memory-restricted devices and for memory-
intensive problem cases, we propose the RBF-HS algorithm for diagnosis computation which combines
two seminal search methods, Reiter’s hitting set computation strategy HS-Tree [Rei87] and Korf’s path-
finding technique Recursive Best-First Search (RBFS) [Kor93]. RBF-HS is the first diagnosis search

7Please find animated presentations of some of the discussed works on http:/isbi.aau.at/ontodebug/publications.

For each journal publication, we provide the journal’s quartile in the Scimago Journal & Country Rank as well as its Scimago
Journal Rank Indicator (cf. https://www.scimagojr.com/). To generate the ranking (for the year 2021), we used “Computer Science”
as subject area, and “Artificial Intelligence” as subject category.

23



24 CHAPTER 3. OUR RESEARCH: DETAILS

Input: SD, COMPS, OBS, MEAS

(SEQUENTIAL) DIAGNOSIS SYSTEM

Query Selection

: { Queries S Best Query
—_— R X

|

l Generation ([ I -
Optimize space ‘ / Query+Answer Answer

Oracle
performance DPI
\ New
Diagnoses Measurement -

Ve \
Diagnosis ' \\‘ Input
1
“ Engine N Bj 7

Meta Information

Logical Reasoner

Output: Diagnosis D*

Figure 3.2: Memory-limited diagnosis computation: Addressed system aspects and goals.

that is sound, complete, best-first, generally applicable (to any diagnosis problem as per Reiter’s theory
[Rei87]), and linear-space. In addition, we present HBF-HS, a hybrid between RBF-HS and HS-Tree, the
idea behind which is to find a trade-off between runtime optimization and a restricted space consumption
that does not exceed the available memory. Notably, both suggested approaches are not restricted to diag-
nosis problems, but applicable to best-first hitting set computation in general, which is relevant to various
research and application domains beyond the frontiers of model-based diagnosis (cf., e.g., [Slal4]).

Results: We conducted comprehensive experiments on real-world benchmarks where we compared RBF-
HS and HBF-HS to HS-Tree, the most popular algorithm with the same properties (soundness, com-
pleteness, best-first property, general applicability). First, for the task of computing minimum-cardinality
diagnoses, we found that

* in most cases, RBF-HS substantially reduces memory requirements by up to several orders of
magnitude while exhibiting no more than marginal runtime losses, if any.

* in more than a third of the cases, RBF-HS even achieved both runtime and memory improvements.
E.g., in one case we observed 65 % runtime savings coupled with a 99.9 % memory reduction; in
another case, HS-Tree ran out of memory (32 GB) while RBF-HS never required the storage of
more than the comparably negligible number of 125 tree nodes.

» whenever the runtime of RBF-HS was significantly higher than that of HS-Tree, the use of HBF-HS
could level this overhead while still reasonably limiting the used memory.

* RBF-HS scales to large numbers of computed diagnoses and to problems involving high-cardinality
minimal diagnoses.

Second, when computing minimal diagnoses in descending order of probability, we observe that RBF-HS
tends to trade memory savings more or less one-to-one for runtime overheads (which has well-understood
theoretical reasons we discuss in the paper). Again, HBF-HS proves to be a reasonable remedy to cut
down the runtime while complying with practicable memory bounds.



3.1. DIAGNOSIS COMPUTATION 25

Publication: Meta Information
Publication included in Thesis: [Rod22e]

Authors: Patrick Rodler

Title: Memory-limited model-based diagnosis

Year: 2022

Publication Venue (Type): Artificial Intelligence  (Journal)

Venue Metrics: A (Scimago: Q1, Journal Rank Indicator 1.673)
Own Contributions: Single-author publication

Other Publications on the Topic: [Rod21b] (Int’l Symposium on Combinatorial Search)
[Rod20d] (Int’l Workshop on Principles of Diagnosis)
[Rod22h] (Technical report)

3.1.2 DynamicHS: Optimizing Reiter’s Hitting-Set Tree for Sequential Diagnosis
Publication: System Aspects and Goals Addressed See Fig. 3.3.

Publication: Contents in a Nutshell

Motivation: To reason about the best next query, sequential diagnosis methods usually require a sample
of diagnoses at each step of the iterative diagnostic process. The computation of this sample can be
accomplished by various diagnostic search algorithms [Rod22d]. Among those, Reiter’s HS-Tree [Rei87]
is one of the most popular due to its desirable properties and general applicability. However, HS-Tree per-
se does not encompass any specific provisions for being employed in an iterative way. Usually, it is used
in a stateless fashion throughout the diagnosis process to (re)compute a sample of diagnoses per iteration,
each time given the latest (updated) system knowledge including all so-far collected measurements. At
this, the built search tree is discarded between two iterations, albeit often large parts of the tree have
to be rebuilt in the next iteration, involving redundant operations and calls to costly reasoning services.
Already Raymond Reiter, in his seminal® paper [Rei87] from 1987, pointed to the research problem of
devising a reasonable strategy to reuse an existing hitting-set search tree to compute diagnoses after new
system information is obtained. This very issue remained unanswered for decades.

Contributions: Addressing Reiter’s longstanding open question, we propose DynamicHS, a variant of
HS-Tree that maintains state throughout the diagnostic session and embraces special strategies to min-
imize the number of expensive reasoner invocations. The main objective of this new algorithm is to
allow for more efficient computations in sequential diagnosis than HS-Tree while maintaining all the
advantages (general applicability, soundness, completeness, best-first property) of the latter.

Results: In extensive experiments, we used a corpus of real-world benchmarks to compare DynamicHS
with HS-Tree in various sequential diagnosis scenarios (considering different numbers of diagnoses to be
computed per iteration, and various employed query selection heuristics). Te main insights were:

¢ DynamicHS is superior to HS-Tree in terms of computation time in 99.4 % of the investigated
diagnostic scenarios. Roughly, these savings are achieved by trading less time (fewer redundant
operations and reasoner calls) for more space (statefulness), where the additional memory required
by DynamicHS was reasonable in the vast majority of the scenarios; and, whenever HS-Tree was
applicable in our experiments in terms of memory requirements, DynamicHS was so as well.

* The average runtime savings over HS-Tree achieved by DynamicHS are substantial and statistically
significant in most scenarios, and reach median and maximal values of 52 % and 75 %. That is,
HS-Tree requires up to an average of four times the computation time of DynamicHS in the tested
diagnosis scenarios.

* In single diagnosis sessions, we observed that it took HS-Tree up to more than nine times as much
time as DynamicHS—notably, while both methods always compute the same diagnostic solutions.

80n Google Scholar, the paper boasts almost 4500 citations as of December 2022.



26 CHAPTER 3. OUR RESEARCH: DETAILS

Input: SD, COMPS, OBS, MEAS

(SEQUENTIAL) DIAGNOSIS SYSTEM

Query Selection

Queries Best Query
Query I N
Generation [P ——
Query+Answer Answer
Oracle
New ]
Diagnoses Measurement _

\
: ‘g Input
—— 8

Meta Information

Logical Reasoner

inimi i i Output: Di is D*
Minimize expensive reasoning Optimize time performance p Diagnosis D

Figure 3.3: DynamicHS—Streamlining Reiter’s hitting-set tree for sequential diagnosis: Addressed system
aspects and goals.

¢ The median runtime savings of DynamicHS per scenario appear to be neither dependent on the
number of diagnoses computed nor on the measurement selection heuristic used.

* Considering the hardest cases per diagnosis scenario, which were up to one order of magnitude
harder than the average cases, the time savings obtained by means of DynamicHS are even more
substantial than on average, and reach median and maximal values of 64 % and 89 %, respectively.

Publication: Meta Information
Publication included in Thesis: [Rod22b]

Authors: Patrick Rodler

Title: DynamicHS: Streamlining Reiter’s hitting-set tree for
sequential diagnosis

Year: 2022

Publication Venue (Type): Information Sciences  (Journal)

Venue Metrics: A (Scimago: Q1, Journal Rank Indicator 2.290)

Own Contributions: Single-author publication

Other Publications on the Topic: [Rod20c] (European Conference on Artificial Intelligence)
[Rod20e] (Int’l Symposium on Combinatorial Search)
[Rod20a] (Int’l Workshop on Principles of Diagnosis)
[Rod21a] (Technical report)

3.1.3 StaticHS: Reducing User Interaction Costs by Solving a Generalized Se-
quential Diagnosis Problem

Publication: System Aspects and Goals Addressed See Fig. 3.4.

Publication: Contents in a Nutshell

Motivation: In sequential diagnosis, new measurements are successively added to an initially given DPI.
Each such acquisition of new information leads to a change of the solution space of minimal diagnoses.
In fact, as we touched upon in Example 1.5, each minimal diagnosis for the newly obtained DPI is
either equal to or a proper superset of some minimal diagnosis for the original DPI. In other words, any
“new” minimal diagnosis emerging throughout the sequential diagnosis process assumes faulty strictly
more components than some initial minimal diagnosis. In many real-world applications such as physical



3.1. DIAGNOSIS COMPUTATION 27

Input: SD, COMPS, OBS, MEAS

(SEQUENTIAL) DIAGNOSIS SYSTEM

Query Selection A==~
Queries 7 |Best Query ~
. \

Query [ A

-
a—

(

Generation B \
Query+Answer ™ o Answer 2
DP =" Oracle
New I Minimi
Diagnoses Measurement A lmmlzg_e
— interaction
“ ~_ cost

Diagnosis
T} Engine I 3 7

Meta Information

Input

Logical Reasoner

Output: Diagnosis D*

Figure 3.4: StaticHS—Reducing user interaction costs by solving a generalized sequential diagnosis problem:
Addressed system aspects and goals.

devices, however, components are usually much more likely to be normal than at fault (at a given point in
time). Thus, there is a high chance of the actual diagnosis (pinpointing the actually faulty components)
being among the minimal diagnoses for the original input DPI. In such scenarios, one might—as a first
step—only want to explore the initial diagnosis solution space, and neglect all “new” minimal diagnoses
arising after DPI transitions.

Contributions: We suggest an alternative interpretation of the sequential diagnosis problem, called StatSD,
where new measurements are not used to formulate a new DPI (as in the standard interpretation that we
refer to as DynSD for disambiguation in this section), but only as constraints on the initial solution space
of minimal diagnoses. The goal is to continue gathering information until only one (sufficiently likely)
minimal diagnosis remains among the solutions of the initial DPI (and not the current DPI including all
collected measurements as in DynSD). As a study of the literature revealed, existing sequential diagnosis
methods focus only on DynSD.

As a consequence, we propose StaticHS, a novel sound and complete diagnosis search that can gener-
ate minimal diagnoses in best-first order, is suitable to solve both StatSD and DynSD, and is as generally
applicable as Reiter’s HS-Tree [Rei87]. We theoretically prove that, if the actual diagnosis is among
the minimal diagnoses for the originally given DPI, then for any set of oracle queries required to solve
the DynSD problem (e.g., by means of HS-Tree), a subset of these queries already suffices to locate the
actual diagnosis when the StatSD problem is considered and solved (e.g., by means of StaticHS) instead.
Hence, if we could ensure that the same queries are asked regardless of whether StatSD or DynSD is
solved (which we generally cannot since the diagnoses available to guide query selection may be dif-
ferent for both problems), then solving StatSD would be proven more efficient than DynSD given the
preconditions mentioned above.

To solve DynSD, StaticHS will solve a series of StatSD problems to obtain the same solution diag-
nosis as any standard sequential diagnosis algorithm geared towards DynSD. At this, different strategies
(influencing performance, not correctness) can be taken defining which specific StatSD problems are
tackled. One such strategy is to use a new DPI whenever a new measurement is obtained, in which case
StaticHS will act as any standard sequential diagnosis technique. Consequently, (/) StaticHS is a gen-
eralization of other techniques, such as HS-Tree, in the context of sequential diagnosis, and (2) solving
multiple StatSD problems is a more general strategy than solving one DynSD problem.

Results: As somewhat expected based on the theoretical findings, empirical examinations using real-
world problems revealed that StaticHS, compared to a standard sequential diagnosis algorithm addressing
DynSD (in our tests w.l.o.g. implemented by HS-Tree), reduces the required number of queries substan-



28 CHAPTER 3. OUR RESEARCH: DETAILS

tially both when (a) tackling the StatSD problem suffices (actual diagnosis is among the initial minimal
diagnoses) and when (b) the consideration of the DynSD problem is necessary (actual diagnosis is not
among the initial minimal diagnoses). In numbers, the avg. / max. saved measurement effort for the oracle
in scenarios (a) and (b) amounted to 20 % / 65 % and 21 % / 65 %, respectively. Considering the individ-
ual executed sequential diagnosis sessions, the significant superiority of StaticHS as opposed to a method
attacking DynSD is manifested in terms of a lower / same / higher number of queries in 76 % /21 % /3%
of the cases. These savings are a result of StaticHS’s ability to combine a search space reduction (StatSD)
with completeness (DynSD). As to the average algorithm reaction time (oracle waiting time), StaticHS
outperformed HS-Tree for a half of the benchmarks, while it was slower for the other half. However,
whenever StaticHS exhibited a higher reaction time, which in absolute terms was always less than 5 sec,
this was compensated by very few queries StaticHS required to locate the actual diagnosis.

Publication: Meta Information
Publication included in Thesis: [RH18b]

Authors: Patrick Rodler, Manuel Herold
Title: StaticHS: A variant of Reiter’s hitting set tree for
efficient sequential diagnosis
Year: 2018
Publication Venue (Type): Int’l Symposium on Combinatorial Search ~ (Conference)
Venue Metrics: A
Own Contributions (est.): Concept/Idea: 100 %

Theory/Algorithms: 100 %
Development/Implementation: 30 %
Evaluation: 80 %
Manuscript: 100 %
Other Publications on the Topic: [RH18a] (Int’l Workshop on Principles of Diagnosis)

3.1.4 On the Impact of Diagnosis Computation Strategies
on Diagnostic Decision Making

Publication: System Aspects and Goals Addressed See Fig. 3.5.

Publication: Contents in a Nutshell

Motivation: Statistical samples, in order to be representative, have to be drawn from a population in a
random and unbiased way. Nevertheless, it is common practice in the field of model-based diagnosis
to make estimations from (biased) best-first samples. One example is the computation of a few most
probable diagnoses for a defective system and the use of these to assess which aspect of the system, if
measured, would bring the highest information gain.

Contributions: In this work, we scrutinize whether these statistically not well-founded conventions, that
both diagnosis researchers and practitioners have adhered to for decades, are indeed reasonable. To this
end, we empirically analyze six diagnosis computation methods for generating samples of minimal diag-
noses: one best-first strategy yielding the most probable diagnoses, one outputting a random sample of
diagnoses, and, as a baseline, a worst-first technique which returns the least probable diagnoses; more-
over, we suggest an efficient heuristic method based on [SFRF14c] that can be configured to produce
approximations of the best-first, the random, and the worst-first samples. The particular focus of our
evaluations is on the comparison between (statistically unfounded, but commonly used) best-first and

(statistically well-founded, but not commonly adopted) random sampling approaches. Specifically, we
* study the samples’ (a) “theoretical” representativeness (“‘accuracy”) in terms of how well they al-
low to estimate features (eliminated diagnoses, answer probabilities) of queries taken into account



3.1. DIAGNOSIS COMPUTATION

Which diagnosis
computation
algorithm to adopt
and how to optimally

Input: SD, COMPS, OBS, MEAS

(SEQUENTIAL) DIAGNOSIS SYSTEM
Query Selection

Queries ? e
Query+Answer

Query

Generation

/’ ~

~
“|Best Query \‘
—

——— ]
\ Answe/r 4

(

29

i 12 !
parameterize it? DPI ~ .‘ Oracle
T~ . i Minimize
Diagnoses Measurement P — - = .
— e — - interaction
7 ] : : cost
I
I 1 ! | Input
D — T
| 1 |
Meta Information
Logical Reasoner g ! /L _______ /

Output: Diagnosis D*

Which combination of diagnosis computation and query
selection heuristic works best in which scenario?

Figure 3.5: On the impact of diagnosis computation strategies on diagnostic decision making: Addressed
system aspects and goals.

by query selection heuristics to suggest the best next query, as well as their (b) “practical” repre-
sentativeness (“efficiency”) in terms of how many queries and how much time are needed to locate
the fault in case the particular sample type is used,

* investigate the impact of the used sample size (number of computed diagnoses),

» examine the optimal trade-off between sampling efficiency (diagnosis computation time) and ef-
fectivity (effort until the actual diagnosis is located), and

* explore how the approximate sampling techniques (which do not guarantee a specific set of di-
agnoses to be computed) compare to the exact ones (which provably generate a precisely defined
subset of all diagnoses).

Results: The bottom line of our investigations is: Somewhat surprisingly, the best-first samples including
the most probable diagnoses commonly used in the field proved to be the best choice in a large fraction
of the investigated cases. Yet, we also find that, for certain configurations of a diagnosis system, best-first
samples imply drastic overheads compared to other sample types. Random samples, though enabling
highly reliable estimations, often led to a worse diagnostic efficiency than biased ones. We discuss rea-
sons for this phenomenon and make recommendations which configurations wrt. diagnosis computation
algorithm, query selection heuristic and sample size users of diagnosis systems should adopt for best
diagnostic performance. E.g., best-first samples are favorable for small sample sizes or when the infor-
mation gain [dKW87] or split-in-half [SFFR12] heuristics are used, whereas random ones are best for
larger sample sizes or when adopting the risk optimization [RSFF13] or most probable singleton [Rod17]
techniques for query selection. Further, our results suggest a time-information trade-off in diagnosis sam-
pling, i.e., more efficient sampling tends to imply less effective queries. Finally, we find that the suggested
approximate, and often efficient, sampling technique based on the Inv-HS-Tree algorithm [SFRF14c] in
many cases provides a good balance between sampling efficiency and diagnostic effectivity.



30 CHAPTER 3. OUR RESEARCH: DETAILS

Publication: Meta Information
Publication included in Thesis: [Rod22¢g]

Authors: Patrick Rodler

Title: Random vs. best-first: Impact of sampling strategies on
decision making in model-based diagnosis

Year: 2022

Publication Venue (Type): AAALI Conference on Artificial Intelligence  (Conference)

Venue Metrics: A

Own Contributions: Single-author publication

Other Publications on the Topic: [RE20] (Int’l Workshop on Principles of Diagnosis)

3.1.5 A Taxonomy and Classification of Diagnosis Computation Algorithms

Publication: System Aspects and Goals Addressed See Fig. 3.6.

Publication: Contents in a Nutshell

Motivation: Diagnosis computation is one of the most integral tasks in model-based diagnosis as it allows
to generate fault hypotheses, which are essential for both fault localization and repair. Due to its gener-
ality, the model-based diagnosis formalism has been used to express and tackle debugging problems in a
wide diversity of application areas, as expounded in Sec. 1.4. This has led to a remarkable multitude and
heterogeneity of the diagnosis computation methods proposed in the literature, which are often motivated
by and tailored for application-specific requirements and problem cases. As a result, it is a hard task for
both researchers and practitioners to

* get an overview of existing approaches,

« identify the crucial properties of diagnostic techniques,

* assess the methods based on these properties, and

 choose the appropriate approach for a research- or application-related diagnostic task at hand.

Contributions: To account for this, we present a taxonomy for diagnosis computation algorithms (under
the commonly used weak fault model setting, cf. Sec. 1.1). Specifically, we introduce and formally define
a range of features which are arguably vital for a proper understanding, comparison, selection, and use
of diagnostic techniques. We explain the influence of each feature on the proper selection of a diagnosis
algorithm for a diagnostic task, discuss the potential impact of different feature manifestations on the
performance of diagnosis algorithms, and examine relationships among the features.

Results: To demonstrate the value and application of the proposed taxonomy, we provide a multi-
dimensional assessment and categorization of over 30 important diagnostic methods in the literature.

Publication: Meta Information
Publication included in Thesis: [Rod22d]

Authors: Patrick Rodler

Title: How should I compute my candidates? A taxonomy and classifica-
tion of diagnosis computation algorithms

Year: 2022

Publication Venue (Type): Int’l Workshop on Principles of Diagnosis  (Conference)

Venue Metrics: C

Own Contributions: Single-author publication

Other Publications on the Topic: [Rod22b] (Information Sciences)



3.2. QUERY COMPUTATION AND SELECTION

Input: SD, COMPS, OBS, MEAS

31

»  Which algorithms exist?
. (SEQUENTIAL) DIAGNOSIS SYSTEM
*  What are their pros/cons? Query Selection
* How can they Queries Best Query
be compared? G i
. . . eneration
* Which algorlth.m 1s Query+Answer Answer
best for a particular P Oracle
i i ?
diagnosis problem? New ]
\ Diagnoses Measurement _
o
S
Pl 1 e Input
! Meta Information
Logical Reasoner !

Output: Diagnosis D*

Figure 3.6: A taxonomy and classification of diagnosis computation algorithms: Addressed system aspects and
goals.

3.2 Query Computation and Selection

3.2.1 Proposal and Theoretical Analysis of Query Selection Heuristics

Publication: System Aspects and Goals Addressed See Fig. 3.7.

Publication: Contents in a Nutshell

Motivation: Research in the field of Active Learning (AL) [Set10] provides a range of diverse general
heuristics targeting the optimization of hypotheses discrimination tasks. While traditionally and very
fruitfully exploited in machine learning, e.g., for efficient text classification, image retrieval, concept
learning, machine translation, or natural language processing, the key idea behind AL is that a learner can
achieve greater accuracy with less newly collected information if the used training data can be adaptively
chosen based on its current state of knowledge. At each iteration of the learning process, the active learner
can consult an oracle, e.g. a human expert, to label any query from some predefined query space. The
new information in terms of the query’s label is then taken into account to update the learner’s current
knowledge state. As this bears close resemblance to the generic information acquisition process pursued
by sequential diagnosis systems (cf. Sections 1.2 and 1.6), many AL strategies, termed Query Selection
Measures (QSMs), are basically tailored for being used in the context of sequential diagnosis. QSMs are
real-valued functions quantifying the quality of queries. However, only few of these AL QSMs, such as
information entropy [dKW87], have so far been carried over to or employed in interactive diagnosis.

Contributions: Motivated by these observations, the contributions of this work are the following: We

* investigate the relationship between AL and sequential diagnosis and discuss commonalities of and
differences between both fields,
survey all popular AL QSMs and adapt them for being used as heuristics in sequential diagnosis,
define a plausible general discrimination preference order (DPO) on queries (formalizing the no-
tion of the “diagnoses discrimination power” of queries),
figure out superiority relationships between QSMs based on their compliance with the DPO, which
suggests a preference order on QSMs,
harness this preference order to make recommendations regarding the selection of a suitable QSM
for a given diagnostic scenario,
derive improved (parameterized) versions from some QSMs to overcome unveiled deficits (e.g.,
objectively suboptimal decisions) arising from idiosyncrasies of model-based diagnosis,
give equivalence classes of QSMs under various conditions (query spaces, QSM parametrizations),



32 CHAPTER 3. OUR RESEARCH: DETAILS

Input: SD, COMPS, OBS, MEAS

(SEQUENTIAL) DIAGNOSIS SYSTEM _ _ _ _ _ _ _|
| Query Selection |

Queries | | Best Query

Propose and :

Generation |
ﬁ_

analyze. new ¢ Query+Anbwer Answer

heuristics

for query

selection

Oracle

New

1 I

| 1

v | |
/ Measurement I 1
| 1

| I

| I

2
Input
—» —
| 1

. Meta Information |
Logical Reasoner

1
SRS

Output: Diagnosis D*

Figure 3.7: Proposal and theoretical analysis of query selection heuristics: Addressed system aspects and goals.

* theoretically analyze QSM functions regarding their global optima and determine qualitative prop-
erties of optimal queries,

» show how these properties can be used to formulate heuristics and pruning techniques that allow
us to design efficient systematic search procedures for optimal queries wrt. any given QSM,

* based on the systematic search technique devised, suggest a paradigm shift in sequential diagnosis
from the commonly adopted pool-based query selection strategy (where the best query is filtered
out from a potentially large set of candidates) towards a query synthesis approach (whose aim is
to find a sufficiently good query while exploring a minimal fraction of the query space in a goal-
directed way based on heuristics). This novel approach can be especially promising for diagnostic
problem cases (e.g., in knowledge base debugging [Rod15]) where a pool of queries is neither
explicitly given nor efficiently computable.

Results: In experiments using a benchmark dataset of real-world diagnosis problems, we compared the
suggested query synthesis (QS) against the commonly used pool-based query selection (PB) approach.
The main insights (from preliminary results) were:

¢ On average, over all cases, it took QS for all investigated QSMs less than 1 sec to achieve a query
optimality (compared to the theoretically optimal QSM-value) of more than 99.999 % while ex-
ploring only minor fractions of less than 4 % the complete query space.

* PB could not handle scenarios where much diagnostic evidence (i.e., a large sample of diagnoses,
cf. Sec. 3.1.4) is available for query selection. More precisely, while QS could easily and efficiently
deal with up to 80 given minimal diagnoses, PB could in most cases only process no more than 10
ones within a timeout of an hour.

* PB consumed substantially more time than QS. Specifically, the former required minimally / on
average / maximally 27 / 787 / 2528 (!) times the query computation time of the latter. By absolute
numbers, the minimal / average / maximal PB execution time amounted to 6 / 137 / 566 sec whereas
QS never required more than 0.6 sec for the same cases.

Overall, these observations indicate both a very high efficiency and a very high query quality achieved
by the proposed novel query computation paradigm, and let QS appear to be the method of choice (at
least) for model-based diagnosis problems with query spaces of large size or implicit nature (where query
candidates need to be expensively computed, e.g., by means of logical reasoning [SFFR12]).



3.2. QUERY COMPUTATION AND SELECTION 33

Publication: Meta Information
Publication included in Thesis: [Rod17]

Authors: Patrick Rodler

Title: On active learning strategies for sequential diagnosis
Year: 2017

Publication Venue (Type): Int’]1 Workshop on Principles of Diagnosis  (Conference)
Venue Metrics: C

Own Contributions: Single-author publication

Other Publications on the Topic: [Rod16b] (Technical report)

3.2.2 Empirical Analysis of Query Selection Heuristics

Publication: System Aspects and Goals Addressed See Fig. 3.8.

Publication: Contents in a Nutshell

Motivation: A variety of query selection heuristics have been suggested for sequential diagnosis (cf.
Sec. 3.2.1), but it is unclear which heuristic to opt for given a particular diagnostic scenario. Questions of
interest are, e.g.: Is some heuristic always superior to all others? On which factors does the performance
of the particular heuristics depend? Under which circumstances should one use which heuristic?

Contributions: To give well-founded guidance to users of debugging systems and to bring light to these
and other questions, we conduct comprehensive empirical evaluations of the query selection heuristics
that have been proposed in model-based diagnosis literature. Using real-world benchmark diagnosis
problems, we investigate the heuristics under varying conditions regarding the (a) diagnosis probability
distributions, (b) quality (meaningfulness) of the probabilities, (c) available diagnostic evidence (size
of the computed diagnosis sample) for query computation, and (d) diagnostic structure (i.e., number of
system components; number and cardinality of diagnoses; reasoning complexity).

Results: Our main findings based on experiments using real-world problem cases are:

» Using an appropriate heuristic is essential. For inadequate choices of heuristics, we observe over-
heads in terms of oracle effort of avg. / max. 100 % / 250 %.

* The one and only (generally) best heuristic does not exist, or has not yet been found.

» The main factors affecting the number of queries required for fault localization are the number and
size of the given diagnoses as well as the degree of bias in and quality of the given fault information.

* In different diagnosis scenarios, higher or lower numbers of computed diagnoses can be appropriate
in combination with a used heuristic. We make recommendations in this regard.

* Different heuristics prevail in different scenarios. Specifically, for

(a) misleading fault information (e.g., derived from historical data which does not apply to the
current problem), the random query selection strategy is overall preferable to all others,

(b) vague fault information (e.g., where the probabilities are partially reasonable, and partially
not), the MPS heuristic [Rod17], which selects a query that maximizes the probability of an
elimination of a maximal number of diagnoses, turns out to be best approach, and for

(c) reasonable fault information, the BME heuristic [Rod17], which proposes a query that maxi-
mizes the number of diagnoses that can be eliminated with a probability of more than 50 %, is
most favorable (closely followed by the well-known information entropy heuristic [dKW87]
and the EMCb heuristic [Rod17], which suggests a query that maximizes the expected diag-
nosis elimination rate).



34 CHAPTER 3. OUR RESEARCH: DETAILS

» Empirically study query selection heuristics

» Derive recommendations when/how to optimally use them

Input: SD, COMPS, OBS, MEAS \

\ I
(SEQUENTIAL) DIAGNOSIS SYSTEM _ _ _\_ [
| Query Selection |, N
Queries | Best Query \‘ (
|
1
Generation ! /
Query+Answer \ Answers
! Se -7 Oracle
DPI h |
New l Minimize
Diagnoses Measurement | . .
i : interaction
e | cost
Diagnosis ! o Input
—— ; —_—
Engine i
| Meta Information
Logical Reasoner e

Output: Diagnosis D*

Figure 3.8: Empirical analysis of query selection heuristics: Addressed system aspects and goals.

Publication: Meta Information
Publication included in Thesis: [RS18c¢]

Authors: Patrick Rodler, Wolfgang Schmid
Title: On the impact and proper use of heuristics in
test-driven ontology debugging
Year: 2018
Publication Venue (Type): Int’1 Joint Conference on Rules and Reasoning  (Conference)
Venue Metrics: A
Own Contributions (est.): Concept/Idea: 100 %

Theory/Algorithms: 100 %
Development/Implementation: 40 %
Evaluation: 80 %
Manuscript: 100 %

Other Publications on the Topic: [RS18a] (Int’]1 Workshop on Principles of Diagnosis)
[RS18b] (Technical report)

3.2.3 Efficient Query Computation and Selection by Systematic Search
Publication: System Aspects and Goals Addressed See Fig. 3.9.

Publication: Contents in a Nutshell

Motivation: As the determination of optimal queries is NP-hard [PA90], sequential diagnosis methods
often have to rely on myopic strategies to gauge the gain of different query candidates (cf. Sec. 1.2). One
approach is to evaluate the quality of queries in terms of the utility of the expected situation after knowing
their answer. Such one-step-lookahead analysis has proven to constitute a particularly favorable trade-off
between computational efficiency and diagnostic effectivity, and is today state-of-the-art in sequential di-
agnosis. However, this solves only a part of the problem, as various other sources of complexity remain.
Examples include the strong reliance of sequential diagnosis tools on costly reasoning services, highly
expressive knowledge representation languages used for system modeling, large numbers of query candi-
dates, and that queries might neither be explicitly given nor efficiently computable (cf., e.g., [Rod15]).
Existing sequential diagnosis methods often assume a particular (i) type of diagnosed system, (ii) for-
malism to describe the system, (iii) inference engine, (iv) type of query to be of interest, (v) query quality



3.2. QUERY COMPUTATION AND SELECTION 35

Input: SD, COMPS, OBS, MEAS

optimize ——_ | (SEQUENTAL) Daciosis Systey

Query Selection | L~ T~

~
pertmace "
, _—

- Y Query 1 \
Optimize : Generation [Pl J :
output Query+Answer 1"\ Answer .~

e A | = —l— - Oracle
New T Minimi
Diagnoses Measurement Minimize
— interaction
el ‘ cost

Diagnosis ‘
M EEEEEERE Engine BJ “T

Meta Information

Input

Logical Reasoner

Output: Diagnosis D*

Figure 3.9: Efficient query computation and selection by systematic search: Addressed system aspects and
goals.

criterion to be adopted, or (vi) diagnosis computation algorithm to be employed. Further, they often
cannot deal with large or implicit query spaces or with expressive logics, or require inputs (e.g., certain
inferences) that cannot always be provided.

Contributions: As a remedy, we propose a novel one-step lookahead query computation technique for
sequential diagnosis that overcomes the mentioned issues of existing methods. More specifically, our
approach (/) is well-founded and based on a solid theory, (2) involves a systematic search for optimal
queries, (3) can operate on implicit and huge query spaces, (4) allows for a two-stage optimization of
queries (wrt. both their number and their cost), (5) is designed to reduce the required logical inferences
to a minimum, and (6) is generally applicable in that it can deal with any type of diagnosis problem as
per Reiter’s theory [Rei87], is applicable with any monotonic knowledge representation language, can
interact with a multitude of diagnosis engines and logical reasoners, and allows for a quality optimization
of queries based on any of the common heuristics in literature (cf. Sections 3.2.1 and 3.2.2).

Results: Using a benchmark of real-world diagnosis problems, we extensively studied the performance
of the novel technique (N) and compared it with the state-of-the-art method (S). The gained insights are:

* Nis complete, i.e., it can explore all queries (as opposed to S),

* N is non-redundant, i.e., it considers each query at most once (as opposed to S),

* N can compute queries without any expensive reasoner calls (as opposed to S),

* N gives theoretical guarantees about the achieved query quality (as opposed to S),

* N is by orders of magnitude faster than S,

* N always returns as good or better queries than S, and

* N scales to input sizes of up to hundreds of diagnoses while S can handle only single-digit numbers.
As a conclusion, given this new approach, query computation and selection is no longer a bottleneck in
sequential diagnosis, even in particularly challenging scenarios where queries are neither explicitly given
nor efficiently extractable from the system model.



36 CHAPTER 3. OUR RESEARCH: DETAILS

Publication: Meta Information
Publication included in Thesis: [Rod22i]

Authors: Patrick Rodler

Title: Sequential diagnosis by systematic search

Year: 2022

Publication Venue (Type): Artificial Intelligence (under revision)  (Journal)

Venue Metrics: A (Scimago: Q1, Journal Rank Indicator 1.673)
Own Contributions: Single-author publication

Other Publications on the Topic: [RSS17b] (Int’l Workshop on Principles of Diagnosis)
[Rod16b] (Technical report)
[RSS17a] (Technical report)
[Rod22a] (Technical report)

3.3 User Studies and Debugging Tool

3.3.1 User Study: Are Query-Based Debuggers Really Helping Users?
Publication: System Aspects and Goals Addressed See Fig. 3.10.

Publication: Contents in a Nutshell

Motivation: Interactive debugging based on queries that are automatically generated by the diagnosis sys-
tem is an attractive methodology as tools implementing this technique can interactively guide their users
to the true cause of the observed problem. This query-based approach has been successfully adopted,
e.g., for ontology debugging problems, an equally challenging as topical application domain in the era of
the Semantic Web [BHLT01]. It has proven to be a feasible and efficient approach in various evaluations
based on computational experiments (e.g., [SFFR12, RS18c]). While such simulation-based evaluations
can assess and compare the performance of debugging algorithms in terms of various interesting aspects
such as the time and space complexity, the number of reasoner calls, the theoretical number of required
user interactions, or the precision of the fault localization process, they also have certain limitations and
often cannot fully inform us about a method’s true usefulness. E.g., they cannot be used to determine
if certain assumptions made by an evaluated debugging method hold for actual users, or to gauge the
user acceptance. This can be accomplished by an evaluation approach based on user studies where the
performance and behavior of experts while using a debugger is observed and analyzed. No user studies
with a focus on the investigation of query-based ontology debugging have been published so far.

Contributions: We conducted user studies in the form of testing and debugging exercises that were specifi-
cally designed to evaluate if query-based debugging is truly favorable over a previous debugging approach
based on test cases, where users specify and add measurements (logical sentences) to the DPI manually
in order to prune the diagnosis space. The studies were performed in the context of ontology debugging,
where we used a version of the OntoDebug tool [SRS18a] (cf. Sec. 3.3.3) for the experiments, which
i.a. involved fault localization tasks given ontologies with injected faults. The study participants were
computer science students who had a certain level of education in the development and debugging of
ontologies and who received some initial training with the tool. The examined research questions were
related to (i) the efficiency and effectiveness of query-based debugging (i.e., do experts need less time,
do they find more faults?), (ii) the cognitive ability of users to find out which of the identified diagnoses
is the correct one, and (iii) the difficulty of answering system-generated queries for experts.

Results: Our studies revealed the following:
¢ A query-based approach can make the debugging process more efficient (wrt. user time and effort),
without leading to a loss in effectiveness (wrt. the rate of identified faulty ontology axioms).
* The measured overhead using the manual approach amounts to an average of 37 % wrt. time and
117 % wrt. effort (captured by the number of required mouse clicks).



3.3. USER STUDIES AND DEBUGGING TOOL 37

Input: SD, COMPS, OBS, MEAS

User Studies: —__| (SEQUENTIAL) DIAGNOSIS SYSTEM
Assess the usefulness — - - - - Quéry Selection™ T = = 7 T 7

1
Queries Best Query |

(efficiency, effectivity)

of query-based 1
debugging 1

(as opposed to Query+Answer Answer |

manual debugging) || ppy A mmmmmmm —m— —m—— - — = V) Oracle

¥

Diagnosis
Engine

<

Meta Information

Logical Reasoner

Output: Diagnosis D*

Figure 3.10: User study: Addressed system aspects and goals.

» The capability of a debugger to rank the actual diagnosis higher in a list of candidates visible to
the users does not translate into a more effective debugging process. That is, users generally do not
have a “perfect bug understanding”, a result in line with similar studies conducted in the software
debugging domain [PO11].

* The experiments revealed that “oracle errors”, where users provide faulty inputs, are relatively
frequent. Indeed, at least one fault occurred to a quarter of the study participants.

As unveiled by a survey of the literature, oracle errors are a largely open issue, as algorithmic testing
or debugging methods usually do not assume, handle or examine oracle errors. As a first step towards
approaching this topic, we thus propose a prediction model for oracle errors based on insights from our
studies. An assessment of the model evinces that queries it estimates to be hard in fact (/) lead to a higher
failure rate, (2) are perceived to be harder, and (3) result in a lower confidence of users in their answers,
and vice versa.

Publication: Meta Information
Publication included in Thesis: [RISF19]

Authors: Patrick Rodler, Dietmar Jannach, Konstantin Schekotihin,
Philipp Fleiss

Title: Are query-based ontology debuggers really helping
knowledge engineers?

Year: 2019

Publication Venue (Type): Knowledge-Based Systems  (Journal)

Venue Metrics: A (Scimago: Q1, Journal Rank Indicator 2.192)

Own Contributions (est.): Concept/Idea: 40 %

Theory/Algorithms: 50 %
Development/Implementation: 50 %
Evaluation: 70 %
Manuscript: 60 %

Other Publications on the Topic: None

3.3.2 On User Types, Assumptions, Optimization Criteria, and How to Make
Query-Based Debugging Simpler and More Efficient

Publication: System Aspects and Goals Addressed See Fig. 3.11.



38 CHAPTER 3. OUR RESEARCH: DETAILS

Propose new, Input: SD, COMPS, OBS, MEAS
simpler type ~_ J_
of query and T~ (SEQUENTIAL) DIAGNOSIS SYSTEM : :
an algorithm \ _______________ QuaiySelection; | . - ~~
to compute Queries 1 [Best Query ™y :
queries of 1 _F Query ’ | |
this type. B Generation |Pu— —-——, I
Optimize time — Su_errriniwir_ _a__! "~ én;_wgr, I Oracle :
performance for D! T Simplify Ny
optimal query —1 Diagnoses Measurement minimize
computation 8!
» P interaction
cost
Diagnosis Input
A — " — X | —
Engine
Meta Information Analyze ways .Of
Logical Reasoner | query answering

Output: Diagnosis D*

Figure 3.11: On user types, assumptions, optimization criteria, and how to make query-based debugging sim-
pler and more efficient: Addressed system aspects and goals.

Publication: Contents in a Nutshell

Motivation: To suggest as informative queries as possible, existing sequential diagnosis methods draw
on various algorithmic optimizations as well as heuristics. However, these computations are often based
on certain assumptions about the interacting expert and its behavior, which often have not been fully
validated.

Contributions: In this work, we study the reasonability of assumptions about users (experts), optimization
techniques and criteria made by state-of-the-art interactive debugging systems in the application context
of ontology debugging. We demonstrate that the made assumptions might not always be adequate and
discuss consequences of their violations. In particular, we characterize a range of expert types with
different query answering behavior and show that existing approaches are far from achieving optimal
efficiency for all of them. In addition, we find that the cost metric adopted by state-of-the-art techniques
might not always be realistic and that a change of metric can have a decisive impact on the best choice of
query answering strategy. As a remedy, based on the insights of our investigations, we suggest a new—
and simpler—type of expert question that leads to a stable fault localization performance for all analyzed
expert types and effort metrics, and has a range of further advantages over existing techniques, e.g.,
smaller query search spaces. Moreover, we present a polynomial-time algorithm for computing optimal
queries of the suggested type which is fully compatible with existing concepts (e.g., query selection
heuristics [Rod17]) and infrastructure (e.g., debugging user interfaces [SRS18a]) in the field.

Results: Comprehensive experiments encompassing more than 23 000 fault localization sessions on faulty
real-world problem cases attest that the new querying method is substantially and statistically significantly
superior to existing techniques both in terms of the number of necessary expert interactions and in terms
of the query computation time. We find that relying on the new querying method is better than drawing
on existing techniques in 98 % of the investigated diagnosis scenarios, and can save an interacting expert
more than 80 % of their work. In addition, the new approach can reduce the expert’s waiting time for
the next query by more than three orders of magnitude, or, in other words, avoid an overhead of more
than 120 000 %. E.g., for one problem case we recorded computation times for the optimal normal query
by the state-of-the-art approach of avg. / max. 150 sec / 430 sec, whereas an optimal query of the new
type was generated in 0.49 sec / 1.06 sec by the novel algorithm, which never required more than 1.1 sec
to find a best next query throughout all conducted experiments. Beside these findings, we demonstrate
that the efficiency of existing query-based tools can be significantly boosted by suggesting an appropriate
query answering strategy to an expert; we also make recommendations in this regard. Further, we suggest
optimal configurations of a debugger for situations where the new type of query is used.



3.3. USER STUDIES AND DEBUGGING TOOL 39

Optimize usefulness, usability

Input: SD, COMPS, OBS, MEAS yaN
m——f e ———————————————— =
+ Implement diagnosis |/ I\ L__
system (for ontology ! (SEQUENTIAL) DIAGNOSIS SYSTEM b ! 1
debugging) 1 Query Selection 1 1
| Queries Best Query ! 1
+ Optimize perfor- : T : :
mance and i Generation ! I |
customizability | Query+Answer : Answer | |
» Publish as a freely DPI 1 ! _Or_acl_e_ !
available tool ! New 1
| Diagnoses Measurement 1
‘:/ 1
I
| 5 :
Diagnosis ' input
— . —_— < E
g i Engine \
X ! Meta Information | |
Logical Reasoner l | 1
————————————————————————————— -

Output: Diagnosis D*

Figure 3.12: OntoDebug—A full-fledged ontology debugging tool: Addressed system aspects and goals.

Publication: Meta Information
Publication included in Thesis: [Rod22f]

Authors: Patrick Rodler

Title: One step at a time: An efficient approach to query-based
ontology debugging

Year: 2022

Publication Venue (Type): Knowledge-Based Systems  (Journal)

Venue Metrics: A (Scimago: Q1, Journal Rank Indicator 2.192)

Own Contributions: Single-author publication

Other Publications on the Topic: [RE19c] (Int’l Conference on Industrial Engineering and
Other Applications of Applied Intelligent Systems)
[RE19a] (Joint Ontology Workshops)
[RE19b] (Technical report)
[Rod20b] (Technical report)

3.3.3 OntoDebug: A Full-Fledged Ontology Debugging Tool
Publication: System Aspects and Goals Addressed See Fig. 3.12.

Publication: Contents in a Nutshell

Motivation: Applications of semantic systems require their users to design ontologies that correctly for-
malize knowledge about a domain. One example of a vital field extensively adopting ontologies for
highly critical applications is biomedicine, cf., e.g., the OBO project’ or the NCI-Thesaurus!'®. In many
cases, factors such as an insufficient understanding of a knowledge representation language, problems
concerning modeling techniques and granularity, collaborative development processes, large and com-
plex domains to be described, or the inability to foresee all implications of formulated axioms result
in faulty ontologies. Possible deficiencies of ontologies are, e.g., logical contradictions or wrong en-
tailments, which can have severe consequences, e.g., when a wrong therapy is suggested for a patient
in health-related applications. What additionally exacerbates the problem is that the root cause of such
errors can be extremely hard to identify for humans.

9http://obo.sourceforge.net
10http://ncit.nci.nih.gov



40 CHAPTER 3. OUR RESEARCH: DETAILS

Debugging tools help to localize faults in ontologies by finding explanations of discrepancies between
the actual ontology and the intended one. Existing ontology development environments, such as Protégé
[Mus15], Swoop [KPS*06], or ORE [LB10], implement various expedient methodologies to assist users
in debugging tasks. However, they are mainly based on the principle of presenting collections of conflicts
(also referred to as justifications in this context) to the interacting user, who may then need to execute
manual analyses in order to figure out the actually faulty axioms and how to appropriately fix them.

Since, in practice, it is often the case that the initially given information is insufficient to unambigu-
ously localize the faulty axioms, there may exist a possibly large number of minimal conflicts and minimal
diagnoses, which can render a manual analysis tedious at best, and error-prone or sheerly infeasible at
worst. In such scenarios, tool support in the form of interactive debuggers, which semi-automatically
guide users to the actual fault by asking a series of questions (whether certain axioms must or must not
be entailments of the intended ontology), can greatly alleviate the load on the user, both cognitively and
in terms of time and effort (cf., Sec. 3.3.1 and [RJSF19]). However, to date no such interactive debugging
tools have been proposed for ontology debugging.

Contributions: We present OntoDebug, an interactive ontology debugger integrated in Protégé, the most
popular open-source ontology editor in the world that is used for the maintenance, development, and
quality assurance of OBO ontologies and the NCI-Thesaurus (see above), and for numerous other critical
applications. OntoDebug is free, open-source, and publicly available in the standard plug-ins repository
of Protégé. Its development and implementation was a yearslong endeavor, underpinned and considerably
shaped by well-founded research results of our group over more than a decade.

Results: OntoDebug builds upon the ideas of the existing tools discussed above and improves on them
i.a. as follows:

* The tool aids the user wrt. all three principal model-based diagnosis tasks (cf. Sec. 1.3), i.e., in
terms of fault detection, localization, and repair.

* The plug-in supports an interactive query-based ontology debugging. By using the techniques
suggested in [SFFR12, Rod15] and further improved, e.g., in [Rod17, RS18c, RSS17b], the tool
is user-centric and based on a query-answer dialogue where the user can rely on their domain
knowledge to answer questions about axioms of the intended ontology in order to successively
restrict the set of diagnoses. In this vein, the system guides the user throughout the fault localization
process and, as opposed to existing approaches, the user is not required to manually specify, analyze
or compare various fault explanations in terms of diagnoses and conflicts.

* The plug-in enables a test-driven ontology development, which is closely related and based on the
same principles as the familiar test-driven software development [Bec03]. It supports the specifica-
tion of test cases, which capture requirements on the intended ontology. In particular, the user can
define axioms which must be entailments or non-entailments of the intended ontology. These are
then automatically verified and a debugging session is started if at least one of them is violated.

* The tool offers a repair interface enabling non-intrusive modifications of the ontology. In the pro-
cess towards defining a correct repair, a user can introduce and test various modifications of faulty
axioms on a virtual copy of the ontology. All modifications are only applied to the productive
ontology after the user is satisfied with the obtained result.

* OntoDebug provides the opportunity of a versatile parametrization, configuration, individualiza-
tion, and combination of various algorithms. Such a proper selection and fine-tuning of used tech-
niques, e.g., based on research results, can help to streamline the performance of OntoDebug based
on a given diagnosis problem setting.

As of now, the tool boasts a tally of more than 50K downloads.



3.4. DIAGNOSTIC REASONING 41

Input: SD, COMPS, OBS, MEAS

(SEQUENTIAL) DIAGNOSIS SYSTEM

Query Selection
Queries Best Query

(
N Generation
Minimize ) Query+Answer Answer
computation Oracle
time PPl New l
/\ Diagnoses Measurement
[~ _y | o
! 1
I 1 f Input
: D I € h ! N
3 1
| I 1 ' Meta Information
l Logical Reasoner g SoosdEscscs )
Optimize Output: Diagnosis D*
output

Figure 3.13: Optimization by randomization for hard diagnostic problem cases: Addressed system aspects and
goals.

Publication: Meta Information
Publication included in Thesis: [SRS18a]

Authors: Konstantin Schekotihin, Patrick Rodler, Wolfgang Schmid

Title: OntoDebug: Interactive ontology debugging plug-in for Protégé

Year: 2018

Publication Venue (Type): Int’l Symposium on Foundations of Information and
Knowledge Systems  (Conference)

Venue Metrics: B

Own Contributions (est.): Concept/Idea: 50 %

Theory/Algorithms: 60 %
Development/Implementation: 25 %
Evaluation: n.a.
Manuscript: 50 %

Other Publications on the Topic:  [SRST18b] (Int’l Conference on Biological Ontology)
[SRST18c] (Int’l Conference on Biological Ontology)

3.4 Diagnostic Reasoning

3.4.1 Optimization by Randomization for Hard Diagnostic Problem Cases

Publication: System Aspects and Goals Addressed See Fig. 3.13.

Publication: Contents in a Nutshell

Motivation: As discussed in Sec. 1.1, the logical reasoning is in many cases the most computationally
costly operation in the course of a model-based diagnosis task. Thus, the (expected) time required per
theorem prover call also has an influence on the selection of the algorithms employed for debugging.
In particular, given theorem proving is cheap (taking time, say, in the range of milliseconds per call
of an inference engine), a wider range of algorithms will be applicable to a problem instance than in
case reasoning operations are expensive. One particularly challenging domain in this regard is given
by, e.g., over-constrained scheduling problems involving too many jobs (products) that cannot all be
accomplished (produced) until a given deadline, e.g., due to seasonal order fluctuations, unforeseen ma-
chine breakdowns, or incoming high-priority orders. In this diagnosis use case, times per reasoner call,



42 CHAPTER 3. OUR RESEARCH: DETAILS

even if executed by a highly performant cutting-edge solver, can reach up to several minutes. When the
objective in such a scenario is the computation of a preferred diagnosis, e.g., a minimal-cost or minimum-
cardinality set of jobs to be dropped from the schedule in a way the remaining jobs can be serviced in
time, we often measure times in the range of multiple hours per diagnosis computation. Such long waiting
times however might not be practical in today’s highly dynamical production regimes. For such demand-
ing diagnostic conditions, a more efficient diagnosis computation and optimization approach is required
to achieve a maximal customer satisfaction (e.g., by postponing the fewest products as a result of comput-
ing a preferred diagnosis) while maintaining a higher decision flexibility (through a reasonable diagnosis
computation time), which can be an essential factor towards giving the company a competitive edge.

Contributions: Catering for the described diagnosis use cases where the inefficiency of logical inference
operations becomes too severe a bottleneck for standard diagnosis techniques to be put into action, we
suggest a novel algorithm for the computation of preferred (e.g., minimum-cardinality or most probable)
diagnoses. The method is based on the principle of optimization by randomization, where random mini-
mal diagnoses are successively generated until a (sufficiently) optimal diagnosis is found. The underlying
rationale is to trade one hard optimization problem for a range of easier decision problems by explicitly
solving (multiple instances of) the subset-minimality problem implicit in the optimization problem. Ap-
plied to the mentioned production industry domain, given an over-constrained scheduling task stated as a
constraint optimization problem, this means to forgo the (very inefficient) direct determination of a pre-
ferred diagnosis by means of a state-of-the-art constraint solver. Instead, our approach involves calling an
MSMP algorithm such as QuickXplain [Jun04, Rod22c] (cf. Sections 1.1, 1.5 and 3.4.2) multiple times
with a randomly modified input (cf. [Rod22g]) to generate a random sample of minimal diagnoses, where
each such execution of the MSMP algorithm requires a linear number of (comparably much more effi-
cient) consistency checks. We note that this suggested separation between the optimization problem to be
solved and its inherent relaxed subset-minimality problem is usually not supported by modern constraint
solvers, which is a confirmation that alternative approaches like the one introduced can be useful.

The proposed algorithm is efficiently parallelizable since no information exchange is necessary be-
tween successive diagnosis computations, and it can use and benefit from the most suitable and perfor-
mant algorithms for the involved sub-problems (random number generation, theorem proving, and MSMP
problem) as all modules of the method are viewed as black-boxes.

Results: In extensive tests on popular benchmark instances, we compared the performance of the novel
optimization-by-randomization technique to a direct approach to solving the optimization problem draw-
ing on a world’s leading solver for scheduling problems. The results showed that, first, the new method
manifested significant time improvements. In fact, it was in all cases able to find better diagnoses in
less than half the time required by the direct approach. Second, the proposed strategy could achieve sub-
stantial quality enhancements of the computed diagnoses in that over 25 % / 60 % fewer product orders
needed to be canceled or postponed on average / maximally.



3.4. DIAGNOSTIC REASONING 43

Publication: Meta Information
Publication included in Thesis: [RTJ21]

Authors: Patrick Rodler, Erich Teppan, Dietmar Jannach

Title: Randomized problem-relaxation solving
for over-constrained schedules

Year: 2021

Publication Venue (Type): Int’] Conference on Principles of Knowledge Representation
and Reasoning  (Conference)

Venue Metrics: A

Own Contributions (est.): Concept/Idea: 50 %

Theory/Algorithms: 60 %
Development/Implementation: 0 %
Evaluation: 50 %
Manuscript: 70 %
Other Publications on the Topic: [RT20] (Int’l Workshop on Principles of Diagnosis)

3.4.2 A Formal Proof and Simple Explanation of the QuickXplain Algorithm
Publication: System Aspects and Goals Addressed See Fig. 3.14.

Publication: Contents in a Nutshell

Motivation: In his seminal'! paper [Jun04] of 2004, Ulrich Junker proposed the QuickXplain algorithm,
which provides a divide-and-conquer computation strategy to find within a given set an irreducible sub-
set with a particular (monotone) property. Beside its original application in the domain of constraint
satisfaction problems, the algorithm has since then found widespread adoption in areas as different as
model-based diagnosis, recommender systems, verification, or the Semantic Web. This popularity is due
to the frequent occurrence of the problem of finding irreducible subsets (cf. Sec. 1.5) on the one hand,
and to QuickXplain’s general applicability and favorable computational complexity on the other hand.
However, although (we regularly experience and have conducted a study to confirm that) people are hav-
ing a hard time understanding QuickXplain and seeing why it works correctly, a proof of correctness of
the algorithm has never been published.

Contributions: This is what we account for in this work, by explaining QuickXplain in a novel tried
and tested way, based on a simple, accessible “flat” notation instead of a tree (cf. Example 1.4), and by
presenting a first formal correctness proof of it. The latter is expounded as a “proof to explain”, where
a particular focus is put on its intelligibility by constructing and explaining it in a way to illuminate the
workings and to foster the understandability and intuition of the algorithm.

Results: Apart from showing the correctness of the algorithm and excluding the later detection of errors
(proof and trust effect), the added value of the availability of a formal proof is, e.g., (i) that the workings
of the algorithm often become completely clear only after studying, verifying and comprehending the
proof (didactic effect), (ii) that the shown proof methodology can be used as a guidance for proving other
recursive algorithms (transfer effect), and (iii) the possibility of providing “gapless” correctness proofs
of systems that rely on (results computed by) QuickXplain, such as numerous model-based debuggers
(completeness effect).

10On Google Scholar, the paper boasts more than 550 citations as of December 2022.



44 CHAPTER 3. OUR RESEARCH: DETAILS

Input: SD, COMPS, OBS, MEAS

l (SEQUENTIAL) DIAGNOSIS SYSTEM
B Query Selection
Prove correct and { Queries Best Query
help people understand Query ’ ] ’ (
sgmmal 'algonthm. for Generation —
diagnostic reasoning and Query+Answer Answer

diagnosis computation

I Oracle
3

w1

s

Meta Information

i

Output: Diagnosis D*

Figure 3.14: A formal proof and simple explanation of the QuickXplain algorithm: Addressed system aspects
and goals.

Publication: Meta Information
Publication included in Thesis: [Rod22c¢]

Authors: Patrick Rodler
Title: A formal proof and simple explanation of
the QuickXplain algorithm
Year: 2022
Publication Venue (Type): Artificial Intelligence Review  (Journal)
Venue Metrics: A (Scimago: Q1, Journal Rank Indicator 2.180)
Own Contributions: Single-author publication

Other Publications on the Topic: [Rod15] (PhD thesis)
[Rod20f] (Technical report)

3.5 Diagnostic Modeling

3.5.1 On Modeling Techniques for Spreadsheet Debugging:
A Theoretical and Empirical Analysis

Publication: System Aspects and Goals Addressed See Fig. 3.15.

Publication: Contents in a Nutshell

Motivation: Based on a formal description of the system, model-based diagnosis allows to precisely and
deterministically reason about potential faults responsible for an observed system misbehavior. Under
certain circumstances such a formal model can even be extracted from the buggy system in a fully au-
tomatic way, such as often in case of software. Since logical reasoning is a core building block of the
diagnosis process, the performance of model-based debuggers is largely affected by the reasoning effi-
ciency. The latter in turn depends on the complexity and expressivity of the system description. As highly
detailed system descriptions capturing the exact semantics of the system are often beyond the reach of
state-of-the-art reasoning techniques, researchers have proposed to reduce the level of detail by intro-
ducing more abstract ways to describe the system. When relying on such non-exact system models, it
is of interest in how far the reduced detail in terms of modeling translates to an increased efficiency of
computations based on the model, and which effects it has on the informativeness of diagnostic inference.



3.5. DIAGNOSTIC MODELING 45

Input: SD, COMPS, OBS, MEAS

Assess soundness,
completeness and
usefulness of Query Selection

diagnoses pro- Queries > Best Query

duced by different Query
model types Generation
Query+Answer Answer

Propose algorithm ] Oracle

for automated model
. 1
"""" 7 - ey |
1 Input

(SEQUENTIAL) DIAGNOSIS SYSTEM

extraction
- C—— \ |

Meta Information

\ Evaluate diagnosis computation Output: Diagnosis D*
performance for different model types

Figure 3.15: On modeling techniques for spreadsheet debugging: Addressed system aspects and goals.

Contributions: In this work, we thoroughly analyze different system modeling techniques with a focus
on fault localization in spreadsheets, one of the most popular end-user programming paradigms used by
millions in a wide range of areas. Specifically, we present three constraint model types to characterize
a spreadsheet at various levels of abstraction, show how they can be extracted from a buggy spreadsheet
automatically, and provide theoretical and empirical investigations of the implications of the abstraction
level on the computed diagnostic solutions as well as on the computation performance. The model types
under study are (/) an exact value-based model that captures the precise semantics of the spreadsheet,
(2) a functional dependency model that abstracts from the concrete numerical values and allows to reason
only in terms of whether spreadsheet cells are correct or faulty, and (3) a newly proposed qualitative
deviation model whose level of abstractness lies between the two other model types in that it allows to
express whether (numerical) cell values are loo low, exact, or too high.

Results: The main theoretical findings are that
* all model types are diagnostically complete in that no diagnosis can be missed, i.e., the localization
of the actually faulty cells is facilitated by each model type,
* the non-exact abstract models may be unsound in that they may generate spurious diagnoses that
are in fact no valid fault explanations, and
* in general, a higher degree of abstraction implies an equal or lower diagnostic accuracy (equally
many or more generated diagnoses) and equally many or more spurious diagnoses.
Empirically, based on comprehensive experiments using real-world and synthetic benchmarks of faulty
spreadsheets, the key lessons learned are that
* the exact model produces significantly fewer diagnoses than the abstract models on average, albeit
the number of returned diagnoses is always within one order of magnitude for all model types,
* the exact model is often not (efficiently) applicable, thus abstract models are well motivated,
* diagnosis computation performance is very similar for both abstract models and by at least one and
up to more than four orders of magnitude faster on average than for the value-based model,
* the proposed qualitative deviation model is as good regarding diagnostic accuracy as the exact
model in a third of all examined cases, and up to more than half of the cases per diagnostic scenario,
* in general, when the exact model exhibits poor performance, then abstract models can be a powerful
and efficient surrogate.



46 CHAPTER 3. OUR RESEARCH: DETAILS

Input: SD, COMPS, OBS, MEAS

(SEQUENTIAL) DIAGNOSIS SYSTEM
| Query Selection
| Queries Best Query
Prove: I - - (
The knowledge-base I Generation —
X — —
debugging problem \~: Query+Answer Answer
is more general than Oracle
Reiter's model-based | New l
diagnosis problem Diagnoses Measurement .
o
Diagnosis ‘
‘_ [¢] - <pa Input
. Meta Information
Logical Reasoner |

Output: Diagnosis D*

Figure 3.16: Reducing model-based diagnosis to knowledge base debugging: Addressed system aspects and
goals.

Publication: Meta Information
Publication included in Thesis: [HINT22]

Authors: Birgit Hofer, Dietmar Jannach, Tulia Nica,

Patrick Rodler, Franz Wotawa
Title: On modeling techniques for spreadsheet debugging:

A theoretical and empirical analysis
Year: 2022
Publication Venue (Type): Artificial Intelligence (to be submitted shortly)  (Journal)
Venue Metrics: A (Scimago: Q1, Journal Rank Indicator 1.673)
Own Contributions (est.): Concept/Idea: 40 %

Theory/Algorithms: 65 %
Development/Implementation: 0 %
Evaluation: 70 %
Manuscript: 85 %

Other Publications on the Topic: None

3.5.2 Reducing Model-Based Diagnosis to Knowledge Base Debugging
Publication: System Aspects and Goals Addressed See Fig. 3.16.

Publication: Contents in a Nutshell

Motivation: In the literature, we have witnessed a range of ways to formalize the model-based diagnosis
(MBD) problem. This variety originates, e.g., from different application areas of interest to be addressed,
different notational conventions or preferences, or the desire to represent aspects not captured by Reiter’s
original formulation of the problem [Rei87]. In particular, we have in our research intensively dealt with
the knowledge base debugging (KBD) problem [Rod15], which draws on concepts from model-based
diagnosis to find faults in a monotonic knowledge base. However, on a very precise theoretical level, the
exact relationship between Reiter’s account and ours was for long not fully clear and subject of recurring
discussions between researchers.

Contributions: This paper brings light into the darkness regarding this matter. To this end, we theoreti-
cally analyze and compare the two views on the debugging problem.



3.5. DIAGNOSTIC MODELING 47

Results: We find that KBD is a generalization of MBD in that any MBD problem can be reduced to a
KBD problem and solutions of the former can be directly extracted from solutions of the latter. Moreover,
our studies reveal that the sequential MBD problem (cf. Sec. 1.2) is a special case of the sequential KBD
problem (cf. [Rod15]) in that the latter allows a user to provide more types of measurements. As a
consequence of these results, KBD approaches can be applied to all systems amenable to MBD. So,
research on KBD is relevant also to MBD. The particular consequence of this is that our line of research,
which has often considered the KBD formulation, is, without any restrictions, generally applicable to the
model-based diagnosis problem (cf. Sec. 1.4).

Publication: Meta Information
Publication included in Thesis: [RS17]

Authors: Patrick Rodler, Konstantin Schekotihin

Title: Reducing model-based diagnosis to knowledge base debugging
Year: 2017

Publication Venue (Type): Int’1 Workshop on Principles of Diagnosis  (Conference)
Venue Metrics: C

Own Contributions (est.): Concept/Idea: 30 %

Theory/Algorithms: 70 %
Development/Implementation: n.a.
Evaluation: n.a.
Manuscript: 95 %

Other Publications on the Topic: None






Bibliography

[Bec03]
[BHL*01]
[BHMWOQ09]

[BK15]

[BLO3]

[DHNO6]

[dK91]

[dKW89]

[dKMR92]

[dKRS92]

[dKW87]

[HIN*22]

[Horl1]

[JunO4]

[Kal06]

Kent Beck. Test-Driven Development: By Example. Addison-Wesley Professional, 2003.
Tim Berners-Lee, James Hendler, Ora Lassila, et al. The Semantic Web. 2001.

Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of
Satisfiability. 10S Press, 2009.

Fahiem Bacchus and George Katsirelos. Using Minimal Correction Sets to More Efficiently
Compute Minimal Unsatisfiable Sets. In Int’l Conference on Computer Aided Verification,
pages 70-86, 2015.

Elazar Birnbaum and Eliezer L. Lozinskii. Consistent subsets of inconsistent systems:
Structure and behaviour. Journal of Experimental & Theoretical Artificial Intelligence,
15(1):25-46, 2003.

Nachum Dershowitz, Ziyad Hanna, and Alexander Nadel. A scalable algorithm for minimal
unsatisfiable core extraction. In International Conference on Theory and Applications of
Satisfiability Testing, pages 36—41, 2006.

Johan de Kleer. Focusing on Probable Diagnoses. In AAAI Conference on Artificial Intelli-
gence, pages 842-848, 1991.

Johan de Kleer and Brian C. Williams. Diagnosis with behavioral modes. In Int’l Joint
Conference on Artificial Intelligence, volume 89, pages 1324—-1330, 1989.

Johan de Kleer, Alan K. Mackworth, and Raymond Reiter. Characterizing diagnoses and
systems. Artificial Intelligence, 56, 1992.

Johan de Kleer, Olivier Raiman, and Mark Shirley. One step lookahead is pretty good. In
Readings in Model-Based Diagnosis, pages 138—142, 1992.

Johan de Kleer and Brian C. Williams. Diagnosing multiple faults. Artificial Intelligence,
32(1):97-130, 1987.

Birgit Hofer, Dietmar Jannach, Julia Nica, Patrick Rodler, and Franz Wotawa. On Modeling
Techniques for Spreadsheet Debugging: A Theoretical and Empirical Analysis. Artificial
Intelligence (to be submitted shortly), 2022.

Matthew Horridge. Justification Based Explanation in Ontologies. PhD thesis, Univ. of
Manchester, 2011.

Ulrich Junker. QuickXplain: Preferred Explanations and Relaxations for Over-Constrained
Problems. In AAAI Conference on Artificial Intelligence, volume 3, pages 167-172, 2004.

Aditya Kalyanpur. Debugging and Repair of OWL Ontologies. PhD thesis, Univ. of Mary-
land, College Park, 2006.

49



50

[Kor93]
[KPST06]

[LB10]

[Mar95]

[MJB13]

[Mor82]

[Mus15]

[PA90]

[PO11]

[RE19a]

[RE19b]

[RE19c]

[RE20]

[Rei87]

[RGHI12]

[RH18a]

[RH18b]

BIBLIOGRAPHY

Richard E. Korf. Linear-space best-first search. Artificial intelligence, 62(1):41-78, 1993.

Aditya Kalyanpur, Bijan Parsia, Evren Sirin, Bernardo Cuenca Grau, and James Hendler.
Swoop: A Web Ontology Editing Browser. Journal of Web Semantics, 4(2):144—153, 2006.

Jens Lehmann and Lorenz Biihmann. ORE - A Tool for Repairing and Enriching Knowledge
Bases. In Int’l Semantic Web Conference, pages 177-193, 2010.

Pierre Marquis. Knowledge compilation using theory prime implicates. In Int’l Joint Con-
ference on Artificial Intelligence, pages 837—-845, 1995.

Joao Marques-Silva, Mikola$ Janota, and Anton Belov. Minimal sets over monotone pred-
icates in boolean formulae. In Int’l Conference on Computer Aided Verification, pages
592-607, 2013.

Bernard M.E. Moret. Decision trees and diagrams. ACM Computing Surveys, 14(4):593—
623, 1982.

Mark A. Musen. The Protégé project: A look back and a look forward. Al matters, 1(4):4—
12, 2015.

Krishna R. Pattipati and Mark G. Alexandridis. Application of heuristic search and in-
formation theory to sequential fault diagnosis. IEEE Transactions on Systems, Man, and
Cybernetics, 20(4):872-887, 1990.

Chris Parnin and Alessandro Orso. Are automated debugging techniques actually helping
programmers? In Int’l Symposium on Software Testing and Analysis, pages 199-209, 2011.

Patrick Rodler and Michael Eichholzer. How You Ask Matters: A Simple Expert Ques-
tioning Approach for Efficient Ontology Fault Localization. In Joint Ontology Workshops,
2019.

Patrick Rodler and Michael Eichholzer. A new expert questioning approach to more
efficient fault localization in ontologies. Technical Report, Univ. of Klagenfurt, 2019.
(arXiv:1904.00317)

Patrick Rodler and Michael Eichholzer. On the usefulness of different expert question types
for fault localization in ontologies. In Int’l Conference on Industrial, Engineering and Other
Applications of Applied Intelligent Systems, pages 360-375, 2019.

Patrick Rodler and Fatima Elichanova. Do We Really Sample Right In Model-Based Diag-
nosis? In Int’l Workshop on Principles of Diagnosis, 2020.

Raymond Reiter. A Theory of Diagnosis from First Principles. Artificial Intelligence,
32(1):57-95, 1987.

Ana Armas Romero, Bernardo Cuenca Grau, and Ian Horrocks. MORe: Modular combi-
nation of OWL reasoners for ontology classification. In Int’l Semantic Web Conference,
2012.

Patrick Rodler and Manuel Herold. Reducing Sequential Diagnosis Costs by Modifying
Reiter’s Hitting Set Tree. In Int’l Workshop on Principles of Diagnosis, 2018.

Patrick Rodler and Manuel Herold. StaticHS: A Variant of Reiter’s Hitting Set Tree for
Efficient Sequential Diagnosis. In Int’l Symposium on Combinatorial Search , 2018.



BIBLIOGRAPHY 51

[RISF19]

[Rod15]

[Rod16a]

[Rod16b]

[Rod17]

[Rod19]

[Rod20a]

[Rod20b]

[Rod20c]

[Rod20d]

[Rod20e]

[Rod20f]

[Rod21a]

[Rod21b]

[Rod22a]

[Rod22b]

[Rod22c]

[Rod22d]

[Rod22e]

Patrick Rodler, Dietmar Jannach, Konstantin Schekotihin, and Philipp Fleiss. Are query-
based ontology debuggers really helping knowledge engineers? Knowledge-Based Systems,
179:92-107, 2019.

Patrick Rodler. Interactive Debugging of Knowledge Bases. PhD thesis, Univ. of Klagenfurt,
2015.

Patrick Rodler. A Theory of Interactive Debugging of Knowledge Bases in Monotonic
Logics. Master’s thesis, Univ. of Klagenfurt, 2016.

Patrick Rodler. Towards Better Response Times and Higher-Quality Queries in In-
teractive Knowledge Base Debugging. Technical report, Univ. of Klagenfurt, 2016.
(arXiv:1609.02584)

Patrick Rodler. On Active Learning Strategies for Sequential Diagnosis. In Int’l Workshop
on Principles of Diagnosis, pages 264-283, 2017.

Patrick Rodler. Towards Optimizing Reiter’s HS-Tree for Sequential Diagnosis. Technical
report, Univ. of Klagenfurt, 2019. (arXiv:1907.12130)

Patrick Rodler. DynamicHS: Optimizing Reiter’s HS-Tree for Sequential Diagnosis. In Int’]
Workshop on Principles of Diagnosis, 2020.

Patrick Rodler. On Expert Behaviors and Question Types for Efficient Query-Based Ontol-
ogy Fault Localization. Technical report, Univ. of Klagenfurt, 2020. (arXiv:2001.05952)

Patrick Rodler. Reuse, Reduce and Recycle: Optimizing Reiter’s HS-Tree for Sequential
Diagnosis. In European Conference on Artificial Intelligence, pages 873-880, 2020.

Patrick Rodler. Sound, Complete, Linear-Space, Best-First Diagnosis Search. In Int’l Work-
shop on Principles of Diagnosis, 2020.

Patrick Rodler. Too Good to Throw Away: A Powerful Reuse Strategy for Reiter’s Hitting
Set Tree. In Int’l Symposium on Combinatorial Search, pages 135-136, 2020.

Patrick Rodler. Understanding the QuickXplain Algorithm: Simple Explanation and Formal
Proof. Technical report, Univ. of Klagenfurt, 2020. (arXiv:2001.01835)

Patrick Rodler. Appendix to the Paper: DynamicHS: Streamlining Reiter’s Hitting-Set Tree
for Sequential Diagnosis. Technical report, Univ. of Klagenfurt, 2021.

Patrick Rodler. Linear-Space Best-First Diagnosis Search. In Int’l Symposium on Combi-
natorial Search, pages 188—-190, 2021.

Patrick Rodler. Appendix to the Paper: Sequential Model-Based Diagnosis by Systematic
Search. Technical report, Univ. of Klagenfurt, 2022.

Patrick Rodler. DynamicHS: Streamlining Reiter’s hitting-set tree for sequential diagnosis.
Information Sciences, 2022.

Patrick Rodler. A formal proof and simple explanation of the QuickXplain algorithm. Arti-
ficial Intelligence Review, 55(8):6185-6206, 2022.

Patrick Rodler. How should I compute my candidates? A taxonomy and classification of
diagnosis computation algorithms. In Int’l Workshop on Principles of Diagnosis, 2022.

Patrick Rodler. Memory-limited model-based diagnosis. Artificial Intelligence,
305:103681, 2022.



52

[Rod22f]

[Rod22g]

[Rod22h]

[Rod22i]

[RS17]

[RS18a]

[RS18b]

[RS18c]

[RSFF11]

[RSFF12]

[RSFF13]

[RSS17a]

[RSS17b]

[RT20]

[RTJ21]

[Set10]

[SFFR12]

BIBLIOGRAPHY

Patrick Rodler. One step at a time: An efficient approach to query-based ontology debug-
ging. Knowledge-Based Systems, 251:108987, 2022.

Patrick Rodler. Random vs. Best-First: Impact of Sampling Strategies on Decision Making
in Model-Based Diagnosis. In AAAI Conference on Artificial Intelligence, 2022.

Patrick Rodler. RBF-HS: Recursive Best-First Hitting Set Search. Technical report, Univ.
of Klagenfurt, 2022. (arXiv:2010.04282)

Patrick Rodler. Sequential Diagnosis by Systematic Search. Artificial Intelligence (under
revision), 2022.

Patrick Rodler and Konstantin Schekotihin. Reducing Model-Based Diagnosis to Know-
ledge Base Debugging. In Int’l Workshop on Principles of Diagnosis, pages 284-296, 2017.

Patrick Rodler and Wolfgang Schmid. Comparing the Performance of Traditional and Novel
Heuristics for Sequential Diagnosis. In Int’l Workshop on Principles of Diagnosis, 2018.

Patrick Rodler and Wolfgang Schmid. Evaluating Active Learning Heuristics for Sequential
Diagnosis. Technical report, Univ. of Klagenfurt, 2018. (arXiv:1807.03083)

Patrick Rodler and Wolfgang Schmid. On the Impact and Proper Use of Heuristics in Test-
Driven Ontology Debugging. In Int’l Joint Conference Rules and Reasoning, pages 164—
184, 2018.

Patrick Rodler, Kostyantyn Shchekotykhin, Philipp Fleiss, and Gerhard Friedrich. Balanc-
ing Brave and Cautious Query Strategies in Ontology Debugging. In Joint Workshop on
Knowledge Evolution and Ontology Dynamics, 2011.

Patrick Rodler, Kostyantyn Shchekotykhin, Philipp Fleiss, and Gerhard Friedrich. RIO:
Minimizing User Interaction in Debugging of Aligned Ontologies. In Int’l Workshop on
Ontology Matching, pages 49-60, 2012.

Patrick Rodler, Kostyantyn Shchekotykhin, Philipp Fleiss, and Gerhard Friedrich. RIO:
Minimizing User Interaction in Ontology Debugging. In Int’l Conference on Web Reasoning
and Rule Systems, pages 153-167, 2013.

Patrick Rodler, Wolfgang Schmid, and Konstantin Schekotihin. A Generally Applica-
ble, Highly Scalable Measurement Computation and Optimization Approach to Sequential
Model-Based Diagnosis. Technical report, Univ. of Klagenfurt, 2017. (erXiv:1711.05508)

Patrick Rodler, Wolfgang Schmid, and Konstantin Schekotihin.  Inexpensive Cost-
Optimized Measurement Proposal for Sequential Model-Based Diagnosis. In Int’l Work-
shop on Principles of Diagnosis, pages 200-2018, 2017.

Patrick Rodler and Erich Teppan. The Scheduling Job-Set Optimization Problem: A Model-
based Diagnosis Approach. In Int’l Workshop on Principles of Diagnosis, 2020.

Patrick Rodler, Erich Teppan, and Dietmar Jannach. Randomized Problem-Relaxation Solv-
ing for Over-Constrained Schedules. In Int’l Conference on Principles of Knowledge Rep-
resentation and Reasoning, pages 696-701, 2021.

Burr Settles. Active Learning Literature Survey. Technical report, Univ. of Wisconsin-
Madison, 2010.

Kostyantyn Shchekotykhin, Gerhard Friedrich, Philipp Fleiss, and Patrick Rodler. Interac-
tive Ontology Debugging: Two Query Strategies for Efficient Fault Localization. Journal
of Web Semantics, 12-13:88-103, 2012.



BIBLIOGRAPHY 53

[SFRF12]

[SFRF14a]

[SFRF14b]

[SFRF14c]

[Slal4]

[SRS18a]

[SRST18b]

[SRST18c]

[VLPO8]

Kostyantyn Shchekotykhin, Philipp Fleiss, Patrick Rodler, and Gerhard Friedrich. Direct
computation of diagnoses for ontology alignment. In Int’l Workshop on Ontology Matching,
pages 244-245, 2012.

Kostyantyn Shchekotykhin, Gerhard Friedrich, Patrick Rodler, and Philipp Fleiss. A direct
approach to sequential diagnosis of high cardinality faults in knowledge bases. In Int’l
Workshop on Principles of Diagnosis, 2014.

Kostyantyn Shchekotykhin, Gerhard Friedrich, Patrick Rodler, and Philipp Fleiss. Interac-
tive Ontology Debugging using Direct Diagnosis. In Int’l Workshop on Debugging Ontolo-
gies and Ontology Mappings, 2014.

Kostyantyn Shchekotykhin, Gerhard Friedrich, Patrick Rodler, and Philipp Fleiss. Sequen-
tial diagnosis of high cardinality faults in knowledge-bases by direct diagnosis generation.
In European Conference on Artificial Intelligence, pages 813-818, 2014.

John Slaney. Set-theoretic duality: A fundamental feature of combinatorial optimisation. In
European Conference on Artificial Intelligence, pages 843—-848, 2014.

Konstantin Schekotihin, Patrick Rodler, and Wolfgang Schmid. OntoDebug: Interactive
Ontology Debugging Plug-in for Protégé. In Int’l Symposium on Foundations of Information
and Knowledge Systems, pages 340-359, 2018.

Konstantin Schekotihin, Patrick Rodler, Wolfgang Schmid, Matthew Horridge, and Tania
Tudorache. A Protégé Plug-In for Test-Driven Ontology Development. In Int’l Conference
on Biological Ontology, 2018.

Konstantin Schekotihin, Patrick Rodler, Wolfgang Schmid, Matthew Horridge, and Tania
Tudorache. Test-Driven Ontology Development in Protégé. In Int’l Conference on Biologi-
cal Ontology, 2018.

Frank van Harmelen, Vladimir Lifschitz, and Bruce Porter. Handbook of Knowledge Rep-
resentation. Elsevier, 2008.






Appendix A

Papers Included in the Habilitation
Thesis

Please find in the attachment the papers included in this thesis. The order of the papers is the same as

adhered to in the discussion of the papers in Chap. 3.

Appendix omitted in
online version for
licensing reasons.

55



