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Abstract
In Appendix A, we give a proof of the algorithm’s correctness. Appendix B details advanced

techniques used by DynamicHS regarding tree management, reasoning operations and node stor-
age, and Appendix C presents additional experimental analyses that provide a more detailed insight
into the reasons for the favorable performance of DynamicHS.

All references to sections, algorithms, theorems, examples, properties, figures, tables, etc. by
arabic numerals (e.g., Section 3.2.1, or Example 5) refer to the respective sections, algorithms,
theorems, examples, properties, figures, tables, etc. in the paper associated with this appendix.
Examples, figures, tables, etc. that can be found only in this present appendix document are referred
to by roman numerals (e.g., Example II, or Figure III) in order to distinguish them from their
counterparts in the paper. For convenience, we include at the end of this document a copy of
both Algorithm 1 (Sequential Diagnosis) and Algorithm 3 (DynamicHS), which are presented in
the paper. The line numbers mentioned throughout this document all refer to Algorithm 3 unless
otherwise mentioned.

Appendix A. Algorithm Correctness: Proof of Theorem 1

We first prove the completeness and the best-first property of DynamicHS, and then we show its
soundness.1

A.1 Proof of Completeness and of the Best-First Property

We have to show that DynamicHS, given the parameter ld := k, outputs the k best minimal diag-
noses (according to pr ). First, we make two general observations, and then we prove the complete-
ness by contradiction.

Observation 1: Only such nodes can be deleted by PRUNE which are provably redundant (i.e.,
irrelevant), and, whenever existent, a suitable replacement node is extracted from Qdup (which
stores all possible replacement nodes) to replace the deleted node (cf. Sec. 3.2.5).

Observation 2: During the execution of DynamicHS given the DPI dpik, only diagnoses for dpik
can be added to Dcalc.

Proof by Contradiction: Assume that DynamicHS returns a set Dcalc with |Dcalc| = k and one
of the k best (according to pr ) minimal diagnoses is not in Dcalc (i.e., has not been computed by
DynamicHS). We denote this non-found diagnosis by D′. Since D′ is one of the k best minimal
diagnoses, we have that some of the returned k diagnoses in Dcalc must have a lower probability as
per pr than D′; let us call this diagnosis D′′. Below, we will show that, for any minimal diagnosis
D for the relevant DPI 〈K,B,P ∪ P ′,N ∪ N ′〉 considered by DynamicHS, the following invariant

1



RODLER

(INV) holds during the execution of the main while-loop (between lines 4–21) of DynamicHS:
D ∈ Dcalc or there is some node n ⊆ D in Q. Due to the properties of pr (cf. Sec. 3.2.1) and
because D′ has a greater probability than D′′, each subset of D′ has a greater probability than D′′.
Since D′ 6∈ Dcalc by assumption, we infer that n ∈ Q for some node n ⊆ D′ when DynamicHS
terminates. This is a contradiction to D′′ ∈ Dcalc due to the sorting of Q in descending order of
probability and the fact that only elements of Q can be added to Dcalc in DynamicHS.

Proof of the Invariant: We now demonstrate that the invariant INV holds, by induction over the
number n of times DynamicHS has already been called in Alg. 1.

(Induction Base): Assume n = 1, i.e., DynamicHS is called for the first time in Alg. 1. This has
three implications: (1) At the time the while-loop is entered, the empty node [] (cf. line 3 in Alg. 1),
which is a subset of any minimal diagnosis, is in Q. Hence, INV holds from the outset. (2) DX = ∅
(cf. line 2 in Alg. 1 and note that UPDATETREE does not modify DX). As a consequence, for each
node from Q that is processed throughout the execution of the while-loop of DynamicHS, the DLA-
BEL function is called (because line 7 cannot be reached). (3) The PRUNE function (line 33) cannot
be called during the execution of the while-loop (as there cannot be any non-minimal conflicts due
to the soundness of FINDMINCONFLICT).

Now, assume an arbitrary minimal diagnosis D for the DPI dpi0 relevant in the first call of
DynamicHS. We next show that INV remains true for D after any node node is processed within
DynamicHS’s while-loop. There are two possible cases: (a) node 6⊆ D and (b) node ⊆ D.

Let us consider case (a) first. Since no pruning is possible as argued above, i.e., no nodes can be
deleted from any node collection stored by DynamicHS except Q (cf. line 5), the following holds.
The processing (and deletion from Q) of node, which is in no subset-relationship withD, (i) cannot
effectuate an elimination of any other node from Q (in particular, this holds for all nodes being
equal to or a subset of D), and (ii) cannot modify Dcalc. Hence, since INV held before node was
processed, INV must still hold thereafter in case (a).

Now, assume case (b). Here, we have again two cases: (b1) node ⊂ D and (b2) node = D.
Suppose (b1) first, i.e., let node ⊂ D be processed. Because DLABEL is called for any processed
node by the argumentation above, we have that line 37 is the only place where nodes can be assigned
the label valid . Hence, if some node is assigned the label valid , this means that FINDMINCONFLICT

in line 35 must have returned ’no conflict’ for it, which is why this node is a diagnosis by the
completeness of FINDMINCONFLICT. Consequently, node cannot be labeled valid because it is a
proper subset of a minimal diagnosis. Moreover, node cannot be labeled nonmin in line 26 as there
cannot be a subset of node in Dcalc due to Observation 2 and the fact that node is a proper subset
of a minimal diagnosis. As a result, the DLABEL function must return in either of the lines 31, 34
or 40, in each of which cases a minimal conflict set is returned. This conflict L is then used to
generate a new node nodee for each e ∈ L (lines 15–17), where |nodee| = |node|+1 and, for some
e, nodee ⊆ D must hold (if the latter was not the case then D would not hit the minimal conflict
L, which is a contradiction to D being a minimal diagnosis). For each of these nodes nodee, either
a set-equal node is already in Q or nodee is added to Q (cf. lines 18–21 and note that no node
set-equal to nodee can be in D⊃ due to Observation 2 and lines 24–26). Hence, in case (b1), INV
remains true after node has been processed.

Finally, assume case (b2). Because DLABEL is called for any processed node by the argumen-
tation above, it must be called for node. Since node however is equal to the minimal diagnosis D,
DLABEL will return valid (this follows from Observation 2 and the fact that diagnoses are hitting
sets of all conflicts). Due to lines 10–11, this means thatD ∈ Dcalc will hold at the beginning of the
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next iteration of the while-loop. Consequently, also in case (b2), INV still holds after the processing
of node. This completes the proof of the Induction Base.

(Induction Assumption): Assume INV holds for all n ≤ k.

(Induction Step): Now, let n = k + 1. That is, we consider the (k + 1)-th call of DynamicHS
in Alg. 1. We assume again an arbitrary minimal diagnosis D for the DPI dpik relevant in this call
of DynamicHS.2 By the fact that each minimal diagnosis for dpik is either equal to or a superset
of some diagnosis for dpik−1 (Property 1.2), and since for each minimal diagnosis D′ for dpik−1
either D′ was in Dcalc or some node n ⊆ D′ was in Q when the k-th call of DynamicHS returned
(Induction Assumption), we infer that some node corresponding to a subset of D is either in one of
DX or D× (cf. line 14 in Alg. 1 where Dcalc is split into DX and D×) or in Q at the beginning
of the (k + 1)-th execution of DynamicHS. The first steps in this execution are setting Dcalc = ∅
and calling the function UPDATETREE. Throughout UPDATETREE, some nodes might be pruned
(and potentially replaced by set-equal nodes), and all non-pruned nodes from D× as well as all
nodes from DX are finally reinserted into Q. Moreover, each non-pruned node from D⊃ for which
there is no known diagnosis that is a subset of it is added to Q at the end of UPDATETREE. By
Observation 1 and since D is a minimal diagnosis and thus relevant, we have that there must be a
node n ⊆ D in Q when the while-loop of the (k + 1)-th DynamicHS call is entered. That is, INV
holds at the beginning of the while-loop.

That INV remains true for D after any node node is processed within the while-loop, is shown
analogously (i.e., same case analysis and argumentation) as expounded for the Induction Base,
except for two aspects: DX 6= ∅ and the PRUNE function (line 33) might be called. Consequences
of these aspects are: (1) By Observation 1, during the execution of the while-loop of DynamicHS,
the last remaining node in Q which is a subset of some minimal diagnosis cannot be pruned without
being replaced by a set-equal node. Neither can a minimal diagnosis be removed from Dcalc without
being substituted by a set-equal node. Therefore, for every execution of PRUNE (line 33), if INV
holds prior to it, INV holds after it finishes. (2) Assume node ⊂ D and node ∈ DX. Due to
Observation 2 and line 14 in Alg. 1, DX includes only diagnoses for the DPI dpik−1 relevant to
the preceding (k-th) call of DynamicHS in Alg. 1, and each diagnosis in DX during the (k + 1)-th
call of DynamicHS throughout Alg. 1 is a diagnosis for the DPI dpik. Hence, the assumptions
node ∈ DX and node ⊂ D are in contradiction to our assumption that D is a minimal diagnosis for
dpik. Equivalently: node ⊂ D implies node /∈ DX.

The impact of (1) and (2) on the case analysis (cf. Induction Base) is as follows: The argumen-
tation for the case where node 6⊆ D is processed is analogous to case (a) for the Induction Base.
The proof for the case node ⊂ D is equal to case (b1) for the Induction Base since DLABEL must
be called for node (due to node /∈ DX). Finally, the case node = D is treated as demonstrated in
case (b2) in the Induction Base because, if node ∈ DX, then it is simply directly labeled valid in
line 7 (no call of DLABEL)—hence, whether or not the DLABEL function is called, D ∈ Dcalc will
hold after node having been processed. This completes the proof of the Induction Step, and thus the
entire proof.

A.2 Proof of Soundness

We have to show that DynamicHS outputs only minimal diagnoses. That is, we need to demonstrate
that every element in Dcalc satisfies the diagnosis property and the minimality property. Since
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each call of DynamicHS in the course of Alg. 1 outputs one set Dcalc, we prove the soundness by
induction over the number n of times DynamicHS has already been called in Alg. 1.

(Induction Base): Assume n = 1, i.e., DynamicHS is called for the first time in Alg. 1 and
returns Dcalc. Let node ∈ Dcalc. A node is added to Dcalc iff it has been labeled valid . There
are two ways a node may be labeled valid , i.e., (i) in line 7 and (ii) in line 9. Note that case (i) is
impossible since n = 1 which means that DX = ∅ (cf. Alg. 1) and thus line 7 can never be reached.
Therefore, case (ii) applies to node. That is, its label valid is assigned by the DLABEL function.
Hence, DLABEL must return in line 37. From this we conclude that the FINDMINCONFLICT call
in line 35 returns ’no conflict’ which implies that node is a diagnosis (due to the completeness of
FINDMINCONFLICT). Assume there is a diagnosis D such that D ⊂ node. Since case (ii) is true
for node, there cannot be any such diagnosis D in Dcalc due to lines 24–26, because otherwise
node would have been labeled nonmin and line 37 could not have been reached. However, due to
the completeness of DynamicHS, and since D must be ranked higher as per pr than node (cf. the
definition of pr in Sec. 3.2.1), and sinceD is a diagnosis,D must already be included in Dcalc when
node is added. This is a contradiction. Therefore, for n = 1 (i.e., for the first call of DynamicHS in
Alg. 1), the output Dcalc contains only minimal diagnoses.

(Induction Assumption): Assume Dcalc contains only minimal diagnoses for n ≤ k.
(Induction Step): Now, let n = k + 1 and node ∈ Dcalc. Analogously to the argumentation

above, we again have the two possibilities (i) and (ii) of how node might have attained its label
valid . Suppose case (i) first. That is, node ∈ DX. By line 14 of Alg. 1 (ASSIGNDIAGSOKNOK,
cf. Sec. 3.1.3), DX ⊆ Dcalc where Dcalc is the output of the the previous, i.e., the k-th, call of
DynamicHS. Due to the Induction Assumption, we have that DX includes only minimal diagnoses
for the DPI dpik−1 considered in the k-th iteration, i.e., the DPI dpik considered in the (k + 1)-
th iteration without the most recently added measurement. However, ASSIGNDIAGSOKNOK adds
to DX exactly those diagnoses that are consistent with the new measurement. Consequently, the
diagnoses in DX are consistent with all measurements included in dpik, and thus are diagnoses
for dpik. Due to Property 1.2, no diagnosis for dpik can be a proper subset of any diagnosis for
dpik−1. Thus, all elements of DX must be minimal diagnoses which is why node must be a minimal
diagnosis. For the other case (ii), the argumentation is exactly as for the Induction Base.

Appendix B. Advanced Techniques in DynamicHS

DynamicHS embraces several sophisticated techniques specialized in improving its (time or space)
performance, which we discuss next.

B.1 Efficient Redundancy Checking

We now detail the workings of the function REDUNDANT (called in line 43 of Alg. 3):
The definition of node redundancy given in Sec. 3.2.5 directly suggests a method for checking

whether or not a node is redundant, which we call complete redundancy check (CRC). It runs through
all conflicts nd.cs[i] used as labels along the branch to node nd (i.e., i ∈ {1, . . . , |nd.cs|}) and calls
FINDMINCONFLICT with arguments (〈nd.cs[i] \ {nd[i]} ,B,P ∪ P ′,N ∪N ′〉) to test if there is a
witness of redundancy (see Sec. 3.2.5) for nd. A witness of redundancy exists for nd iff, for some
i, this call to FINDMINCONFLICT returns a conflict X . Because, this conflict then must be a subset
of nd.cs[i] \ {nd[i]}, meaning that nd is redundant. Hence, if such an X is found, then CRC
is successful. In this case, the function REDUNDANT returns isRedundant = true along with the
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witness X , which is used as an argument passed to the subsequent call of the PRUNE method (Alg. 3,
line 45). Otherwise, i.e., if all calls of FINDMINCONFLICT made by the CRC return ’no conflict’,
it is proven that the node is not redundant. As a result, REDUNDANT returns isRedundant = false
(note, in this case, the second value X returned by REDUNDANT is irrelevant and not further used).

The CRC enables sound (if CRC true, then node redundant) and complete (if node redundant,
then CRC true) redundancy checking. However, a drawback of the CRC is that it requires |nd| calls
to the (expensive) method FINDMINCONFLICT in the worst case, where |nd| is in O(|conf(dpi)|)
since a node cannot hit any more than each minimal conflict for the current DPI dpi . As a remedy to
that, we devised a more efficient, sound but incomplete, so-called quick redundancy check (QRC),
which is executed previous to the CRC and requires only a single call of FINDMINCONFLICT. The
concept is that a positive QRC makes the more expensive CRC obsolete; and, in case of a negative
outcome, CRC must be executed, but the overhead amounts to only a single FINDMINCONFLICT

call.

To check the redundancy of nd, QRC executes FINDMINCONFLICT with arguments (〈Und.cs \
nd,B,P ∪P ′,N ∪N ′〉).3 If ’no conflict’ is returned, the QRC terminates negatively, which prompts
the execution of the CRC (described above). Otherwise, if a conflict X is returned, QRC checks
whether X is a proper subset of some conflict in nd.cs, i.e., whether X ⊂ C for C = nd.cs[k]
for some k. In case of a positive subset-check, the QRC returns positively and it follows that nd
is redundant, regardless of the particular k. The reason is that the argument Und.cs \ nd passed
to FINDMINCONFLICT does not include any element of nd, and hence the output conflict cannot
include such elements either. Thus, if X ⊂ nd.cs[k] holds, then X ⊂ nd.cs[k] \ nd, and therefore
X ⊂ nd.cs[k] \ {nd[i]} for all i, and in particular for i = k. So, X ⊂ nd.cs[k] \ {nd[k]}, which
is equivalent to the definition of redundancy (see Sec. 3.2.5). As a consequence, if QRC returns
positively, then the function REDUNDANT directly outputs isRedundant = true along with X , and
CRC is not (required to be) executed.

To see why the QRC is incomplete, i.e., that nd can be redundant even if the outcome of the
QRC is negative, consider the following example:

Example I Let nd = [1, 2] and nd.cs = [〈1, 2〉 , 〈2, 3〉]. Assume that X := 〈2〉 is a new minimal
conflict and that {3} is not a conflict. Clearly, this implies that nd is redundant because nd.cs[1] \
X = {1} and nd[1] = 1. However, Und.cs \ nd = {3}, which is not a conflict, which is why
FINDMINCONFLICT given the DPI (〈Und.cs \ nd,B,P ∪ P ′,N ∪ N ′〉) as argument returns ’no
conflict’. Hence, the QRC returns negatively although nd is in fact redundant.

The crucial aspect which makes this incompleteness possible is the potential overlapping of
conflicts. Exactly this overlapping effectuates in the above example that more than one element
(actually even all elements) of the outdated non-minimal conflict 〈1, 2〉 are eliminated from Und.cs =
{1, 2, 3} by deleting nd = [1, 2]. As a consequence, the new reduced conflict 〈2〉 is not contained
any longer in the set tested by FINDMINCONFLICT.

In fact, we can conclude that the QRC is sound and complete in the special cases where all
minimal conflicts are pairwise disjoint or, more generally, where nd does not include any element
that occurs in multiple conflicts in nd.cs.
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B.2 Lazy Updating Policy

Updating DynamicHS’s hitting set tree after the detection of some witness of redundancy X in-
volves going through all nodes of the tree and checking their redundancy wrt. X (cf. Sec. 3.2.5).
To avoid these costs as much as possible, DynamicHS aims at minimizing the number of performed
updates under preservation of its correctness. This can be seen from line 42, where only the set D×
including the most “suspicious” nodes (i.e., the diagnoses invalidated by the latest added measure-
ment) is checked for redundancy. In general, this means that we allow some differences between
the tree used by DynamicHS to compute diagnoses and the one that would be obtained when build-
ing Reiter’s HS-Tree for the current DPI from scratch. More specifically, we allow the presence of
non-minimal conflicts that are used as node labels as well as—conditioned by these non-minimal
conflicts—the presence of unnecessary nodes (while, of course, seeking to minimize the number
of such occurrences; cf. PRUNE function). Still, every time a conflict is used to label a (newly
processed) node, the algorithm guarantees that it is a minimal conflict for the current DPI (cf. the
conflict-minimality test in the course of the conflict reuse check in DLABEL, lines 29–34).

This lazy updating policy takes effect, e.g., in iteration 2 of the example execution of Dy-
namicHS shown in Fig. 3 (see Example 5). Here the, at this point, already non-minimal conflict
C¬min := 〈3, 4, 5〉 still appears as a node label, while Cmin := 〈4, 5〉 is now a minimal conflict for
the current DPI.

Notwithstanding the correctness proof of DynamicHS given in Appendix A, we next argue
briefly why the presence of such non-minimal conflicts C¬min does neither counteract the soundness
nor the completeness of DynamicHS. To this end, we first point out that (*) only nodes can be
labeled valid by DynamicHS which are diagnoses for the current DPI (see line 35 in DLABEL; and
line 6 along with the definition of DX):

• Assume the completeness is compromised. Then the processing of some minimal diagnosis
must be prevented from reaching line 35 in DLABEL (note that it is unavoidable that processed
nodes are recognized as diagnoses in line 6). Since the presence of all still relevant (i.e., non-
redundant) nodes is not harmed by the presence of redundant nodes, which just constitute
additional branches, each node corresponding to a minimal diagnosis D will sooner or later
be processed by DLABEL. As D does not reach line 35 and since a minimal diagnosis does
hit all (minimal) conflicts, a labeling ofD by nonmin (line 26) is the only possible case. That
is, there must be a node labeled valid (and thus stored in Dcalc) which is a proper subset of
D. This is a contradiction to (*).

• Assume the soundness is compromised. Then some node nd is labeled valid which is not a
minimal diagnosis. Due to (*), it must be the case that nd is a diagnosis, but a non-minimal
one. First, a non-minimal diagnosis can never be identified in line 6 because of Property 1.2.
Second, since the queue Q is always sorted such that node n is ranked prior to node n′ when-
ever n ⊂ n′ (cf. Sec. 3.2.1), the non-minimal diagnosis nd can only be labeled valid if some
minimal diagnosis D (⊂ nd) —processed prior to nd— is not found to be a diagnosis (and
thus not labeled valid and not stored in Dcalc). Hence, the completeness must be compro-
mised. This is a contradiction to the argumentation in the above bullet.
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B.3 Avoidance of Expensive Reasoning

As explained in Sec. 2, DynamicHS aims at reducing the reaction time of a sequential diagnosis
system. One crucial time-consuming and recurring operation in hitting-set-based diagnosis compu-
tation algorithms is the reasoning in terms of logical consistency checks. To optimize computation
time, DynamicHS is therefore equipped with strategies that minimize the amount of and time spent
for reasoning by exploiting its statefulness in terms of the hitting set tree maintained throughout its
iterations. We discuss the concept behind these strategies next.

Ways of Reducing the Cost for Reasoning. In DynamicHS, the logical inference engine is called
(solely) by the FINDMINCONFLICT function, which is involved in the determination of node labels
in the tree expansion phase (DLABEL function) and in the evaluation of node redundancy in the tree
update phase (REDUNDANT function). As discussed in Sec. 2.3, a single execution of FINDMIN-
CONFLICT given the DPI 〈K,B,P ,N 〉 generally requires multiple reasoner calls and their number
depends critically on the size of the universe K from which a minimal conflict should be computed.
Note, what we, for simplicity, refer to as a reasoner call actually corresponds to a check if some
C ⊆ K is a conflict for a DPI 〈K,B,P ,N 〉. By the definition of a conflict (see Sec. 2.3), this means
checking whether some x ∈ N ∪ {⊥} exists such that C ∪ B ∪ P |= x. Consequently, a reasoner
call corresponds to a maximum of |N |+1 logical consistency checks. E.g., if QuickXPlain (Junker,
2004; Rodler, 2020) is used to implement the FINDMINCONFLICT function, as in our evaluations
(cf. Sec. 5), then the worst-case number of consistency checks executed by a single call of FIND-
MINCONFLICT on the DPI 〈K,B,P ,N 〉 is in O(|K|(|N | + 1)) (Marques-Silva, Janota, & Belov,
2013). The hardness of consistency checking tends to increase with the size of the knowledge base
on which the check is performed (cf., e.g., (Gonçalves, Parsia, & Sattler, 2012)).4 In other words,
the smaller the size of K ∪ B ∪ P is, the more efficient consistency checking will tend to be in the
course of FINDMINCONFLICT operating on the DPI 〈K,B,P ,N 〉.

In summary, the lower the cardinality of the first entry K (number of system components) of
the tuple 〈K,B,P ,N 〉 provided as an input to FINDMINCONFLICT is, the lower the hardness and
the number of executed consistency checks will tend to be, and thus the faster FINDMINCONFLICT

will tend to execute. Hence, there are basically three different ways of scaling down the necessary
reasoning throughout DynamicHS:

(i) Reducing the number and hardness of consistency checks made while FINDMINCONFLICT

executes,
(ii) reducing the number of FINDMINCONFLICT calls, or

(iii) entirely avoiding FINDMINCONFLICT calls (and replacing them by equivalents that do not
involve reasoning).

In its various stages, DynamicHS embraces all these three approaches, as we explain next.

In the tree expansion phase, any FINDMINCONFLICT call in the course of the conflict reuse check
(lines 27–34) starts from an already computed conflict—and not from the entire set of system com-
ponents K—trying to verify its minimality or, alternatively, extracting a subset which constitutes a
minimal conflict (for the current DPI). That is, FINDMINCONFLICT is given a set of at most |Cmax|
elements as an input,5 where Cmax is the conflict of maximal size (for the original6 DPI, i.e., the
one given as an input to Alg. 1). Note that, in many practical applications involving systems of
non-negligible size, |Cmax| is significantly (if not orders of magnitude) smaller than the number of
components of the diagnosed system (cf., e.g., (Horridge, Parsia, & Sattler, 2012; Shchekotykhin,
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Friedrich, Fleiss, & Rodler, 2012; Shchekotykhin, Jannach, & Schmitz, 2015)). Thus, DynamicHS
applies strategy (i) in this stage.

In the tree update phase, and particularly during redundancy detection (line 43), the quick redun-
dancy check (QRC) is employed to potentially replace the complete redundancy check (CRC) by
making only a single FINDMINCONFLICT call instead of multiple ones (cf. Appendix B.1). More-
over, any call of FINDMINCONFLICT made in the course of the redundancy detection in general
involves a significantly reduced input set, as compared to the overall number of components |K| of
the diagnosed system. The cardinality of this input set is bounded by the cardinality of the union
of all minimal conflicts (for the original7 DPI). So, during redundancy checking, both strategies (i)
and (ii) are pursued.

In the tree pruning phase (PRUNE function), which constitutes a part of the tree update phase, no
reasoning is required at all (i.e., no FINDMINCONFLICT calls). This is accomplished by leveraging
the stored hitting set tree as well as adequate instructions operating on sets and lists (cf. Example 3
below). At this point, note that a stateless algorithm, in contrast, has to draw on logical reason-
ing to reconstruct (the still relevant) parts of the tree, and thus to achieve essentially the same as
DynamicHS’s pruning actions. Importantly, operations relying on a logical inference engine can be
expected to have a (much) higher time complexity than the list concatenations, set-equality or subset
checks performed by DynamicHS in lieu of these operations. For instance, reasoning with proposi-
tional logic is already NP-complete (Cook, 1971), not to mention more expressive languages such as
Description logics (Baader, Calvanese, McGuinness, Nardi, & Patel-Schneider, 2007), whereas set-
and list-operations are (mostly linear) polynomial time operations. So, as far as the tree pruning is
concerned, DynamicHS can be viewed as trading cheaper (reasoner-free) operations for expensive
reasoner calls. It thus makes use of strategy (iii).

Different Types of Reasoning Operations. Given the preceding discussion, we can at the core distin-
guish the following three categories of FINDMINCONFLICT function calls based on their input DPI
〈X,B,P ,N 〉 (where 〈K,B,P ,N 〉 is the DPI relevant to the current iteration of DynamicHS):8

• ”hard”: Size of X in the order of number of system components, i.e., |X| ≈ |K|, and a conflict
is returned. (multiple “hard” reasoner calls)

• ”medium”: Size of X in the order of number of system components, i.e., |X| ≈ |K|, and ’no
conflict’ is returned. (single “hard” reasoner call)

• ”easy”: Size of X low compared to the number of system components, i.e., |X| � |K|. (few
“easy” reasoner calls)

“Hard” FINDMINCONFLICT calls are those executions of line 35 (in DLABEL) that compute a fresh
conflict, and “medium” ones those which lead to the finding of a diagnosis (output ’no conflict’).
In contrast, “easy” FINDMINCONFLICT invocations are those geared towards redundancy checking
(line 43, UPDATETREE) and minimality testing for reused conflicts (line 29, DLABEL). In terms
of this characterization, compared against HS-Tree, DynamicHS tries to substantially reduce the
“hard” (and “medium”) FINDMINCONFLICT operations at the cost of performing an as small as
possible number of “easy” ones.

Example II Reconsider our example DPI in Tab. 1 and the evolution of the hitting set computation
throughout a sequential diagnosis session for DynamicHS and HS-Tree discussed in Example 5.
Tab. I shows the number of “hard”, “medium” and “easy” FINDMINCONFLICT calls throughout the
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Table I: Stats wrt. the number of different kinds of reasoning operations (FINDMINCONFLICTS calls) through-
out the execution of DynamicHS (DHS) and HS-Tree (HST), respectively, on the example DPI from Tab. 1.
“Ui” in the first column refers to the tree update performed by DynamicHS subsequent to iteration i. Note,
HS-Tree does not (need to) perform any tree updates.

# “hard” # “medium” # “easy”
iteration DHS HST DHS HST DHS HST

1 4 4 4 4 0 0
U1 0 – 0 – 2 –
2 1 4 0 2 0 0

U2 0 – 0 – 1 –
3 1 4 1 2 0 0

U3 0 – 0 – 1 –
4 0 2 0 1 0 0

total 6 14 5 9 4 0

sequential session executed by both algorithms. The “hard” and “medium” calls are denoted by C

and ∗, respectively, in the hitting set trees depicted by Figs. 3 and 4 (“easy” calls are not indicated
as tree updates are not displayed in the figures). We can see that DynamicHS trades a significant
reduction of “hard” (57 %) and “medium” (44 %) reasoner operations for some “easy” ones.

B.4 Space-Saving Duplicate Storage and On-Demand Reconstruction

Basically, there are several options how to organize the storage of duplicate nodes. These options
range from storing all of them explicitly to storing only a minimal set of (stubs of) duplicate nodes
that implicitly allow all duplicates to be reconstructed on demand. Since DynamicHS performs
the duplicate check at node generation time (cf. line 18), it uses the more natural way of handling
duplicate storage given by the latter strategy. This means directly adding detected duplicate nodes—
generated tree branches whose set of edge labels equals the set of edge labels of an active branch
(node in Q or D⊃)—to the collection Qdup without further extending them as the hitting set tree
grows. Hence, each node stored in Qdup is potentially only a partial duplicate node and might
need to be combined with some other (partial) duplicate node or some active node in the hitting set
tree to explicitly generate (or: reconstruct) a duplicate that is only implicitly stored. For instance,
assume two nodes n1, n2 that have been detected as duplicates and added to Qdup, where n1 =
[3, 2], n1.cs = [〈1, 2, 3〉 , 〈2, 4〉] and n2 = [2, 3, 1], n2.cs = [〈1, 2, 3〉 , 〈3, 4〉 , 〈1, 4〉] (cf. nodes with
numbers 5© and 9© in Fig. I, discussed in more detail in Example 3). Then, an implicit duplicate
constructible from n1 and n2 is n1,2 = [3, 2, 1], n1,2.cs = [〈1, 2, 3〉 , 〈2, 4〉 , 〈1, 4〉], where the last
node label (conflict 〈1, 4〉) and edge (labeled by 1) of n2 have been appended to n1. The rationale
behind this node combination is as follows: n1 was recognized as duplicate first, while the first part
(i.e., the first two node and edge labels) of n2 was still in the queue Q of open nodes. This first
part of n2 was then extended by the node label 〈1, 4〉 and the edge label 1, but was subsequently
itself spotted as a duplicate. Node n1, however, given it had still been in Q, would have undergone
the same extension. This extension is so to say “made good for” by combining n1 with n2 to
(re)construct n1,2.
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In general, to reconstruct a duplicate node ni,j from a combination of two nodes ni, nj , the
following criteria have to be met:

(D1) The first |ni| elements of nj interpreted as a set are equal to the elements of ni interpeted as a
set; there are no conditions on the conflict labels ni.cs and nj .cs of the combined nodes.

(D2) The reconstructed node ni,j is built by setting9 ni,j [1..|ni|] = ni and ni,j [|ni| + 1..|nj |] =
nj [|ni| + 1..|nj |] as well as ni,j .cs[1..|ni|] = ni.cs and ni,j .cs[|ni| + 1..|nj |] = nj .cs[|ni| +
1..|nj |], i.e., the first part of ni,j and ni,j .cs, respectively, is equal to ni and ni.cs, to which the
last part of nj and nj .cs is appended.

(D3) Either (a) ni, nj are each (reconstructed10 or explicit) nodes from Qdup, or (b) node ni is from
the node combination closure Q∗dup of Qdup which is the union of Qdup with the set of all
nodes reconstructible11 through (a), and node nj is from a node collection including active
nodes, i.e., from one of Q, D⊃, DX, D×, or Dcalc.

In the example above, criterion (D3)(a) is met, where n1 and n2 correspond to ni and nj , re-
spectively, which are both (explicit) elements of Qdup; criterion (D1) is satisfied as well because
the first |ni| = |n1| = 2 elements of nj = n2 correspond to the set {2, 3}, which is equal to the set
of elements of ni = n1; the validity of criterion (D2) can be easily verified by comparing n1,2 with
n1 and n2. Let us consider some important remarks:

(R1) Node reconstruction is sound and complete: The set of all nodes constructible by means of
(D1), (D2) and (D3)(b) is exactly the set of all duplicates of the currently active nodes in
Q ∪D⊃ ∪DX ∪D× ∪Dcalc.

(R2) Relationship between reconstructed node and combined source nodes: (D1) implies that
|ni| ≤ |nj |. By (D2) node reconstruction means that the node ni of lower (or equal) length
replaces the first part of (or the complete) node nj ; we can thus call ni the modifying node
and nj the modified node. Moreover, the reconstructed node has the same length as and is
set-equal (wrt. edge labels) to node nj . As a consequence of this, node reconstructions can
never lead to nodes that are new in terms of their sets of edge labels. Hence, as far as sets of
edge labels of nodes are concerned, Qdup is representative of Q∗dup.

(R3) Reconstruction of nodes only on demand: Neither Q∗dup (as per (D3)(a)) nor the set of all
duplicates of active nodes (as per (D3)(b)) is ever exlicitly generated by DynamicHS. Instead,
only a minimal number of node reconstructions necessary for the proper-functioning (com-
pleteness) of DynamicHS are performed. More specifically, node reconstructions can only
take place in case one node has been pruned and a replacement node for it is sought (cf.
PRUNE function, Sec. 3.2.5). And, for each pruned node, either just one replacement node is
reconstructed, or none at all if no suitable replacement node exists.

(R4) Principle of node reconstruction in the course of tree pruning: Assume the PRUNE function
is called given the minimal conflict X and finds some redundant node nd, i.e., X is a witness
of redundancy for nd (cf. Sec. 3.2.5). Since there might be multiple edge and conflict labels
in nd and nd.cs due to which nd is redundant given X , let k be the maximal index such that
X ⊂ nd.cs[k] and nd[k] ∈ nd.cs[k] \X (redundancy criterion, cf. Sec. 3.2.5). After deleting
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nd, a replacement node for it is sought. A replacement node nd′ of nd needs to be (i) non-
redundant (as per the current knowledge, i.e., X must not be a witness of redundancy for nd′)
and (ii) set-equal to nd (cf. Sec. 3.2.5).

Due to (ii) and Remark (R2) above, the redundant node nd can be interpreted as nj and
the sought replacement node as ni,j . With that said, the task of finding a replacement node
is equivalent to finding a non-redundant (as per X) node ni in Q∗dup, see (D3), such that
|ni| ≥ k (i.e., at least the redundant part of nj = nd is replaced by ni), see (D2), and the set
of elements of ni is equal to the set of the first |ni| elements of nj = nd, see (D1). Since Qdup

is representative of Q∗dup in terms of the sets of edge labels of nodes (see Remark (R2)) and
because ni must only be suitable in terms of set-equality, it is sufficient to search for ni in
Qdup as opposed to Q∗dup.

Due to (i) and since ni is a node from Qdup, it must be provided that each node from Qdup

that qualifies as ni in the search for a replacement node is non-redundant. This imposes two
requirements, as pointed out in Sec. 3.2.5: Qdup must be pruned previous to all other node
collections (to account for case (D3)(b)), and nodes of Qdup must be pruned in ascending
order of their length (to account for case (D3)(a)12).

Example III We now showcase the workings of DynamicHS’s tree update on a simple exam-
ple, thereby also illustrating the discussed advanced techniques regarding the efficient redundancy
checking (Appendix B.1), the avoidance of expensive reasoning (Appendix B.3), as well as the
space-saving duplicate storage and on-demand reconstruction (Appendix B.4). Note that we al-
ready discussed the lazy updating policy (Appendix B.2) in terms of Example 5.

Consider Fig. I (with a similar notation as used in Figs. 3 and 4) which depicts the hitting
set tree produced by DynamicHS (iteration 1) for some DPI dpi0 in breadth-first order (see the
node numbers t© signalizing that the respective node was generated at point in time t). The sets
of minimal conflicts and minimal diagnoses for dpi0 are given by conf(dpi0) and diag(dpi0) in
the figure. We assume that DynamicHS uses the parameter ld := 5, i.e., five minimal diagnoses
(if existent) should be computed. Since there are only four minimal diagnoses (see diag(dpi0)),
DynamicHS executes until the queue is empty (Q = [ ], see line 4 in Alg. 3), i.e., until the hitting
set tree is complete. The resulting set of leading diagnoses D corresponds to diag(dpi0) (nodes
labeled by X in Fig. I). Further, we assume that a (discriminating) measurement m is added to
dpi0, which leads to the new minimal conflict 〈3〉 for the resulting DPI dpi1. As can be seen
through a comparison of diag(dpi0) with diag(dpi1) in Fig, I, the leading diagnoses eliminated
by the measurement m are the nodes numbered 7© (corresponding to the node [1, 4]) and 10© (node
[2, 4]). These two nodes are included in the set D× given as an input argument to the second call of
DynamicHS (iteration 2) in line 6 of Alg. 1.

Now, when UPDATETREE is invoked in iteration 2, the first step is the examination of the el-
ements in D× regarding their redundancy status (see description of the UPDATETREE function in
Sec. 3.2.5). For node nd = [1, 4], we have nd.cs = [〈1, 2, 3〉 , 〈2, 4〉]. The QRC (see Appendix B.1)
executed on nd involves calling FINDMINCONFLICT with argument13 (〈Und.cs \ nd, . . . 〉) which is
equal to (〈{1, 2, 3, 4} \ {1, 4} , . . . 〉) = (〈{2, 3} , . . . 〉). Hence, the conflict X = 〈3〉 is returned
(cf. conf(dpi1)), which is a subset of nd.cs[1] and thus must constitute a witness of redundancy of
nd = [1, 4].

As a next step, PRUNE is called with argument X (line 45 in Alg. 3). At first, PRUNE considers
Qdup = [[3, 2], [2, 3, 1]] (nodes numbered 5© and 9© in Fig. I) and cleans it up from redundant nodes.
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Figure I: Tree pruning and redundancy checking example.

At this, for each node nd ∈ Qdup, the algorithm runs through the conflicts nd.cs[i] from small to
large i and, if X ⊂ nd.cs[i], (i) checks if nd[i] ∈ nd.cs[i]\X (is X a witness of redundancy for nd?)
as well as (ii) replaces nd.cs[i] by X (update of internal node labels). At the end of this traversal,
the maximal index i = k, for which (i) is executed and true, is stored. Since, importantly, nodes
are processed in ascending order of their size, the first processed node from Qdup in this concrete
example is nd = [3, 2] with nd.cs = [〈1, 2, 3〉 , 〈2, 4〉]. For index i = 1, we have 〈3〉 ⊂ 〈1, 2, 3〉,
which is why nd.cs[1] is replaced by 〈3〉 in the course of step (ii). However, since nd[1] = 3 is not
an element of 〈1, 2, 3〉 \ 〈3〉, check (i) is negative (no redundancy detected). For index i = 2, it does
not even hold that 〈3〉 ⊂ 〈2, 4〉, hence neither (i) nor (ii) are executed. The overall conclusion from
this analysis is that X is not a witness of redundancy for nd. Consequently, there is no evidence up
to this point that nd is redundant, which is why nd remains an element of Qdup, however, with the
modified conflict labels set nd.cs = [〈3〉 , 〈2, 4〉].

For the second node [2, 3, 1] in Qdup, a similar evaluation leads to the insight that this node is
redundant and k = 1 (because 〈3〉 ⊂ 〈1, 2, 3〉 and 2 ∈ 〈1, 2, 3〉 \ 〈3〉). However, instead of only
discarding the node, the algorithm seeks a replacement node that is non-redundant and set-equal
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to [2, 3, 1]. To this end, it iterates through all already processed (and thus provenly non-redundant)
nodes in Qdup (in this case only the node [3, 2]) and tries to find some node of size l which is
set-equal to the first l elements of the redundant node, for some l ≥ k.

Indeed, since the first 2 ≥ k = 1 elements of nodes [3, 2] and [2, 3, 1] are equal (when considered
as a set), a replacement node for the latter can be constructed. This (re)constructed node is given
by ndnew = [3, 2, 1] with ndnew.cs = [〈3〉 , 〈2, 4〉 , 〈1, 4〉] (i.e., figuratively spoken, the label dup
at node 5© is replaced by the path including nodes 8© and 9©, cf. Fig. I).

Since all nodes of Qdup have at this point been processed, the PRUNE method shifts its focus to
the other collections Q, D⊃, D× and DX. Essentially, the considerations made for these collections
are equal to those explicated for Qdup, with the only difference that solely elements of (the already
cleaned up) Qdup are in line for being used in the construction of replacement nodes for redundant
ones found in these collections. For instance, the node n = [1, 2, 3] with the number 12© is detected
to be redundant (k = 1) when it comes to pruning DX. Since, however, the first 3 ≥ k = 1
elements of ndnew = [3, 2, 1] are set-equal to the first 3 elements of n, the latter is replaced by
ndnew. After carrying out all pruning actions provoked by the witness of redundancy X = 〈3〉
(detected by analysing the first node [1, 4] ∈ D×), the reconstructed replacement node ndnew is
now the only remaining node in the tree that corresponds to the set of edge labels {1, 2, 3}. The fact
that this set does constitute a minimal diagnosis wrt. dpi1 (cf. diag(dpi1)) corroborates that the
storage and adequate reconstruction of duplicates is pivotal for the completeness of DynamicHS.

Note that the second node [2, 4] that was originally an element of D× has meanwhile already
been removed from D× in the course of the pruning actions taken. The reason is that the conflict
X = 〈3〉 that was used as a basis for pruning is also a witness of redundancy for [1, 4]. In fact,
D× = ∅ holds after conflict X = 〈3〉 has been processed. Hence, the for-loop in line 42 of Alg. 3
terminates and no further pruning operations are conducted.

The pruned tree resulting from the execution of UPDATETREE is shown at the bottom of Fig. I.
Replacement nodes (i.e., those nodes which substitute deleted redundant nodes), are marked by Rep ;
their node number k© in the pruned tree is the number of the original deleted redundant node. Note
that the second replacement node [3, 2, 4] results from (the deleted) node 14© by a substitution of its
first two edges [2, 3] by the duplicate [3, 2] (node 5©). In addition, node labels changed during the
pruning process are indicated by a prime (’) symbol. In this concrete example, e.g., both relabeled
nodes 11© and 12© originally represented minimal diagnoses for dpi0 and were returned by the first
run of DynamicHS in terms of Dcalc. Then, they were added to DX (line 14 in Alg. 1) since they
are consistent with the added measurement m. Finally, at the end of UPDATETREE, node 11© and the
replacement node of node 12© were reinserted into the queue Q of unlabeled nodes (preservation of
best-first property; line 59 in Alg. 3) because they “survived” the pruning.

As to the complexity of the tree pruning performed by DynamicHS in this example, the overall
number of reasoner-invoking function calls amounts to merely a single “easy” call of FINDMIN-
CONFLICT (the executed QRC), whereas the (re)construction of a tree equivalent to DynamicHS’s
pruned tree, carried out in iteration 2 when adopting (the stateless) HS-Tree, requires three “hard”
FINDMINCONFLICT calls (computations of conflicts 〈3〉, 〈2, 4〉, 〈1, 4〉).

Appendix C. Analysis of Advanced Techniques

As the performance comparison between DynamicHS and HS-Tree at the end of Example 5 already
suggested, there are two major sources for the runtime savings obtained by means of DynamicHS:
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(A1) fewer expensive reasoning operations and (A2) saved effort for tree (re)construction. The price
to pay for these reductions is (A3) the storage of the existing hitting set tree (including duplicate
nodes) throughout the diagnosis session and (A4) the execution of regular tree pruning actions. In
the following, we examine these four aspects more closely based on our experiment results. Ap-
pendix C.1 addresses aspect (A1), Appendix C.2 analyzes aspects (A2) and (A3), and Appendix C.3
focuses on aspect (A4).

C.1 Avoidance of Expensive Reasoning and Efficient Redundancy Checking

Fig. II summarizes several statistics that illustrate aspect (A1) in more detail. The reduction of
costly reasoning operations (“hard” FINDMINCONFLICT calls, cf. Appendix B.3) is achieved by
trading them against more efficient reasoning operations (“easy” FINDMINCONFLICT calls, cf. Ap-
pendix B.3). The red circles in the figure, which show how much harder an average “hard” call is
than an average “easy” one in each diagnosis scenario, attest that this strategy of swapping “hard”
for “easy” calls is indeed plausible, as the former are a median of 19 times and up to 120 times as
time-consuming as the latter.

The green bars in Fig. II reveal that significant savings in terms of “hard” calls are indeed
consistently generated by DynamicHS. More specifically, in more than 98 % of the diagnosis sce-
narios, the median relative savings wrt. “hard” FINDMINCONFLICT calls in comparison to HS-Tree
are higher than 30 %; over all scenarios, median and maximal savings amount to 74 % and 99 %,
respectively.

Rather unsurprisingly, these savings wrt. the number of “hard” FINDMINCONFLICT calls trans-
late to a similarly substantial reduction of runtime spent for reasoning operations (orange bars in
Fig. II) manifested by DynamicHS. Savings in terms of the runtime dedicated to reasoning are
achieved in 97 % of the diagnosis scenarios and amount to median and maximal values of 57 %
and 78 %, respectively. The main reason why the diminution in terms reasoning time is most times
lower than the decrease of “hard” reasoning operations is that DynamicHS, as opposed to HS-Tree,
makes use of “easy” reasoner calls to compensate for these saved more expensive calls. That is,
these “easy” calls account to a large extent for the difference between green and orange bars. As ev-
ident in some scenarios, e.g., for the knowledge base fal-cs, however, it is also possible that savings
in reasoning time top savings in terms of “hard” FINDMINCONFLICT calls. This can happen, e.g.,
when DynamicHS saves many “medium” FINDMINCONFLICT calls against HS-Tree (cf. Example 2
and Tab. I) in addition to its savings wrt. “hard” ones.

Last but not least, also the used efficient redundancy checking technique incorporated in Dy-
namicHS contributes to the achieved runtime savings. In fact, the adoption of the QRC (quick
redundancy check, cf. Appendix B.1) attempts to minimize the (“easy”) reasoning operations nec-
essary to decide the redundancy of a particular node (wrt. a particular given minimal conflict). The
white boxes in Fig. II indicate that this strategy is very powerful in that the QRC detects redundancy
almost always when redundancy is actually given, thus allowing the alorithm to skip the more ex-
pensive CRC (complete redundancy check, cf. Appendix B.1). One could say that the QRC appears
to be “almost complete” in our experiments. In numbers, we observe that the QRC detected all re-
dundancies in 75 %, at least nine of ten redundancies in 89 %, and at least eight of ten redundancies
in 99 % of the scenarios.
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Figure II: Analysis of DynamicHS wrt. avoidance of reasoning and efficient redundancy checking: x-axis
shows faulty ontologies K from Tab. 3 and number ld of leading diagnoses computed per call of hitting set
algorithm (iteration of while-loop in Alg. 1). The plot shows data for the heuristic ENT. All values depicted
are medians over the 20 sequential diagnosis sessions executed per diagnosis scenario. See Appendix B.3
for a definition of “hard” and “easy” reasoning operations; “QRC” refers to quick redundancy check, see
Appendix B.1; “savings” refers to the savings over HS-Tree.

C.2 Statefulness (DynamicHS) vs. Statelessness (HS-Tree)

Let us now consider Fig. III, which allows to investigate aspects (A2) and (A3). The figure depicts,
per diagnosis scenario, the median factors how many more nodes HS-Tree had to process than
DynamicHS (grey bars) and how many more nodes DynamicHS needed to store than HS-Tree
(yellow bars). The fact that the majority of all bars attains values greater than 1 demonstrates that
DynamicHS—expectedly—tends to trade less time for more space. It keeps the produced search tree
in memory and utilizes the information contained in this tree to allow for more efficient diagnosis
computation in the next sequential diagnosis iteration. We can identify from the figure that in two
thirds of the diagnosis scenarios, the trade-off achieved by DynamicHS is favorable in the sense that
the factor of more memory used by DynamicHS is less than the factor of more nodes processed by
HS-Tree (yellow bars smaller than grey ones).

Moreover, Fig. III (yellow bars) reveals that DynamicHS required less memory than HS-Tree
in 14 % of the scenarios, exhibited less than 25 % memory overhead in 35 % and less than 50 %
overhead in 52 % of the scenarios, and consumed less than twice the memory of HS-Tree in 82 %
of the diagnosis scenarios. Circumstances where DynamicHS can require even less memory than
HS-Tree are when few or no duplicate nodes exist (e.g., when minimal conflicts are mostly dis-
joint), when DynamicHS’s hitting set tree after tree updates is (largely) equal to the one produced
by HS-Tree (cf. Appendix B.2), and when DynamicHS happens to compute or select for reuse more
“favorable” conflicts than HS-Tree in the course of node labeling.14 In less than 10 % of the sce-
narios, however, the memory overhead shown by DynamicHS was substantial, reaching values of 4
or more times the amount of memory consumed by HS-Tree. Hence, although not observed in our
evaluation where either both or none of the algorithms ran out of memory, there may be cases where
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Figure III: Comparison of stateful (DynamicHS) versus stateless (HS-Tree) hitting set tree management in
terms of the nodes processed (time efficiency) and the nodes maximally in memory (space efficiency): x-axis
shows faulty ontologies K from Tab. 3 and number ld of leading diagnoses computed per call of hitting set
algorithm (iteration of while-loop in Alg. 1). The plot shows data for the heuristic ENT. All values depicted
are medians over the 20 sequential diagnosis sessions executed per diagnosis scenario.

DynamicHS is not applicable due to too little available memory while HS-Tree is. In general, this
can be remedied by adding a mechanism to DynamicHS which simply discards the entire stored
hitting set tree and starts over from scratch building a new tree whenever a certain fraction of the
available memory has been exhausted. In other words, the stateful (DynamicHS) strategy can be
flexibly and straightforwardly switched to a stateless (HS-Tree) one.

Fig. III (grey bars) also shows the benefit of the stateful strategy pursued by DynamicHS. That
is, the overhead in terms of the time expended for tree (re)construction incurred when using HS-
Tree instead of DynamicHS is significant in the majority of scenarios. In numbers, HS-Tree had to
process at least 1.5 times as many nodes as DynamicHS in 78 % of the scenarios, at least twice as
many in 42 %, and at least three times as many in 5 % of the diagnosis scenarios.

Finally, note that aspects (A1) and (A2), i.e., DynamicHS’s reduction of time for reasoning and
its savings in terms of tree construction costs, are orthogonal in the following sense: Even if one
of these aspects turns out to be unfavorable from the viewpoint of DynamicHS in comparison to
HS-Tree, the other aspect is not affected by that in general. For instance, in our experiments we
observed three scenarios (fal-cs, 2; com-cc, 20; com-cc, 30) where DynamicHS actually required
slightly more time for reasoning than HS-Tree (cf. orange bars in Fig. II), i.e., aspect (A1) was
unfavorable for DynamicHS. Since DynamicHS however did save node processing time in these
cases, i.e., aspect (A2) was favorable, the overall computation time was still lower for DynamicHS.
Similarly, there are cases (cf., e.g., ctx-cc, 4) where aspect (A2) is unfavorable while aspect (A1) is
favorable, again resulting in overall time savings of DynamicHS.

C.3 Duplicates and Pruning

Fig. IV illuminates aspect (A4). It displays the median fraction of the memory consumed by Dy-
namicHS that is used for the storage of duplicate nodes per diagnosis scenario (blue bars). We can

16



APPENDIX TO: DYNAMICHS: STREAMLINING REITER’S HS-TREE FOR SEQUENTIAL DIAGNOSIS

-10

0

10

20

30

40

50

60

70

80

90

100

110

120

2 4 6 10 20 30 2 4 6 10 20 30 2 4 6 10 20 30 2 4 6 10 2 4 6 10 20 30 2 4 6 10 20 30 2 4 6 10 20 30 2 4 6 10 20 30 2 4 6 2 4 6 10

U UNI M com-cs hma-cmc com-cc fal-ce E O C
DynamicHS: savings wrt. # of hard reasoning operations (%) DynamicHS: savings wrt. reasoning time (%) time(hard reasoning operation) / time(medium reasoning operation) % of times QRC successful given redundancy

0

1

2

3

4

5

6

7

2 4 6 10 20 30 2 4 6 10 20 30 2 4 6 10 20 30 2 4 6 10 20 30 2 4 6 10 20 30 2 4 6 10 20 30 2 4 6 10 20 30 2 4 6 10 2 4 6 10 20 30

K U IT UNI Ch M fal-cs com-cs ctx-se

HS-Tree: factor more nodes processed DynamicHS: factor more nodes maximally in memory

0

1

2

3

4

5

6

2 4 6 10 20 30 2 4 6 10 20 30 2 4 6 10 20 30 2 4 2 4 6 10 20 30 2 4 6 10 20 30 2 4 6 10 20 30 2 4 6 10 20 30 2 4 6 2 4 6 2 4 6 10

hma-cmc hma-coc com-cc ctx-cc fal-ce T E D O Cig C

HS-Tree: factor more nodes processed DynamicHS: factor more nodes maximally in memory

0
10
20
30
40
50
60
70
80
90

100

2 4 6 10 20 30 2 4 6 10 20 30 2 4 6 10 20 30 2 4 6 10 20 30 2 4 6 10 20 30 2 4 6 10 20 30 2 4 6 10 20 30 2 4 6 10 2 4 6 10 20 30

K U IT UNI Ch M fal-cs com-cs ctx-se

DynamicHS: fraction of consumed memory used for duplicate nodes (%) DynamicHS: fraction of consumed runtime spent for pruning (%)

0
10
20
30
40
50
60
70
80
90

100

2 4 6 10 20 30 2 4 6 10 20 30 2 4 6 10 20 30 2 4 2 4 6 10 20 30 2 4 6 10 20 30 2 4 6 10 20 30 2 4 6 10 20 30 2 4 6 2 4 6 2 4 6 10

hma-cmc hma-coc com-cc ctx-cc fal-ce T E D O Cig C

DynamicHS: fraction of consumed memory used for duplicate nodes (%) DynamicHS: fraction of consumed runtime spent for pruning (%)

Figure IV: Analysis of DynamicHS wrt. space-efficiency of duplicate storage and time-efficiency of pruning
actions: x-axis shows faulty ontologies K from Tab. 3 and number ld of leading diagnoses computed per call
of hitting set algorithm (iteration of while-loop in Alg. 1). The plot shows data for the heuristic ENT. All
values depicted are medians over the 20 sequential diagnosis sessions executed per diagnosis scenario.

see that duplicate nodes account for less than 10 % of the used memory in 69 % of the diagnosis sce-
narios, for less than 20 % in 92 %, and for less than 30 % in 100 % of the scenarios. In other words,
the memory overhead caused by duplicate nodes does not exceed 12 % / 25 % / 39 % in 69 % / 92 %
/ 100 % of the scenarios. Consequently, the additional memory consumption attributable to dupli-
cates stays within acceptable bounds in all cases. This can be due to not too many existing duplicates
(e.g., if minimal conflicts tend to be disjoint) or due to DynamicHS’s memory-efficient storage of
duplicates (cf. Appendix B.4). The latter requires duplicates to be reconstructed on demand in the
course of pruning and associated node replacement actions (cf. Appendix B.4 and Example 3). The
relative computational expense of these pruning actions in comparison to the overall computation
time of DynamicHS is described by the red bars in Fig. IV. These tell that the relative computation
time spent for pruning is negligible (less than 1 %) in 61 % of the diagnosis scenarios, marginal (less
than 5 %) in 89 %, and small (less than 10 %) in 95 % of the scenarios. This overall fairly low over-
head for pruning, which already includes the time for reconstructing duplicate nodes, testifies that
DynamicHS’s duplicate storage and reconstruction as well as its pruning techniques that completely
dispense with costly reasoner calls are reasonable strategies for dealing with the statefulness of the
hitting set tree.

Only in two cases, the time for pruning exceeds 20 % of DynamicHS’s total computation time;
in one of these cases (C, 10) it is very high, reaching almost 80 %, a possible sign that signifi-
cant portions of the tree have become out-of-date through lazy updating (cf. Appendix B.2). Note,
however, that DynamicHS overall still saves time compared to HS-Tree in this scenario (cf. Fig. 5)
since the time spent later for more intensive pruning is counterbalanced with time saved earlier by
skipping pruning actions (lazy updating).
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Notes
1. For additional details regarding the proof argumentation, we refer the reader to (Rodler, 2015, Sec. 12.4).

2. Please note that the original DPI considered by the first call of DynamicHS during a sequential diagnosis session is
referred to as dpi0 (cf. line 6 in Alg. 1). Hence, the DPI relevant to the k-th call of DynamicHS is denoted by dpik−1.

3. For a collection of sets Z, we denote by UZ the union of all sets in Z.

4. Further evidence that larger knowledge bases lead to worse reasoning performance is given in (Kang, Li, & Krish-
naswamy, 2012; Karlsson, Nyström, & Cornet, 2014).

5. When we say that FINDMINCONFLICT gets a set S as an input, we always mean by S the first argument of the 4-tuple
(DPI) passed to the function as an argument.

6. Recall from Property 1.3 that minimal conflicts can only become smaller throughout a sequential diagnosis session, i.e.,
there cannot be any minimal conflict whose size exceeds |Cmax|.
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7. Cf. Footnote 6 above.

8. It is important to note that the used intuitive terminology “hard”, “medium” and “easy” is to be understood by tendency,
but does not allow general conclusions about the relative or absolute hardness of the respective FINDMINCONFLICT

calls. That is, e.g., an “easy” call might not be fast or easy at all. Or a “medium” call might be faster than an “easy” one,
e.g., because the latter operates on a set of logical sentences that is particularly hard to reason with (cf. (Gonçalves et al.,
2012)). However, as we verified in our experimental evaluation (see Sec. 5), the used terminology does largely reflect the
actual relative computation times of the FINDMINCONFLICT calls in our considered dataset. More precisely, on average
“hard” calls turned out to be always (and at least four times and up to more than 100 times) more time-intensive than
“medium” and “easy” calls; and, “easy” calls terminated faster than “medium” ones in 77 % of the studied cases.

9. Notation: Given a list n, n[k..l] refers to the sublist including all elements from the k-th (included) until the l-th (included).

10. Note the recursive character of this definition. That is, all combinations of explicit and already reconstructed nodes are
possible. E.g., a reconstructed node n6 can be the result of combining two explicit nodes n1 and n2 to reconstruct a node
n3, which in turn is combined with some explicit node n4, which in turn is combined with a reconstructed node n5.

11. Formally, Q∗dup can be defined as the fixpoint S∗ of the sequence of sets S0, S1, . . . resulting from the iterative applica-
tion of the Comb function starting from S0 := Qdup where Si+1 = Comb(Si) and Comb is defined as Comb(S) =
S ∪ {ni,j | ni,j is the result as per (D2) of combining two nodes ni, nj ∈ S which meet (D1)}.

12. Recall from Remark (R2) that |ni| ≤ |nj |. If |ni| < |nj |, then a processing of nodes in order of ascending node cardinality
guarantees that all still available (non-pruned) nodes ni are already verified non-redundant when some nj might need to
be replaced. If, on the other hand, |ni| = |nj |, then there are two cases: ni is processed prior to nj , or the opposite holds.
In the former case, ni (unless pruned) must already be verified non-redundant when nj is considered. In the latter case,
ni is not available as a replacement node at the time nj is addressed, but ni itself will be processed later. Thus, if nj is
pruned and ni non-redundant, then the latter will remain in Qdup which means that ni has essentially replaced nj .

13. Note, we just mention the first element K of the tuple 〈K,B,P ,N 〉 passed to FINDCONFLICT and write “. . . ” for the
remaining ones for simplicity and brevity. The reason is that we did not discuss the specific DPI underlying this example
and that K (set from which a minimal conflict is to be computed) is sufficient to understand the discussed points.

14. The order in which conflicts are computed and selected for node labeling is neither controlled by HS-Tree nor by Dy-
namicHS. If one of the algorithms happens to compute smaller minimal conflicts that are used to label nodes at the top of
the hitting set tree and when the hitting set trees produced by both algorithms are not computed to their entirety (as is the
case when ld diagnoses have been computed before the tree is complete), then the tree with the smaller conflicts at the
top can be smaller than the one generated by the other algorithm.
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Algorithm 3 DynamicHS
Input: . tuple 〈dpi ,P ′,N ′, pr , ld ,DX,D×, state〉 comprising

• a DPI dpi = 〈K,B,P ,N 〉
• the hitherto acquired sets of positive (P ′) and negative (N ′) measurements
• a function pr assigning a fault probability to each element in K
• the number ld of leading minimal diagnoses to be computed
• the set DX of all elements of the set Dcalc (returned by the previous DYNAMICHS run) which are minimal diagnoses wrt.
〈K,B,P ∪ P ′,N ∪N ′〉

• the set D× of all elements of the set Dcalc (returned by the previous DYNAMICHS run) which are no diagnoses wrt.
〈K,B,P ∪ P ′,N ∪N ′〉

• state =
〈
Q,Qdup,D⊃,Ccalc

〉
where

– Q is the current queue of unlabeled nodes,
– Qdup is the current queue of duplicate nodes,
– D⊃ is the current set of computed non-minimal diagnoses,
– Ccalc is the current set of computed minimal conflict sets.

Output: tuple 〈D, state〉 where

• D is the set of the ld (if existent) most probable (as per pr ) minimal diagnoses wrt. 〈K,B,P ∪ P ′,N ∪N ′〉
• state is as described above

1: procedure DYNAMICHS(dpi ,P ′,N ′, pr , ld ,DX,D×, state)
2: Dcalc ← ∅
3: state← UPDATETREE(dpi ,P ′,N ′, pr ,DX,D×, state)
4: while Q 6= [ ] ∧ ( |Dcalc| < ld ) do
5: node← GETANDDELETEFIRST(Q) . node is processed
6: if node ∈ DX then .DX includes only min...
7: L← valid . ...diags wrt. current DPI
8: else
9: 〈L, state〉 ← DLABEL(dpi ,P ′,N ′, pr , node,Dcalc, state)

10: if L = valid then
11: Dcalc ← Dcalc ∪ {node} . node is a min diag wrt. current DPI
12: else if L = nonmin then
13: D⊃ ← D⊃ ∪ {node} . node is a non-min diag wrt. current DPI
14: else
15: for e ∈ L do . L is a min conflict wrt. current DPI
16: nodee ← APPEND(node, e) . nodee is generated
17: nodee.cs← APPEND(node.cs, L)
18: if nodee ∈ Q ∨ nodee ∈ D⊃ then . nodee is (set-equal) duplicate of some node in Q or D⊃
19: Qdup ← INSERTSORTED(nodee,Qdup, card , <)
20: else
21: Q← INSERTSORTED(nodee,Q, pr , >)

22: return 〈Dcalc, state〉

23: procedure DLABEL(〈K,B,P ,N 〉,P ′,N ′, pr , node,Dcalc, state)
24: for nd ∈ Dcalc do
25: if node ⊃ nd then . node is a non-min diag
26: return 〈nonmin, state〉
27: for C ∈ Ccalc do .Ccalc includes conflicts wrt. current DPI
28: if C ∩ node = ∅ then . reuse (a subset of) C to label node
29: X ← FINDMINCONFLICT(〈C,B,P ∪ P ′,N ∪N ′〉)
30: if X = C then
31: return 〈C, state〉
32: else . X ⊂ C
33: 〈state,Dcalc〉 ← PRUNE(X, 〈state,Dcalc〉)
34: return 〈X, state〉
35: L← FINDMINCONFLICT(〈K \ node,B,P ∪ P ′,N ∪N ′〉)
36: if L = ’no conflict’ then . node is a diag
37: return 〈valid , state〉
38: else . L is a new min conflict (/∈ Ccalc)
39: Ccalc ← Ccalc ∪ {L}
40: return 〈L, state〉
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Algorithm 3 DynamicHS (continued)
41: procedure UPDATETREE(dpi ,P ′,N ′, pr ,DX,D×, state)
42: for nd ∈ D× do . search for redundant nodes among invalidated diags
43: 〈isRedundant , X〉 ← REDUNDANT(nd, dpi) . if nd is redundant (isRedundant is true), then...
44: if isRedundant then . ...X is a witness of redundancy for nd
45: 〈state,DX,D×〉 ← PRUNE(X, 〈state,DX,D×〉)
46: for nd ∈ D× do . add all (non-pruned) nodes in D× to Q
47: Q← INSERTSORTED(nd,Q, pr , >)
48: D× ← D× \ {nd}
49: for nd ∈ D⊃ do . add all (non-pruned) nodes in D⊃ to Q, which...
50: nonmin ← false . ...are no longer supersets of any diag in DX
51: for nd′ ∈ DX do
52: if nd ⊃ nd′ then
53: nonmin ← true
54: break
55: if nonmin = false then
56: Q← INSERTSORTED(nd,Q, pr , >)
57: D⊃ ← D⊃ \ {nd}
58: for D ∈ DX do . add known min diags in DX to Q to find diags...
59: Q← INSERTSORTED(D,Q, pr , >) . ...in best-first order (as per pr )
60: return state

Algorithm 1 Sequential Diagnosis
Input: DPI dpi0 := 〈K,B,P ,N 〉, probability measure pr (to compute diagnoses probabilities), number ld (≥ 2) of minimal di-

agnoses to be computed per iteration, heuristic heur for measurement selection, boolean dynamic that governs which diagnosis
computation algorithm is used (DynamicHS if true, HS-Tree otherwise)

Output: {D} where D is the final diagnosis after solving SD (Problem 1)

1: P ′ ← ∅,N ′ ← ∅ . performed measurements
2: DX ← ∅,D× ← ∅ . variables describing state...
3: state← 〈[ [] ], [ ], ∅, ∅〉 . ...of DynamicHS tree
4: while true do
5: if dynamic then
6: 〈D, state〉 ← DYNAMICHS(dpi0,P

′,N ′, pr , ld ,DX,D×, state)
7: else
8: D← HS-TREE(dpi0,P

′,N ′, pr , ld)

9: if |D| = 1 then return D
10: mp← COMPUTEBESTMEASPOINT(D, dpi0,P

′,N ′, pr , heur)
11: outcome ← PERFORMMEAS(mp) . oracle inquiry (user interaction)
12: 〈P ′,N ′〉 ← ADDMEAS(mp, outcome,P ′,N ′)
13: if dynamic then
14: 〈DX,D×〉 ← ASSIGNDIAGSOKNOK(D, dpi0,P

′,N ′)
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