

Patrick Rodler

Interactive Debugging of Knowledge Bases

DISSERTATION

submitted in fulfilment of the requirements for the degree of

Doktor der Technischen Wissenschaften

Alpen-Adria-Universität Klagenfurt

Fakultät für Technische Wissenschaften

Mentor
O.Univ.-Prof. Dipl.-Ing. Dr. Gerhard Friedrich
Alpen-Adria-Universität Klagenfurt
Institut für Angewandte Informatik

1st Evaluator
O.Univ.-Prof. Dipl.-Ing. Dr. Gerhard Friedrich
Alpen-Adria-Universität Klagenfurt
Institut für Angewandte Informatik

2nd Evaluator
Univ.-Prof. Dipl.-Ing. Dr.techn. Franz Wotawa
TU Graz
Institut für Softwaretechnologie

Klagenfurt, November 2015

© Alpen-Adria-Universität Klagenfurt, Studien- und Prüfungsabteilung version 2015-02-20

Affidavit

I hereby declare in lieu of an oath that

- the submitted academic paper is entirely my own work and that no auxiliary materials

have been used other than those indicated,

- I have fully disclosed all assistance received from third parties during the process of

writing the paper, including any significant advice from supervisors,

- any contents taken from the works of third parties or my own works that have been

included either literally or in spirit have been appropriately marked and the respective

source of the information has been clearly identified with precise bibliographical

references (e.g. in footnotes),

- to date, I have not submitted this paper to an examining authority either in Austria or

abroad and that

- the digital version of the paper submitted for the purpose of plagiarism assessment is

fully consistent with the printed version.

I am aware that a declaration contrary to the facts will have legal consequences.

(Signature) (Place, date)

Contents

List of Figures i

List of Tables iii

Abstract v

I Prolog 1

1 Introduction 5

2 Preliminaries 21
2.1 Assumptions . 21
2.2 Considered Logics . 21
2.3 Notational Remarks . 24

3 Knowledge Base Debugging 27
3.1 Parsimonious Knowledge Base Debugging . 33
3.2 Background Knowledge . 34

4 Diagnosis Computation 37
4.1 Conflict Sets . 37
4.2 Conflict Sets versus Justifications . 38
4.3 The Relation between Conflict Sets and Diagnoses . 41
4.4 Methods for Diagnosis Computation . 45

4.4.1 Computation of a Minimal Conflict Set . 46
4.4.2 Correctness of Conflict Set Computation . 49

4.5 Hitting Set Tree Based Diagnosis Computation . 58
4.5.1 Breadth-First Diagnosis Computation . 58
4.5.2 Correctness of Breadth-First Diagnosis Computation 62

4.6 Diagnosis Probability Space . 65
4.6.1 Construction of a Probability Space . 67
4.6.2 Using Probabilities for Diagnosis Computation 72
4.6.3 Correctness of Weighted Diagnosis Computation 75
4.6.4 Using Probabilities to Compute Minimum Cardinality Diagnoses 78

4.7 Non-Interactive Knowledge Base Debugging Algorithm 79

5 Summary 85

II Interactive Knowledge Base Debugging 87

6 Motivation and Problem Definitions 91

7 User Interaction 93
7.1 Queries . 93
7.2 Leading Diagnoses . 94
7.3 Q-Partitions . 95
7.4 Interpretation of Q-Partitions . 96
7.5 The Relation between a Query and Its Q-Partition . 97
7.6 Existence of Queries . 98

8 Query Generation 99
8.1 Generation of a Pool of Queries . 102
8.2 Discussion of Query Pool Generation . 105
8.3 Minimization of Queries . 111
8.4 Soundness of Query Minimization . 113
8.5 Complexity of Query Pool Generation . 114
8.6 Shortcomings of Query Pool Generation . 115
8.7 Correctness of Query Pool Generation . 116

9 An Algorithm for Interactive Knowledge Base Debugging 121
9.1 Overview . 121
9.2 Detailed Description . 122

9.2.1 Input Arguments . 122
9.2.2 Output . 124
9.2.3 Variables . 126
9.2.4 Algorithm Walkthrough . 127

9.3 Query Selection Measures . 134
9.4 Correctness and Complexity . 136

10 Summary 143

III Iterative Diagnosis Computation 145

11 STATICHS: A Static Iterative Diagnosis Computation Algorithm 149
11.1 Overview and Intuition . 149
11.2 Algorithm Walkthrough . 151
11.3 Examples . 154
11.4 Correctness . 163

12 DYNAMICHS: A Dynamic Iterative Diagnosis Computation Algorithm 171
12.1 Overview and Intuition . 171
12.2 Algorithm Walkthrough . 175
12.3 Examples . 181
12.4 Details and Correctness . 194

12.4.1 Definitions and Notation . 194
12.4.2 The Labeling Function . 196
12.4.3 Impact of Answered Queries on Conflict Sets 198

12.4.4 Impact of Answered Queries on Diagnoses . 200
12.4.5 Redundant Nodes . 201
12.4.6 Hitting Set Tree Pruning . 203
12.4.7 De-Facto Non-Redundant Nodes . 214
12.4.8 Completeness . 218
12.4.9 Soundness . 241
12.4.10 Correctness . 243

13 Discussion of Iterative Diagnosis Computation 249

IV Two Query Strategies for Efficient Fault Localization in Interactive Ontol-
ogy Debugging 255

14 Introduction to the Problem 259

15 Motivating Examples and Basic Concepts 263

16 Entropy-Based Query Selection 273

17 Implementation Details 277

18 Evaluation 281

19 Related Work 291

20 Summary and Conclusions 293

V Minimizing User Interaction in Ontology Debugging 295

21 Introduction to the Problem 299

22 Motivation and Basic Concepts 301

23 RIO: Risk Optimization for Query Selection 307

24 Evaluation 311

25 Related Work 315

26 Summary and Conclusions 317

VI A Direct Approach to Sequential Diagnosis of High Cardinality Faults in
Knowledge Bases 319

27 Introduction to the Problem 323

28 Basic Concepts 325

29 Interactive Direct Diagnosis of Knowledge Bases 329

30 Evaluation 335

31 Summary and Conclusions 339

VII Epilog 341

32 Related Work 345

33 Summary 349

34 Future Work Topics 353

Bibliography 357

List of Figures

1.1 The Principle of Non-Interactive KB Debugging . 7
1.2 The Principle of Interactive KB Debugging . 12
1.3 Precedence Constraints among the Parts . 16

4.1 Recursion Tree for the Computation of a Minimal Conflict Set 50
4.2 Non-Interactive KB Debugging Process without Fault Information 81
4.3 Non-Interactive KB Debugging Process with Fault Information 82

11.1 (Example 11.1) Solving the Problem of Interactive Static KB Debugging 160
11.2 (Example 11.2) Solving the Problem of Interactive Static KB Debugging 161
11.3 (Example 11.2 continued) Solving the Problem of Interactive Static KB Debugging . . . 162

12.1 (Example 12.1) Solving the Problem of Interactive Dynamic KB Debugging 186
12.2 (Example 12.1 continued) Solving the Problem of Interactive Dynamic KB Debugging . 187
12.3 (Example 12.2) Solving the Problem of Interactive Dynamic KB Debugging 192
12.4 (Example 12.2 continued) Solving the Problem of Interactive Dynamic KB Debugging . 193

15.1 The Search Tree of the Greedy Algorithm . 271

18.1 Average Number of Queries Required to Select the Target Diagnosis 283
18.2 Example of Prior Fault Probabilities of Syntax Elements Sampled from Extreme, Moder-

ate and Uniform Distributions . 284
18.3 Average Time/Query Gain Resulting from the Application of the Extended CKK Parti-

tioning Algorithm . 286
18.4 Average Time Required to Identify the Target Diagnosis Using CKK and Brute Force

Query Selection . 288

24.1 Average Number of Queries Required by RIO Compared to Other Query Selection Ap-
proaches . 313

24.2 Box-Whisker Plots Illustrating the Performance Discrepancy between Better and Worse
Query Selection Strategy . 314

29.1 INV-QX Recursion Tree . 332
29.2 Identification of the Target Diagnosis Using INV-HS-TREE and INV-QX 332
29.3 Identification of the Target Diagnosis Using HS-TREE and QX 333

i

List of Tables

2.1 Symbols and Abbreviations . 26

4.1 Propositional Logic Example DPI . 45
4.2 Description Logic Example DPI . 46
4.3 Description Logic Example DPI 2 . 49
4.4 Computation of Fault Probabilities . 79

8.1 First-Order Logic Example DPI . 100
8.2 (Example 8.1) Computing Entailments for Query Generation 104
8.3 Queries and Associated Q-Partitions . 113

9.1 (Example 9.1) Diagnoses Probabilities . 136

11.1 (Example 11.2) Formula Fault Probabilities . 157

12.1 Transition of Node Labels due to Tree Pruning . 215

13.1 Comparison: STATICHS versus DYNAMICHS. 254

15.1 Entailments of Ontologies Repaired by Different Diagnoses 267
15.2 (Example 15.1) Possible Queries . 270
15.3 (Example 15.2) Possible Queries . 270

16.1 Expected Scores for Minimized Queries (All Axioms Have Equal Fault Probability) . . . 275
16.2 Expected Scores for Minimized Queries (One Axiom Has Greater Fault Probability than

the Rest) . 275
16.3 Probabilities of Diagnoses after Answers . 276
16.4 Expected Scores for Queries . 276

18.1 Diagnosis Results for Several of the Real-World Ontologies 281
18.2 Minimum, Average and Maximum Time and Calls Required to Compute Leading Most

Probable Diagnoses as well as All Diagnoses for Real-World Ontologies 282
18.3 Minimum, Average and Maximum Number of Queries Required by the Entropy-Based

and “Split-In-Half” Query Selection Methods . 285
18.4 Average Time Required to Compute a Set of Leading Diagnoses and a Query in Each

Iteration . 286
18.5 Statistics for the Real-World Ontologies Used in the Stress-Tests 287
18.6 Average Values Measured for Extreme, Moderate and Uniform Distributions in Each of

the Good, Average and Bad Cases . 287

iii

iv LIST OF TABLES

22.1 A Set of Queries and Associated Partitions w.r.t. the Initial DPI of the Example Ontology 306

24.1 Average Time for Debugging Session, between Two Successive Queries and Average
Number of Queries Required by Each Strategy . 313

24.2 Percentage Rates Indicating How Often Which Query Selection Strategy Performed Best 313

30.1 HS-TREE and INV-HS-TREE Applied to Anatomy Benchmark 336
30.2 Performance of Sequential Diagnosis Using Direct Computation of Diagnoses 337

Abstract

Most artificial intelligence applications rely on knowledge about a relevant real-world domain that is en-
coded in a knowledge base (KB) by means of some logical knowledge representation language. The most
essential benefit of such logical KBs is the opportunity to perform automatic reasoning to derive implicit
knowledge or to answer complex queries about the modeled domain. The feasibility of meaningful rea-
soning requires a KB to meet some minimal quality criteria such as consistency; that is, there must not be
any contradictions in the KB. Without adequate tool assistance, the task of resolving such violated quality
criteria in a KB can be extremely hard even for domain experts, especially when the problematic KB in-
cludes a large number of logical formulas, comprises complicated formalisms, was developed by multiple
people or in a distributed fashion or was (partially) generated by means of some automatic systems.

Non-interactive debugging systems published in research literature often cannot localize all possible
faults (incompleteness), suggest the deletion or modification of unnecessarily large parts of the KB (non-
minimality), return incorrect solutions which lead to a repaired KB not satisfying the imposed quality
requirements (unsoundness) or suffer from poor scalability due to the inherent complexity of the KB
debugging problem. Even if a system is complete and sound and considers only minimal solutions, there
are generally exponentially many solution candidates to select one from. However, any two repaired KBs
obtained from these candidates differ in their semantics in terms of entailments and non-entailments.
Selection of just any of these repaired KBs might result in unexpected entailments, the loss of desired
entailments or unwanted changes to the KB which in turn might cause unexpected new faults during the
further development or application of the repaired KB. Also, manual inspection of a large set of solution
candidates can be time-consuming (if not practically infeasible), tedious and error-prone since human
beings are normally not capable of fully realizing the semantic consequences of deleting a set of formulas
from a KB. Hence there is a need for adequate tools that support a user when facing a faulty KB.

In this work, we account for these issues and propose methods for the interactive debugging of KBs
which are complete and sound and compute only minimally invasive solutions, i.e. suggest the deletion
or modification of just a set-minimal subset of the formulas in the problematic KB. User interaction takes
place in the form of queries asked to a person, e.g. a domain expert, about intended and non-intended
entailments of the correct KB. To construct a query, only a minimal set of two solution candidates must
be available. After the answer to a query is known, the search space for solutions is pruned. Iteration of
this process until there is only a single solution candidate left yields a repaired KB which features exactly
the semantics desired and expected by the user.

The novel contributions of this work are:

• Thorough Theoretical Workup of the Topic of Interactive Debugging of Monotonic KBs: We evolve
the theory of the topic by first elaborating on the theory of non-interactive KB debugging, reveal-
ing crucial shortcomings in the application of non-interactive methods and thereby motivating the
development and deployment of interactive approaches in KB debugging. Then, we give some
important results that guarantee the feasibility of interactive KB debugging, give some precise
definitions of the problems interactive KB debugging aims to solve and present algorithms that
provably solve these problems.

v

vi ABSTRACT

• A Complete Picture of an Interactive Debugging System is Drawn: This is the first work that deals
with an entire system of algorithms that are required for the interactive debugging of monotonic
KBs, considers and details all algorithms separately, proves their correctness and demonstrates how
all these algorithms are orchestrated to make up a full-fledged and provably correct interactive KB
debugging system.

• Two New Algorithms for the Iterative Computation of Candidate Solutions in the scope of interac-
tive KB debugging are proposed. The first one guarantees constant convergence towards the exact
solution of the interactive KB problem by the ascertained reduction of the number of remaining
solutions after any query is answered. The second one features powerful search tree pruning tech-
niques and might thus be expected to exhibit a more time- and space-saving behavior than existing
algorithms, in particular for growing problem instances.

• Suggestion and Extensive Analysis of Different Methods for Selection of the “Best” Query to ask
the user next. We compare a greedy “split-in-half” strategy that proposes queries which eliminate
half of the known candidate solutions with a strategy relying on information entropy that chooses
the query with highest information gain based on (a user’s) beliefs about faults in the KB. Compre-
hensive experiments manifest that an average guess of the fault information suffices to reduce the
query answering effort for the interacting user, often to a significant extent, by means of the latter
strategy compared to the former. Moreover, we demonstrate that both methods clearly outperform
a random way of selecting queries.

• Presentation of a Reinforcement Learning Query Selection Strategy. Minimal effort for the inter-
acting user can be achieved if both the query selection method is chosen carefully and the provided
fault information satisfies some minimum quality requirements. In particular, for deficient fault
information and unfavorable strategy for query selection, we observe cases where the overhead in
terms of user effort exceeds 2000% (!) in comparison to employing a more favorable query selec-
tion strategy. Since, unfortunately, assessment of the fault information is only possible a-posteriori
(after the debugging session is finished and the correct solution is known), we devise a learning
strategy (RIO) that continuously adapts its behavior depending on the performance achieved and
in this vein minimizes the risk of using low-quality fault information. This approach makes inter-
active debugging practical even in scenarios where reliable fault estimates are difficult to obtain.
Evaluations provide evidence that for 100% of the cases in the hardest (from the debugging point of
view) class of faulty test KBs, RIO performed at least as good as the best other strategy and in more
than 70% of these cases it even manifested superior behavior to the best other strategy. Choosing
RIO over other approaches can involve an improvement by the factor of up to 23, meaning that
more than 95% of user time and effort might be saved per debugging session.

• Provisioning of Mechanisms for Efficiently Dealing with KB Debugging Problems Involving High
Cardinality Faults. In the standard interactive debugging approach described in this work, the
computation of queries is based on the generation of the set of most probable solution candidates.
By this postulation, certain quality guarantees about the output solution can be given. However,
we learn that dropping this requirement can bring about substantial savings in terms of time and
especially space complexity of interactive debugging, in particular in debugging scenarios where
faulty KBs are (partly) generated as a result of the application of automatic systems. In such
situations, we propose to base query computation on any set of solution candidates using a “direct”
method for candidate generation. We study the application of this direct method to high cardinality
faults in KBs and find out that the number of required queries per debugging session is scarcely
affected for cases when the standard approach is also applicable. However, the direct method proves
applicable in situations when the standard approach is not (due to time or memory issues) and is
still able to locate the correct solution.

Part I

Prolog

1

3

In this part, we first give an introduction in Chapter 1. This includes a motivation why knowledge
base debugging is a “hot topic” (and even getting hotter as intelligent applications and devices become
more and more ubiquitous), an introduction to the non-interactive debugging of knowledge bases and
the revealment of decisive shortcomings of this paradigm, e.g. poor scalability and the risk of obtaining
solutions of inferior quality. As a solution to the identified issues we then explain how a (group of)
user(s) might collaborate with an interactive debugging system to determine high-quality solutions even
in scenarios where non-interactive systems fail. Further, we discuss the design and the components of
a generic interactive debugger, provide an illustrating example and outline the powerful feature of our
system to be able to incorporate background knowledge into the debugging process which can drastically
reduce the search space for solutions and disclose faults in the knowledge base that could be missed
otherwise. Finally, we provide an enumeration of the contributions of this work and discuss the further
organization of this part and of the rest of this work.1

1Parts of Part I already appeared in [Rod15].

Chapter 1

Introduction

Motivation. Most artificial intelligence applications rely on knowledge that is encoded in a know-
ledge base (KB) by means of some logical knowledge representation language such as propositional
logic (PL) [CL73], Datalog [CGT89], first-order logic (FOL) [CL73], The Web Ontology Language
(OWL [PSHH+04], OWL 2 [GHM+08, MPSP09]) or Description Logic (DL) [BCM+07]. Experts in
a variety of application domains keep developing KBs of constantly growing size. A concrete exam-
ple of a repository containing biomedical KBs is the Bioportal2, which comprises vast ontologies with
tens or even hundreds of thousands of terms each (e.g. the SNOMED-CT ontology with currently over
395.000 terms). Such KBs however pose a significant challenge for people as well as tools involved in
their evolution, maintenance and application.

All these activities are based on the most essential benefit of logical KBs, namely the opportunity
to perform automatic reasoning to derive implicit knowledge or to answer complex queries about the
modeled domain. The feasibility of meaningful reasoning requires a KB to meet the minimum quality
criterion consistency, i.e. there must not be any contradictions in the KB. Because any logical formula can
be derived from an inconsistent KB. Further on, one might postulate further requirements to be met by a
KB. For instance, one might consider faulty a FOL KB entailing ∀X ¬p(X) for some predicate symbol
p occurring in the KB. Such a KB would be incoherent, i.e. it would violate the requirement coherency
(which was originally defined for DL KBs [SHCH07, PSK05]). Additionally, test cases can be specified
giving information about desired (positive test cases) and non-desired (negative test cases) entailments a
correct KB should feature. This characterization of a KB’s intended semantics is a direct analogon to the
field of software debugging, where test cases are exploited as a means to verify the correct semantics of
the program code.

As KBs are growing in size and complexity, their likeliness of violating one of these criteria increases.
Faults in KBs may, for instance, arise because human reasoning is simply overstrained [HBP11, HPS09].
That is, generally a person will not be capable of completely grasping or mentally processing the entire
knowledge contained in a (large or complex) KB at once. In fact, a person might fully comprehend
some isolated part of a the KB, but might not be able to determine or understand all implications or non-
implications of this isolated part combined with other parts of a KB, i.e. when new logical formulas are
added.

Another reason for the non-compliance with the mentioned quality criteria imposed on KBs might
be that multiple (independently working) editors contribute to the development of the KB [NCLM06]
which may lead to contradictory formulas. The OBO Project3 and the NCI Thesaurus4 are examples of

2http://bioportal.bioontology.org
3http://obo.sourceforge.net
4http://nciterms.nci.nih.gov/ncitbrowser

5

6 CHAPTER 1. INTRODUCTION

collaborative KB development projects. Employing automatic tools, e.g. [JRG11, NB12, JMSK09], to
generate (parts of) KBs can further exacerbate the task of KB quality assurance [Mei11, EFvH+11].

Moreover, as studies in cognitive psychology [CP71, JL99] attest, humans make systematic errors
while formulating or interpreting logical formulas. These observations are confirmed by [RDH+04,
RCVB09] which present common faults people make when developing a KB (ontology). Hence, it is
essential to devise methods that can efficiently identify and correct faults in a KB.

Non-Interactive KB Debugging. Given a set of requirements to the KB and sets of test cases, KB
debugging methods [SHCH07, KPHS07, FS05, HPS08] can localize a (potential) fault by computing a
subset D of the formulas in the KB K called a diagnosis. At least all formulas in a diagnosis must be
(adequately) modified or deleted in order to obtain a KB K∗ that satisfies all postulated requirements and
test cases. Such a KBK∗ constitutes the solution to the KB debugging problem. Figure 1.15 outlines such
a KB debugging system. The input to the system is a diagnosis problem instance (DPI) defined by

• some KB K formulated using some (monotonic) logical language L (every formula in K might be
correct or faulty),

• (optionally) some KB B (over L) formalizing some background knowledge relevant for the domain
modeled by K (such that B and K do not share any formulas; all formulas in B are considered
correct)

• a set of requirements R to the correct KB,

• sets of positive (P) and negative (N) test cases (over L) asserting desired semantic properties of
the correct KB and

• (optionally) some fault information FP, e.g. in terms of fault probabilities of logical formulas in
K.

Moreover, the system requires a sound and complete logical reasoner for deciding consistency (co-
herency) and calculating logical entailments of a KB formulated over the language L. Some approaches
(including the ones presented in this work) use the reasoner as a black-box (e.g. [SFFR12, Hor11]) within
the debugging system. That is, the reasoner is called as is and serves as an oracle independent from
other computations during the debugging process; that is, the internals of the reasoner are irrelevant for
the debugging task. On the other hand, glass-box approaches (e.g. [SHCH07, Hor11, KPSH05]) attempt
to exploit internal modifications of the reasoner for debugging purposes; in other words, the sources
of problems (e.g. contradictory formulas) in the KB are computed as a direct consequence of reason-
ing [Hor11]. The advantages of a black-box approach over a glass-box approach are the lower memory
consumption and better performance [KPSH05] of the reasoner and the reasoner independence of the de-
bugging method. The latter benefit is essential for the generality of our approaches and their applicability
to various knowledge representation formalisms.

Given these inputs, the debugging system focuses on (a subset of) all possible fault candidates (usually
the set of minimal, i.e. irreducible, diagnoses) and usually outputs the most probable one amongst these
if some fault information is provided or the minimum cardinality one, otherwise. Alternatively, a debug-
ging system might also be employed to calculate a predefined number of (most probable or minimum
cardinality) minimal diagnoses or to determine all minimal diagnoses computable within a predefined
time limit.

5Thanks to Kostyantyn Shchekotykhin for making available to me parts of this diagram.

7

Figure 1.1: The principle of non-interactive KB debugging.

Issues with Non-Interactive KB Debugging Systems. In real-world scenarios, debugging tools often
have to cope with large numbers of minimal diagnoses where the trivial application, i.e. deletion, of
any minimal diagnosis leads to a (repaired) KB with different semantics in terms of entailed and non-
entailed formulas. For example, in [SF10] a sample study of real-world KBs revealed that the number
of different minimal diagnoses might exceed thousand by far (1782 minimal diagnoses for a KB with
only 1300 formulas). In such situations simple visualization of all these alternative modifications of the
ontology is clearly ineffective. Selecting a wrong diagnosis (in terms of its semantics, not in terms of
fulfillment of test cases and requirements) can lead to unexpected entailments or non-entailments, lost
desired entailments and surprising future faults when the KB is further developed. Manual inspection of
a large set of (minimal) diagnoses is time-consuming (if not practically infeasible), error-prone and often
computationally infeasible due to the complexity of diagnosis computation.

Moreover, [Stu08] has put several (non-interactive) debugging systems to the test using a test set of
faulty (incoherent OWL) real-world KBs which were partly designed by humans and partly by the appli-
cation of automatic systems. The result was that most of the investigated systems had serious performance
problems, ran out of memory, were not able to locate all the existing faults in the KB (incompleteness),
reported parts of a KB as faulty which actually were not faulty (unsoundness), produced only trivial
solutions or suggested non-minimal faults (non-minimality). Often, performance problems and incom-
pleteness of non-interactive debugging methods can be traced back to an explosion of the search tree for
minimal diagnoses.

The Solution: Interactive KB Debugging. In this work we present algorithms for interactive KB de-
bugging. These aim at the gradual reduction of compliant minimal diagnoses by means of user interaction,
thereby seeking to prevent the search tree for minimal diagnoses from exploding in size by performing
regular pruning operations. “User” in this case might refer to a single person or multiple persons, usually
experts of the particular domain the faulty KB is dealing with such as biology, medicine or chemistry.
Throughout an interactive debugging session, the user is asked a set of automatically chosen queries about
the domain that should be modeled by a given faulty KB. A query can be created by the system after a
set D of a minimum of two minimal diagnoses has been precomputed (we call D the leading diagnoses).
Each query is a conjunction (i.e. a set) of logical formulas that are entailed by some correct subset of
the formulas in the KB. With regard to one particular query Q, any set of minimal diagnoses for the KB,
in particular the set D which has been utilized to generate Q, can be partitioned into three sets, the first
one (D+) including all diagnoses in D compliant only with a positive answer to Q, the second (D−)
including all diagnoses in D compliant only with a negative answer to Q, and the third (D0) including all

8 CHAPTER 1. INTRODUCTION

diagnoses in D compliant with both answers. A positive answer to Q signalizes that the conjunction of
formulas in Q must be entailed by the correct KB wherefore Q is added to the set of positive test cases.
Likewise, if the user negates Q, this is an indication that at least one formula in Q must not be entailed
by the correct KB. As a consequence, Q is added to the set of negative test cases.

Assignment of a query Q to either set of test cases results in a new debugging scenario. In this
new scenario, all elements of D− are no longer minimal diagnoses given that Q has been classified as a
positive test case. Otherwise, all diagnoses in D+ are invalidated. In this vein, the successive reply to
queries generated by the system will lead the user to the single minimal solution diagnosis that perfectly
reflects their intended semantics. In other words, after deletion of all formulas in the solution diagnosis
from the KB and the addition of the conjunction of all formulas in the specified positive test cases to the
KB, the resulting KB meets all requirements and positive as well as negative test cases. In that, the added
formulas contained in the positive test cases serve to replace the desired entailments that are broken due
to the deletion of the solution diagnosis from the KB.

Thence, in the interactive KB debugging scenario the user is not required to cope with the understand-
ing of which faults (e.g. sources of inconsistency or implications of negative test cases) occur in the faulty
initial KB, why they are faults (i.e. why particular entailments are given and others not) and how to repair
them. All these tasks are undertaken by the interactive debugging system.

The proposed approaches to interactive KB debugging in this work follow the standard model-based
diagnosis (MBD) technique [Rei87, dKW87]. MBD has been successfully applied to a great variety
of problems in various fields such as robotics [SW05], planning [SW09], debugging of software pro-
grams [WSM02], configuration problems [FFJS04], hardware designs [FSW99], constraint satisfaction
problems and spreadsheets [ARW12]. Given a description (model) of a system, together with an observa-
tion of the system’s behavior which conflicts with the intended behavior of the system, the task of MBD
is to find those components of the system (a diagnosis) which, when assumed to be functioning abnor-
mally, provide an explanation of the discrepancy between the intended and the observed system behavior.
Translated to the setting of KB debugging, the set of “system components” comprises the formulas ax i

in the given faulty KB K. The “system description” refers to the statement that the KB K along with
the background KB B and the positive test cases p ∈ P must meet all predefined requirements (e.g.
consistency, coherency) and must not logically entail any of the negative test cases n ∈ N , i.e.

(i) K ∪ B ∪
⋃

p∈P p satisfies requirement r for all r ∈ R and

(ii) K ∪ B ∪
⋃

p∈P p 6|= n for all n ∈ N .

The “observation which conflicts with the intended behavior of the system” corresponds to the finding
that (i) or (ii) or both are violated. That is, the “system description” along with the “observation” and the
assumption that all components are sound yields an inconsistency. An “explanation for the discrepancy
between observed and intended system behavior” (i.e. a diagnosis) is the assumption D that all formulas
in a subsetD ofK are faulty (“behave abnormally”) and all formulas inK\D are correct (“do not behave
abnormally”) such that the “system description” along with the “observation” and the assumption D is
consistent. Computation of (minimal) diagnoses is accomplished with the aid of minimal conflict sets,
i.e. irreducible sets of formulas in the KB K that preserve the violation of (i) or (ii) or both.

An MBD problem can be modeled as an abduction problem [BATJ91], i.e. finding an explanation
for a set of data. It was proven in [BATJ91] that the computation of the first explanation (minimal
diagnosis) is in P. However, given a set of explanations (minimal diagnoses) it is NP-complete to decide
whether there is an additional explanation (minimal diagnosis). Stated differently, the detection of the
first explanation can be efficiently accomplished whereas the finding of any further one is intractable
(unless P = NP). When seeing the (interactive) KB debugging problem as an abduction problem, one
must additionally take into account the costs for reasoning. Because, a call to a logical reasoner is
required in order to decide whether or not a set of hypotheses (a subset of the KB) is an explanation

9

(minimal diagnosis). Incorporating the necessary reasoning costs and assuming consistency a minimal
requirement to the correct KB, the finding of the first explanation (minimal diagnosis) is already NP-
hard even for propositional KBs [SL89] (since propositional satisfiability checking is NP-complete).
The worst case complexity for the debugging of KBs formulated over more expressive logics such as
OWL 2 (reasoning is 2-NEXPTIME-complete [GHM+08, Kaz08]) will be of course even worse. This
seems quite discouraging. However, we have shown in our previous works [RSFF13, SFFR12, SFRF14c]
that for many real-world KBs interactive KB debugging is feasible in reasonable time, despite high (or
intractable) worst case reasoning costs and the intractable complexity of the abduction (i.e. minimal
diagnosis finding) problem as such. Hence, the goal of this work is amongst others to present algorithms
that work well in many practical scenarios.

Assumptions about the Interacting User. About a user u consulting an (interactive) debugging sys-
tem, we make the following plausible assumptions:

U1 u is not able to explicitly enumerate a set of logical formulas that express the intended domain that
should be modeled in a satisfactory way, i.e. without unwanted entailments or non-fulfilled require-
ments,

U2 u is able to answer concrete queries about the intended domain that should be modeled, i.e. u can
classify a given logical formula (or a conjunction of logical formulas) as a wanted or unwanted propo-
sition in the intended domain (i.e. an entailment or non-entailment of the correct domain model).

The first assumption is obviously justified since otherwise u could have never obtained a faulty KB, i.e.
a KB that violates at least one requirement or test case, and there would be no need for u to employ a
debugging system.

Regarding the second assumption, the first thing to be noted is that any KB (i.e. any model of the
intended domain) either does entail a certain logical formula ax or it does not entail ax . Second, if u is
assumed to bring along enough expertise in that domain, u should be able to gauge the truth of (at least)
some formulas about that domain, especially if these formulas constitute logical entailments of parts of
the specified knowledge in KB so far. We want to emphasize that u is not required to be capable of
answering all possible queries (or formulas) about the respective domain since u might always skip a
particular query in our system without any noticeable disadvantages. In such a case, the system keeps
generating further queries, one at a time (usually the next-best one according to some quality measure
for queries), until u is ready to answer it. As the number of possible queries is usually exponential in the
number of minimal diagnoses exploited to compute it, there will be plenty of different “surrogate queries”
in most scenarios.

A Motivating Example. To get a more concrete idea of these assumptions, the reader is invited to think
about whether the following first-order KB K is consistent (a similar example is discussed in [HPS09]):

∀X(res(X)↔ ∀Y (writes(X,Y)→ paper(Y))) (1.1)
∀X((∃Y writes(X,Y))→ res(X)) (1.2)
∀X(secr(X)→ gen(X)) (1.3)
∀X(gen(X)→ ¬res(X)) (1.4)
secr(pam) (1.5)

If we assume that the predicate symbols res, secr and gen stand for ’researcher’, ’secretary’ and ’general
employee’, respectively, and the constant pam stands for the person Pam, the KB says the following:

• Formula 1.1: “Somebody is a researcher if and only if everything they write is a paper.”

10 CHAPTER 1. INTRODUCTION

• Formula 1.2: “Everybody who writes something is a researcher.”

• Formula 1.3: “Each secretary is a general employee.”

• Formula 1.4: “No general employee is a researcher.”

• Formula 1.5: “Pam is a secretary.”

This KB is indeed inconsistent. The reader might agree that it is not very easy to understand why this is
the case. The observations made in [HPS09] concerning a slight modification K′ of the KB K extracted
from a real-world KB confirm this assumption. Compared to K, the KB K′ included only Formulas 1.1-
1.3 of K, was formulated in DL (cf. Section 2.2), and used the terms A,C, . . . instead of res, paper,
Amongst others, this KB K′ was used as a sample KB in a study where participants had to find out
whether a concrete given formula is or is not entailed by a concrete given KB. In the case of the KBK′, the
assignment (translated to the terminology in our KBK) was to find out whether ∀X(secr(X)→ res(X))
is an entailment of formulas 1.1-1.3. Although K′ contains only three formulas, the result was that even
participants with many years of experience in DL, among them also DL reasoner developers, did not
realize that this is in fact the case (the reason for this entailment to hold is that formulas 1.1-1.3 imply
that ∀X res(X) holds).

Since ∀X res(X) is also necessary for the inconsistency of K, this suggests that people might also
have severe difficulties in comprehending why K is inconsistent. Once the validity of this entailment
is clear, it is relatively straightforward to see that K cannot have any models. For, res(pam) (due to
∀X res(X)) and ¬res(pam) (due to formulas 1.3-1.5) are implications of K.

Consequently, we might also assume that even experienced knowledge engineers (not to mention
pure domain experts) could end up with a contradictory KB like K, which substantiates our first as-
sumption (U1) about u. Probably, the intention of those people who specified formulas 1.1-1.3 was not
that ∀X res(X) should be entailed. That is, it might be already a too complex task for many people to
(mentally) reason even with such a small KB like this and manually derive implicit knowledge from it.

However, on the other hand, we might well assume u to be able to answer a concrete query about
the intended domain they tried to model by K. For instance, one such query could be whether Q1 :=
{∀X res(X)} is a desired entailment of their model (i.e. “should everybody be a researcher in your
intended model of the domain?”). If we assume the (seemingly obvious) case that u negates this query,
i.e. asserts that this is an unwanted entailment, then an interactive debugging system (employing a logical
reasoner) can derive that at least one of the formulas 1.1 and 1.2 must be faulty. This holds because the
only set-minimal explanation in terms of formulas in K for the entailment ∀X res(X) is given by these
two formulas. In other words, the set of formulas {1.1, 1.2} is the only minimal conflict set in K given
thatQ1 is a negative test case. Hence, the deletion (or suitable modification) of any of these formulas will
break this unwanted entailment.

Before it is known that Q1 must not be entailed by the correct KB, given consistency is the only
requirement to the KB postulated by u, the complete KB K is a minimal conflict set. That is, after
the assignment of a (strategically well-chosen) query to the set of positive or, in this case, negative test
cases can already shift the focus of potential modifications or deletions to a subset of only two candidate
formulas. We would call these two formulas the remaining minimal diagnoses after an answer to the
query Q1 has been submitted.

Initially, there are five minimal diagnoses, each formula in K is one. The meaning of a diagnosis
is that its deletion from K leads to the fulfillment of all requirements and (so-far-)specified positive and
negative test cases. As the reader should be easily able to see, the deletion of any formula from K yields
a consistent KB; e.g. removing formula 1.5 prohibits the entailment ¬res(pam) whereas discarding for-
mula 1.2 prohibits the entailment res(pam). The reader should notice that, as soon as the negative test
case Q1 is known, removing (only) formula 1.5 does not yield a correct KB since {1.1, 1.2, 1.3, 1.4} still
entails Q1 which must not be entailed.

11

A second query to u could be, for example, Q2 : {∃X((∃Y writes(X,Y)) ∧ ¬res(X))} (i.e. “is
there somebody who writes something, but is no researcher?”). Again, it is reasonable to suppose that u
might know whether or not this should hold in their intended domain model. The (seemingly obvious)
answer in this case would be positive, e.g. because u intends to model students who write homework,
exams, etc., but are no researchers. This positive answer leads to the new positive test case Q2. Adding
this positive test case, like a set of new formulas, to the KB K would result in Knew := K ∪ Q2. The
debugging system would then figure out that formula 1.2 is the only minimal conflict set in the KBKnew.
The reason for this is that the elimination of formula 1.2 breaks the entailmentQ1 (negative test case) and
enables the addition of a new desired entailment Q2 (positive test case) without involving the violation
of any requirements (consistency). Therefore, formula 1.2 is the only minimal diagnosis that is still
compliant with the new knowledge in terms of Q1 = false and Q2 = true obtained.

It is important to notice that the solution KB Knew that is returned to the user as a result of the
interactive debugging session includes a new logical formula Q2 that can be seen as a repair of the
deleted formula 1.2. Since the knowledge after the debugging session is that ¬1.2 ≡ Q2 must be true,
this new knowledge is incorporated into the KBKnew. This indicates that the fault in KB was simply that
the ¬ in front of formula 1.2 had been forgotten.

Notice however that the positive test case Q2 is not added to K as a usual KB formula, but rather
as an extension of K that has already been approved by the user. Should the user at some later point
in time commit the same fault again (and explicitly specify some formula x equivalent to formula 1.2),
then the interactive debugging system, owing to the positive test case Q2, would immediately detect a
singleton conflict comprising only formula x. As a consequence, each diagnosis considered during this
later debugging session would suggest to delete or modify (at least) x.

This scenario should illustrate that, in spite of not being able to specify their domain knowledge in
a logically consistent way, the user u might still be able to answer questions about the intended domain,
which supports our second assumption made about the user u (the reader might agree that answering
Q1 and Q2 is much easier than recognizing the entailment ∀X res(X) of the KB). In other words, the
availability of an (efficient) debugging system could help u debug their KB, without needing to analyze
which entailments hold or do not hold, why certain entailments hold or do not hold or why exactly the
KB does not meet certain imposed requirements or test cases, by simply answering queries whether a
certain entailment should or should not hold. These queries are automatically generated by the system in
a way that they focus on the problematic parts of the KB, i.e. the minimal conflict sets, and discriminate
between the possible solution candidates, i.e. the minimal diagnoses.

Benefits of the Usage of Conflict Sets. We want to remark that the usage of minimal conflict sets
“naturally” forces the system to take into consideration only the smallest relevant (faulty) parts of the
problematic KB. This is owed to the property of minimal conflict sets to abstract from what all the reasons
for a certain entailment or requirements violation are. Instead, only the “root” (subset-minimal) causes for
such violations are examined and no computation time is wasted to extract “purely derived” causes (those
which are resolved as a byproduct of fixing all root causes from which it is derived, cf. [Hor11, Kal06]).
For example, assuming the debugging scenario involving our example KB consisting only of formulas
1.1-1.4 which is incoherent and a requirements set including coherency. Then, there are two entailments
reflecting the incoherency of this KB, first ∀X ¬secr(X) and second ∀X ¬gen(X) (these entailments
hold due to ∀X res(X) which follows from formulas 1.1 and 1.2). Of these two, only the second one is
a “root” problem; the first one is a “purely derived” problem. That means, the entailment ∀X ¬secr(X)
only holds due to the presence of the entailment ∀X ¬gen(X). So, the cause for ∀X ¬gen(X) is given
by the set of formulas {1.1, 1.2, 1.4} whereas the proper superset {1.1, 1.2, 1.3, 1.4} of this set accounts
for the entailment ∀X ¬secr(X). The exploitation of minimal conflict sets (the only minimal conflict set
for this KB is {1.1, 1.2, 1.4}) ascertains that such “purely derived” causes of requirements or test case
violations will not be considered at all.

12 CHAPTER 1. INTRODUCTION

Figure 1.2: The principle of interactive KB debugging.

The Ability to Incorporate Background Knowledge. Another feature of the approaches described in
this work is their ability to incorporate relevant additional information in terms of a background know-
ledge KB B (which is regarded to be correct). B is a (consistent) KB which is usually semantically related
with the faulty KB, e.g. B represents knowledge about the domain modeled by K that has already been
sufficiently endorsed by domain experts. For instance, a doctor who wants to express their knowledge
of dermatology in terms of a KB might resort to an approved background KB that specifies the human
anatomy. Taking this background information into account puts the problematic KB into some context
with existing knowledge and can thereby help a great deal to restrict the search space for solutions of the
(interactive) KB debugging problem. This has also been found in [Stu08]. This useful strategy of prior
search space restriction is also exploited in the field of ontology matching6 where automatic systems are
employed to generate an alignment, i.e. a set of correspondences between semantically related entities
of two different ontologies (KBs). Here, both ontologies are considered correct and diagnoses are only
allowed to include elements of the alignment [MST07].

Applying a strategy like that to our example KB given above, supposing that we know that Pam is not a
researcher in the world the KB should model, we might specify the background KB B := {¬res(pam)}
prior to starting the interactive debugging session. This would immediately reduce the initial set of
possible minimal diagnoses from five (i.e. the entire KB) to two (i.e. the first two formulas 1.1 and 1.2).
Reason for this is that the entailment ∀X res(X) of formulas 1.1 and 1.2 already conflicts with the
background knowledge ¬res(pam).

Outline of an Interactive KB Debugging System. The schema of an interactive debugging system is
pictured by Figure 1.2.7 As in the case of a non-interactive debugging system (see above), the system
receives as input a diagnosis problem instance (DPI). Further on, a range of additional parameters might
be provided to the system. These serve as a means to fine-tune the system’s behavior in various aspects.
Hence, we call these inputs tuning parameters. These are (roughly) explained next.

First, some parameters might be specified that take influence on the number of leading diagnoses used
for query generation and the necessary computation time invested for leading diagnoses computation.
Moreover, some parameter determining the quantity of (pre-)generated queries (of which one is selected
to be asked to the user) versus the reaction time (the time it takes the system to compute the next query

6http://www.ontologymatching.org/
7Thanks to Kostyantyn Shchekotykhin for making available to me parts of this diagram.

13

after the current one has been answered) of the system can be chosen. A further input argument is a query
selection measure constituting a notion of query “goodness” that is employed to filter out the “best”
query among the set of generated queries. To give the system a criterion specifying when a solution of
the interactive KB debugging problem is “good enough”, the user is allowed to define a fault tolerance
parameter σ. The lower this parameter is chosen, the better the (possibly “approximate”) solution that is
guaranteed to be found. In case of specifying this parameter to zero, the system will (if feasible) return
the “exact” solution of the interactive KB debugging problem. Roughly, the exact solution is given in
terms of a solution KB obtained by means of a single solution candidate (minimal diagnosis) that is left
after a sufficient number of queries have been answered (and added to the test cases). On the contrary,
an approximate solution is represented by a solution KB obtained by means of a solution candidate with
sufficiently high probability (where “sufficiently high” is determined by σ) at some point where there are
still multiple solution candidates available.

Finally, the user may choose between two different modes (static or dynamic) of determining the
leading diagnoses. The static diagnosis computation strategy guarantees a constant “convergence” to-
wards the exact solution by “freezing” the set of solution candidates at the very beginning and exploiting
answered queries only for the deletion of minimal diagnoses. A possible disadvantage of this approach
is the lack of efficient pruning of the used search tree. On the other hand, the dynamic method of cal-
culating leading diagnoses has a primary focus on the preservation of a search tree of small size, thereby
aiming at being able to solve diagnosis problem instances which are not solvable by the static approach
due to high time and (more critically) space complexity. To this end, more powerful pruning rules are
applied in this case which do not permit the algorithm to consider only a fixed set of solution candidates.
Rather, the set of minimal diagnoses and minimal conflict sets are generally variable in this case which
means that they are subject to change after assignment of an answered query to the test cases.

Like in the case of a non-interactive debugger, an interactive debugging system requires a sound and
complete logical reasoner for deciding consistency (coherency) and calculating logical entailments of a
KB formulated over the language L.

The workflow in interactive KB debugging illustrated by Figure 1.2 is the following:

1. A set of leading diagnoses is computed by the diagnosis engine (by means of the fault information,
if available) using the logical reasoner and passes it to the query generation module.

2. The query generation module computes a pool of queries exploiting the set of leading diagnoses
and delivers it to the query selection module.

3. The query selection module filters out the “best query” (often by means of the fault information, if
available) and shows it to the interacting user.

4. The user submits an answer to the query.

5. The query along with the given answer is used to formulate a new test case.

6. This new test case is transferred back to the diagnosis engine and taken into account in prospective
iterations. If the stop criterion (as per σ, see above) is not met, another iteration starts at step 1.
Otherwise, the solution KB K∗ constructed from the currently most probable minimal diagnosis is
output.

Contributions of this Work. The contributions of this work are the following:

• This work provides a thorough account of the subject and evolves the theory of interactive KB
debugging (for monotonic KBs) by presupposing a reader to have only some basic knowledge of
logic. Hence, this work addresses newbies as well as people already familiar with related top-
ics. Whereas the comprehensive theoretical considerations might appeal to the more theoretically

14 CHAPTER 1. INTRODUCTION

oriented readers such as researchers, the precise and exhaustive description of all discussed algo-
rithms might be interesting from the implementation point of view and might serve more practically
oriented people such as programmers or engineers as an algorithmic cookbook. Further on, the ex-
tensive illustration of the way algorithms work by examples might also serve a merely superficially
interested reader to just receive a rough impression of how KBs might be interactively debugged.

• Except for basics in FOL and PL, this work is self-contained and provides all necessary definitions
and proofs to make the topic of interactive KB debugging accessible to the reader.

• To the best of our knowledge, this work provides the most comprehensive and detailed introduction
to the field of interactive debugging of (monotonic) KBs. Our previous works on the topic [SFFR12,
SF10, RSFF13, FS05, SFRF14c] are more application-oriented and thus abstract from some details
and omit some of the proofs in favor of comprehensive evaluations of the presented strategies.

• This is the first work that gives formal and precise definitions of problems dealt with in interactive
KB debugging and introduces methods that provably solve these problems. We believe that precise
problem statements are the very basis for all further scientific investigations in a field. Hence, we
hope that this work can “open” the important subject of interactive KB debugging to a broader au-
dience of interested researchers. This can lead to further progress and improvements in debugging
techniques which we deem essential in the light of the growing number of intelligent applications
incorporating KBs of growing size and complexity (keyword: The Semantic Web [BLHL+01]).

• An in-depth discussion of query computation including computational complexity considerations
together with an accentuation of potential ways of improving these methods is given. The investi-
gated methods for query computation have been used also in [SFFR12, RSFF13, SF10, SFRF14c],
but have not been addressed in depth in these works.

• We are concerned with the discussion of different ways of exploiting diverse sources of meta in-
formation in the KB debugging process from which diagnosis probabilities can be extracted. Our
previous works on this topic [SFFR12, RSFF13, SF10, SFRF14c] do not address this matter in a
comparable depth.

• We give a formal proof of the soundness of an algorithm QX (based on [Jun04]) for the detection of
a minimal conflict set in a KB and we show the correctness (completeness, soundness, optimality)
of a hitting set tree algorithm HS (based on [Rei87]) for finding minimal diagnoses in a KB in
best-first order (i.e. most probable diagnoses first) which uses QX for conflict set computation only
on-demand. We are not aware of any other work that comprises such proofs.

• We establish the theoretical relationship between the widely-used notions of a conflict set and
a justification. The former is i.a. used in [dKW87, Rei87, SFFR12, RSFF13] and the latter i.a.
in [HPS08, HPS09, HPS10, Hor11, HBP11, HPS12b, SQJH08, Kal06, MS09, SSZ09, NRG12]. As
a consequence, empirical results concerning the one might be translated to the other. For instance,
since each minimal conflict set is an subset of a justification and there is an efficient (polynomial)
method for computing a minimal conflict set given a superset of a minimal conflict set, a result
manifesting the efficiency of justification computation for a set of KBs (e.g. [HPS12a]) implies the
efficiency of conflict set computation for the same set of KBs. Moreover, we argue that minimal
conflict sets are the better choice for our system since these put the focus of the debugger only
on the smallest faulty subsets of the KB whereas justifications are better suited in scenarios where
exact explanations for the presence of certain entailments are sought.

• Two new algorithms for iterative (leading) diagnosis computation in interactive KB debugging are
proposed. One that is guaranteed to reduce the number of remaining solutions after a query is

15

answered and one that features more powerful pruning techniques than our previously published
algorithms [SFFR12, RSFF13] (an evaluation that compares the overall efficiency of our previous
algorithms with the ones proposed in this work must still be conducted and is part of our future
research).

• We suggest and extensively analyze different methods for the selection of an “optimal” query to ask
the user out of a pool of possible queries. We compare a greedy “split-in-half” strategy that pro-
poses queries which eliminate half of the leading diagnoses with a strategy relying on information
entropy [Sha48] that chooses the query with highest information gain based on some statistic or (a
user’s) beliefs about faults in the KB. Comprehensive experiments manifest that only an average
guess of the fault information suffices to reduce the query answering effort for the interacting user,
often to a significant extent, by means of the latter strategy compared to the former. Moreover, we
demonstrate that both methods clearly outperform a random query selection strategy. The latter
result witnesses that incorporation of meta (fault) information into the debugging process is in fact
reasonable and might relieve the interacting user of a significant proportion of the effort required
without taking into account any meta information.

• Addressing the issue of choosing the suitable query selection method for some given fault informa-
tion, we present a reinforcement learning query selection strategy. For, reliance upon a strategy (e.g.
information entropy) that fully exploits and gains from the given fault information can speed up the
debugging procedure in the normal case, but can also have a negative impact on the performance
in the bad case where the actual solution diagnosis is rated as highly improbable. As an alternative,
one might prefer to rely on a tool (e.g. “split-in-half”) which does not consider any fault informa-
tion at all. In this case, however, possibly well-chosen information cannot be exploited, resulting
again in inefficient debugging actions.

Minimal effort for the interacting user can be achieved if both the query selection method is cho-
sen carefully and the provided fault information satisfies some minimum quality requirements. In
particular, for deficient fault information and unfavorable strategy for query selection, we observe
cases where the overhead in terms of user effort exceeds 2000% (!) in comparison to employing
a more favorable query selection strategy. Since, unfortunately, assessment of the fault informa-
tion is only possible a-poteriori (after the debugging session is finished and the correct solution is
known), we devise a learning strategy (RIO) that continuously adapts its behavior depending on the
performance achieved and in this vein minimizes the risk of using low-quality fault information.

This approach makes interactive debugging practical even in scenarios where reliable fault esti-
mates are difficult to obtain. Evaluations provide evidence that for 100% of the cases in the hardest
(from the debugging point of view) class of faulty test KBs, RIO performed at least as good as the
best other strategy and in more than 70% of these cases it even manifested superior behavior to the
best other strategy. Choosing RIO over other approaches can involve an improvement by the factor
of up to 23, meaning that more than 95% of user time and effort might be saved per debugging
session.

• We come up with mechanisms for efficiently dealing with KB debugging problems involving high
cardinality (minimal) diagnoses. In the standard interactive debugging approach described in the
first parts of this work, the computation of queries is based on the generation of the set of most
probable (or minimum cardinality) leading diagnoses. By this postulation, certain quality guar-
antees about the output solution can be given. However, we learn that dropping this requirement
can bring about substantial savings in terms of time and especially space complexity of interac-
tive debugging, in particular in debugging scenarios where faulty KBs are (partly) generated as
a result of the application of automatic systems, e.g. KB (ontology) learning or matching sys-
tems [HSNM11, NB12, JMSK09, RP10, JRGZH12, Mei11].

16 CHAPTER 1. INTRODUCTION

I

II

III

IV V VI

VII

��

��

��

�� '' **

��

 �� ��

Figure 1.3: Precedence constraints among the parts of this work.

To cope with such situations, we propose to base query computation on any set of leading diagnoses
using a “direct” method for diagnosis generation. Contrary to the standard method that exploits
minimal conflict sets, this approach takes advantage of the duality between minimal diagnoses and
minimal conflict sets and employs “inverse” algorithms to those used in the standard approach in
order to determine minimal diagnoses directly from the DPI without the indirection via conflict
sets.

We study the application of this direct method to high cardinality faults in KBs and find out that the
number of required queries per debugging session is hardly affected for cases when the standard
approach is also applicable. However, the direct method proves applicable and able to locate the
correct solution diagnosis in situations when the standard approach (albeit one that not yet incor-
porates the powerful search tree pruning techniques introduced in this work) is not due to time or
memory issues.

Organization of this Work. This work is subdivided into seven parts. Figure 1.3 illustrates the prece-
dence constraints among the parts. We want to point out that Parts IV-VI correspond to works that have
already been published and are thus self-contained, both from the notation and the content point of view.
Parts I-III, on the contrary, are constructive and should thence be read in order.

(Rest of) Part I. In Chapter 2, besides introducing the notation used in this work, we describe the
requirements imposed on logical knowledge representation languages L that might be used with our
approaches. It should be noted that the postulated properties do not restrict the applications of our ap-
proaches very much. For instance, these might be employed to resolve over-constrained constraint sat-
isfaction problems (CSPs) or repair faulty KBs in PL, FOL, DL, Datalog or OWL. Since DL provides
the logical underpinning of OWL which has recently received increasing attention due to the extensive
research in the field of The Semantic Web [BLHL+01], we will also give a short introduction to DL. For,
to underline the flexibility of the presented debugging systems in this work, we will illustrate how they
work by means of examples involving PL, FOL as well as DL KBs.

In Chapter 3, we first give a formal definition of the KB debugging problem and define a diagnosis
problem instance (DPI), the input of a KB debugger, and a solution KB, the output of a KB debugger.
Further on, we formally characterize a diagnosis and give the notion of KB validity and what it means for
a KB to be faulty. We discuss and prove relationships between these notions and specify properties a DPI
must satisfy in order to be solvable by a KB debugger.

We motivate why it makes sense to focus on set-minimal diagnoses instead of all diagnoses, i.e. to
stick to “The Principle of Parsimony” [Rei87, BATJ91]. This results in the definition of the problem of

17

parsimonious KB debugging. Then, we prove that solving this problem is equivalent to the computation
of a minimal diagnosis. Finally, we explain the benefits of using some background KB in (parsimonious)
KB debugging.

In Chapter 4 we describe methods for diagnosis computation. To this end, we first introduce the
notion of a (minimal) conflict set, discuss some properties of conflict sets related to the notion of KB
validity and give sufficient and necessary criteria for the existence of non-trivial conflict sets w.r.t. a DPI.
Subsequently, we derive the relationship between a conflict set and the notion of a justification (a min-
imal set of formulas necessary for a particular entailment to hold) which is well-known and frequently
used, especially in the fields of DL, OWL and The Semantic Web [HPS08, HPS09, HPS10, Hor11,
HBP11, HPS12a]. Concretely, we will demonstrate that a minimal conflict set is a subset of a justifica-
tion for some negative test case or for some inconsistency (entailment false) or incoherency (entailment
∀X1, . . . , Xk ¬p(X1, . . . , Xk) for some predicate symbol p of arity k) of the given KB. Moreover, we
will learn that, for the debugging tasks we consider, conflict sets are better suited than justifications.

Having deduced all relevant characteristics of (minimal) conflict sets, we proceed to give a description
of a method (QX, Algorithm 1) due to [Jun04] which was originally presented as a method for finding
preferred explanations (conflicts) in over-constrained CSPs, but can also be employed for an efficient
computation of a minimal conflict set w.r.t. a DPI in KB debugging. We discuss and exemplify this algo-
rithm in detail, prove its correctness as a routine for minimal conflict set computation and give complexity
results.

Having at our disposal a proven sound method for generation of a minimal conflict set, we continue
with the delineation of a hitting set tree algorithm similar to the one originally presented in [Rei87] which
enables the computation of different minimal conflict sets by means of successive calls to QX, each time
given an (adequately) modified DPI. In this manner, a hitting set tree can be constructed (breadth-first)
which facilitates the computation of minimal diagnoses (minimum cardinality diagnoses first). We prove
the correctness (termination, soundness, completeness, minimum-cardinality-first property) of this hitting
set tree algorithm coupled with the QX method which serves to solve the problem of parsimonious KB
debugging.

In order to be able to incorporate fault information into the diagnoses finding process, we deal with the
induction of a probability space over diagnoses in Section 4.6. We discuss several ways of constructing
a probability space including different sources of fault information. Hereinafter, we detail how diagno-
sis probabilities can be determined on the basis of some available fault information and how these can
be appropriately updated after new observations (in terms of answered queries) have been made. Fur-
thermore, we outline how fault probabilities can be appropriately incorporated into the hitting set search
tree in order to guarantee the discovery of minimal diagnoses in best-first order, i.e. most probable ones
first. Then, we prove the correctness (termination, soundness, completeness, best-first property) of this
best-first diagnosis finding algorithm for parsimonious KB debugging.

Finally, we describe a non-interactive KB debugging procedure (Algorithm 3) that relies on this best-
first diagnosis finding algorithm. Some illustrating examples are provided which at the same time reveal
significant shortcomings present in non-interactive KB debugging. This motivates the development of
interactive KB debugging algorithms.

Readers not theoretically inclined or non-interested in the technical details might well skip Sec-
tions 4.2, 4.4.2, 4.5.2 and 4.6 in Part I.

Part II. In Chapter 6, we first discuss how disadvantages of non-interactive KB debugging procedures
can be overcome by allowing a user to take part in the debugging process. Then, we define the problem
of interactive static KB debugging as well as the problem of interactive dynamic KB debugging which
“naturally” arise from the fact that the DPI in interactive KB debugging is always renewed after a new test
case has been specified (a new query has been answered). The former problem searches for a solution KB
w.r.t. the DPI given as input such that this solution KB satisfies all test cases added during the debugging

18 CHAPTER 1. INTRODUCTION

session and there is no other such solution KB. The latter problem searches for a solution KB w.r.t. the
current DPI (i.e. the input DPI including all new test cases added throughout the debugging session so
far) such that there is no other solution KB w.r.t. the current DPI.

Next, in Chapter 7, the central term of a query is specified which constitutes the medium for user
interaction. Queries are generated from a set of leading diagnoses which is characterized thereafter. The
set of leading diagnoses is uniquely partitioned into three subsets by each query. The tuple including these
subsets is called q-partition. Subsequently, the reader is given some explanations how the q-partition can
be interpreted, and how it relates to a query. In fact, we will prove that the notion of a q-partition can
serve as a criterion for checking whether a set of logical formulas is a query or not. After that, we will
learn that a query exists for any set of (at least two) leading diagnoses which grants that the presented
algorithms will definitely be able to come up with a query without the need to impose any restrictions on
which (minimal) diagnoses are computed by the diagnosis engine in each iteration.

Chapter 8 shows a method for the generation of (a pool of) set-minimal queries (Algorithm 4) aiming
at stressing the interacting user as sparsely as possible, features in-depth discussions of this method’s
properties, proves its correctness, provides complexity results and gives some illustrating examples. Fur-
ther on, drawbacks of this method are pointed out and possible solutions are discussed.

Subsequently, Chapter 9 deals with the presentation of the central algorithm of this work which im-
plements an interactive KB debugging system (Algorithm 5). First, an overview of the workflow of
interactive KB debugging is given, followed by a more comprehensive detailed specification of the al-
gorithm. Some query selection measures are discussed [RSFF13, SFFR12] and optimization versions
of the problems of interactive dynamic and static KB debugging are defined where the goal is to obtain
the solution to these problems by asking the user a minimal number of queries. Finally, we prove the
correctness of the interactive KB debugging algorithm and provide a discussion of its complexity.

Non-theoretically-oriented readers might well skip Sections 8.2, 8.4, 8.5, 8.7 and 9.4 in Part II. More-
over, for the superficially interested reader, it may suffice to concentrate only on Chapter 6 and Sec-
tions 7.1, 7.2 and 9.1 in Part II.

Part III. Here, we go into detail w.r.t. the two strategies for iterative diagnoses computation introduced
in Part II that might be plugged into Algorithm 5 to solve either the interactive static or dynamic KB
debugging problem.

Chapter 11 describes the static method and proves its soundness and completeness w.r.t. the compu-
tation of minimal diagnoses w.r.t. the DPI given as an input to the interactive KB debugging algorithm
and its optimality w.r.t. the discovery of minimal diagnoses in best-first order (most-probable or mini-
mum cardinality diagnoses first). Incorporation of the static method as a routine for leading diagnosis
computation into Algorithm 5 provably solves the problem of interactive static KB debugging.

Chapter 12 details the dynamic method and proves its soundness and completeness w.r.t. the com-
putation of minimal diagnoses w.r.t. the current DPI and its optimality w.r.t. the discovery of minimal
diagnoses in best-first order (most-probable or minimum cardinality diagnoses first). Employing the
dynamic method as a routine for leading diagnosis computation in Algorithm 5 provably solves the
problem of interactive dynamic KB debugging.

The practically oriented reader or the one that is willing to believe that the presented iterative diagno-
sis computation techniques in fact work as claimed might skip Sections 11.4 as well as 12.4 in Part III.

Part IV. In this part, we suggest and extensively analyze different methods for the selection of an “op-
timal” query (see above). The material dealt with in Part IV is based on the publications [SFFR12, SF10]
where the former was published in the journal Web Semantics: Science, Services and Agents on the World
Wide Web and the latter in the Proceedings of the 9th International Semantic Web Conference (ISWC
2010).

19

Part V. The reinforcement learning query selection strategy (RIO) that makes the presented debugging
system robust against the usage of low-quality fault information is presented and thoroughly analyzed in
this part which is based on the works [RSFF13, RSFF12, RSFF11, SRF11] published in Web Reasoning
and Rule Systems (RR-2013), in the Proceedings of the 7th International Workshop on Ontology Matching
(OM-2012), in the Proceedings of the Joint Workshop on Knowledge Evolution and Ontology Dynamics
2011 (EvoDyn2011) and in DX 2011 - 22nd International Workshop on Principles of Diagnosis, respec-
tively.

Part VI. This part covers the topic of efficiently dealing with KB debugging problems involving high
cardinality faults (see above) and relies on material presented in [SFRF14c, SFRF14a, SFRF14b] and
published in the Proceedings of the 21st European Conference on Artificial Intelligence (ECAI 2014), in
DX 2014 - 25th International Workshop on Principles of Diagnosis and in the Proceedings of the Third
International Workshop on Debugging Ontologies and Ontology Mappings (WoDOOM14), respectively.8

Part VII. To round this work off, we provide a discussion of related work in Chapter 32,9 summarize
the contributions of this work in Chapter 33 and deal with our future work topics in Chapter 34.

8We are glad to report that the publication [SFRF14a] was awarded the Best Paper Award at the DX Workshop that took place
in Graz, Austria, in September 2014 (see http://dx-2014.ist.tugraz.at).

9Note that related work specific to topics addressed in Parts IV-VI is separately treated in these parts.

Chapter 2

Preliminaries

2.1 Assumptions
The techniques described in this work are applicable for any logical knowledge representation formalism
L for which the entailment relation is

1. monotonic: is given when adding a new logical formula to a KB KL cannot invalidate any entail-
ments of the KB, i.e. KL |= αL implies that KL ∪ {βL} |= αL,

2. idempotent: is given when adding implicit knowledge explicitly to a KB KL does not yield new
entailments of the KB, i.e. KL |= αL and KL ∪ {αL} |= βL implies KL |= βL and

3. extensive: is given when each logical formula entails itself, i.e. {αL} |= αL for all αL,

and for which

4. reasoning procedures for deciding consistency and calculating logical entailments of a KB are
available,

where αL, βL are logical formulas and KL is a set
{
ax

(1)
L , . . . , ax

(n)
L

}
of logical formulas formulated

over the language L. KL is to be understood as the conjunction
∧n

i=1 ax
(i)
L . Notice that the elements

of a KB are called quite differently in literature. Possible denotations are logical formula (e.g. [KK06]),
well-formed formula (e.g. [CL73]), (logical) sentence or axiom (e.g. [RN10]) and axiom (in most of the
description logic literature, e.g. [BCM+07]). We will mainly stick to the term formula (sometimes axiom)
to refer to the elements of a KB. As the logic will be clear from the context in the sequel, we will omit
the index L when referring to formulas or KBs over L throughout the rest of this work.

2.2 Considered Logics
To underline the general character of this work, we will illustrate our approaches using example diagno-
sis problem instances expressed in different logical languages. In this section we give notational remarks
concerning these different logics used, namely propositional logic (PL), first-order logic (FOL) as well as
description logic (DL). Whereas we assume the reader to be familiar with FOL and PL (a good introduc-
tion to PL and FOL can be found in [CL73]), we will give a short introduction to DL.

Remark 2.1 It is important to notice that the usage of DL as well as FOL examples throughout this
work should not suggest that the Properties 1 – 4 stated above are satisfied for any DL or FOL language

21

22 CHAPTER 2. PRELIMINARIES

L. In fact, it is well-known by the theorems of Church and Turing (cf. [Men09]; the original works
are [Chu36, Tur37]) that FOL is not decidable in general, i.e. Property 4 above is not met. Also in the
case of DL, which subsumes a range of different logical languages featuring different expressivity and
thus different computational complexity of reasoning procedures, there are languages which are undecid-
able. For instance, a DL language allowing the formalism of equality role-value-maps which facilitates
the expression of concepts like “persons whose co-workers coincide with their relatives” can be proven
undecidable [BCM+07, SS89].

Property 4 is satisfied, for example, for the DL language SROIQ which is the logical underpinning
of OWL 2 [GHM+08]. However, the complexity (2-NEXPTIME-complete [Kaz08]) of logical reasoning
is intractable in the worst case for this language which implies the intractability of our methods in the
worst case. Nevertheless, other DL languages applied with similar systems as those described in this paper
have been showing reasonable performance [SFRF14c, RSFF13, SFFR12]. Also from the theoretical
point of view, there are DL languages that allow for efficient reasoning. One example is the OWL 2
EL profile which enables polynomial time reasoning [BBL05]. For this language, the efficient reasoning
service ELK has been presented by [KKS14]. For FOL, datalog is an example of a decidable sublanguage
where reasoning is efficient [RN10]. Further, restricted sublanguages of FOL can often be translated to
some DL language wherefore DL positive results concerning the decidability of reasoning as well as
complexity results can be adopted for these restricted FOL languages [BCM+07, chapter 4] [Bor96].

Moreover, we want to point out that the practical efficiency of our systems depends strongly on
the practical performance (which might be by far better than suggested by the worst case reasoning
complexities) of the reasoning services called by our algorithms since the reasoning services are used as
a black-box (as mentioned in Chapter 1). Possible strategies for improving the reasoning efficiency in the
black-box setting are briefly discussed in Chapter 34.

Ontologies and The Semantic Web
Ontologies are KBs that formally and explicitly represent common knowledge about a domain in the form
of individuals, concepts (set of individuals) and roles (binary relationships between individuals). As, in
the last decade, extensive research has been done in the area of The Semantic Web [BLHL+01] making
(automatic) ontology development tools and reasoning services more efficient, ontology engineering for
the Semantic Web is on the upswing. The Semantic Web aims at the enrichment of unstructured informa-
tion on the web by semantic meta data which should facilitate the usage of the web as structured database
of knowledge of all kinds where computers are able to “understand” this structured data, establish re-
lationships between different data sources, combine information from different data sources and (most
essentially) derive new (implicit) knowledge from the structured data. At this, ontologies are the key to
a common vocabulary used for the semantic meta data. Ontologies are employed to precisely define the
meaning of different terms, state relationships between different terms and to introduce new terms by
means of already specified ones.

The constantly increasing number of people creating ontologies of increasing size (examples were
given in Chapter 1) results in more and more (faulty) ontologies which constitute useful application
scenarios and test cases for our approaches. For that reason, we also want to use ontology engineering for
The Semantic Web as a concrete use case for the presented work. The standard knowledge representation
formalism for ontologies is OWL 2 [MPSP09, GHM+08] which relies on DL. A short introduction to DL
is given next.

Description Logic

Description Logic (DL) [BCM+07] is a family of knowledge representation languages with a formal
logic-based semantics that are designed to represent knowledge about a domain in form of concept de-

2.2. CONSIDERED LOGICS 23

scriptions. The syntax of a description language L is defined by its signature and a set of constructors.
The signature of L corresponds to the union of possibly disjoint setsNC ,NR andNI , whereNC contains
all concept names (unary predicates), NR comprises all role names (binary predicates) and NI is the set
of all individuals (constants) in L. Each concept and role description can be either atomic or complex.
The latter ones are composed using constructors defined in the particular language L. A typical set of
DL constructors for complex concepts includes conjunction A u B, disjunction A t B, negation ¬A,
existential ∃r.A and value ∀r.A restrictions, where A,B are concept descriptions and r ∈ NR.

Axioms are statements of knowledge that must be true in a domain. An ontology K is defined as a
tuple (T ,A), where T (TBox) is a set of terminological axioms andA (ABox) a set of assertional axioms.
Each TBox axiom is expressed by a general concept inclusion A v B, a form of logical implication,
or by a definition A ≡ B, a kind of logical equivalence, where A and B are concept descriptions or
role descriptions. ABox axioms are used to assert properties of individuals in terms of the vocabulary
defined in the TBox, e.g. concept A(x) or role r(x, y) assertions, where A is a concept description, r a
role description, and x, y ∈ NI .

The semantics of a description language is given in terms of interpretations I = (∆I , ·I) consisting
of a non-empty domain ∆I and a function ·I that assigns to every atomic concept A ∈ NC a set AI ⊆
∆I , to every atomic role r ∈ NR a set rI ⊆ ∆I × ∆I and to every individual x ∈ NI some value
xI ∈ ∆I . The interpretation function is extended to complex concept descriptions by the following
inductive definitions:

>I = ∆I

⊥I = ∅
(A uB)I = AI ∩BI

(A tB)I = AI ∪BI

(¬A)I = ∆I \AI

(∃r.A)I =
{
x ∈ ∆I | ∃y. (x, y) ∈ rI ∧ y ∈ AI

}
(∀r.A)I =

{
x ∈ ∆I | ∀y. (x, y) ∈ rI → y ∈ AI

}
where > and ⊥ are predefined concepts; the former is the universal concept and the latter the bottom
concept.

The semantics of axioms is defined as follows for (1) TBox and (2) ABox axioms: (1) Interpretation
I satisfies A v B iff AI ⊆ BI and it satisfies A ≡ B iff AI = BI . (2) A(x) is satisfied by I iff
xI ∈ AI and r(x, y) is satisfied iff (xI , yI) ∈ rI . An interpretation I is a model of K = (T ,A) iff it
satisfies all TBox axioms in T and all ABox axioms in A. An ontology K is consistent iff it has a model.
A concept A (role r) is satisfiable w.r.t K iff there is a model I of K with AI 6= ∅ (rI 6= ∅). An ontology
K is coherent iff all concepts and roles occurring in K are satisfiable. An axiom α is entailed by K iff α
is true in all models I of K. For a set of axioms X we write K |= X as a shorthand for K |= α for all
α ∈ X .

Usually description logic systems provide sound and complete reasoning services to their users. Be-
sides verification of coherency and consistency ofK and satisfiability checking of concepts, reasoner tasks
include classification and realization. Classification determines, for each concept name A occurring in
K, most specific (general) concepts that subsume (are subsumed by) A. A concept A subsumes (is sub-
sumed by) a concept B iff K |= B v A (K |= A v B). Classification is employed to build a taxonomy
of concepts in K. Realization, given an individual name x occurring in K and a given set of concepts
in K (usually all concepts in K), computes the most specific concepts A1, . . . , An from the set such
that K |= Ai(x) for all i = 1, . . . , n. The most specific concepts are those that are minimal w.r.t. the
subsumption ordering v.

24 CHAPTER 2. PRELIMINARIES

Example 2.1 The example KB given in the Introduction (Chapter 1) can be equivalently represented in
DL (cf. Remark 2.1) as follows:

Res ≡ ∀writes.Paper (2.1)
∃writes.> v Res (2.2)

Secr v Gen (2.3)
Gen v ¬Res (2.4)
Secr(pam) (2.5)

where Res is the concept symbol with equivalent meaning as the predicate symbol res, the role symbol
writes corresponds to the equally named binary predicate, Paper to paper, and so on. Notice that
axiom 2.2 states that the domain of writes is Res.

2.3 Notational Remarks10

General Notational Conventions. Throughout this work, the nomenclature given by Table 2.1 is used
(many of the designators in the table will be explained later in this work). We will mainly refer to an
ontology by the term KB.

In order to make a clear distinction between scalars and functions, we denote all scalars g by g and
all functions g by g(). If an ordered list occurs in a set operation, then this list is interpreted as a (non-
ordered) set. For example, let L := [1, 3, 4, 2] be an ordered list; then L∩{1, 2, 3} yields the set {1, 2, 3}.

Notational Convention for PL (cf. [RN10]). We use uppercase letters A,B, . . . to denote atoms and the
standard logical connectives to build PL formulas from atoms. The operator precedence we use is ¬, ∧,
∨,→,↔, from highest to lowest. Given a PL KBK and a PL formula ax , we call K̃ and ãx the signature
of K and the signature of ax , respectively. The former comprises all atoms occurring in K and the latter
all atoms occurring in ax .

Notational Convention for FOL (cf. [CGT89]). Variables are denoted by uppercase letters; constants and
predicate symbols are denoted by strings beginning with a lowercase letter11. Recalling the example KB
given in Chapter 1, X,Y are variables, pam is a constant and res, writes, paper, secr and gen are
predicate symbols. FOL formulas are built from the standard logical connectives described for PL above.
The operator precedence we use for FOL formulas is the same as stated above12. The precedence of
quantifiers ∀, ∃ is such that a quantifier outside of any parenthesized expression holds over everything to
the right of it; if occurring in a parenthesized expression, a quantifier holds over everything to the right
of it within this expression. For example, ∀Xprof (X)→ ∃Y secr(Y) is equivalent to (∀X(prof (X)→
(∃Y (secr(Y))))) (i.e. “for each professor there is at least one secretary”) and not to (∀Xprof (X)) →
∃Y secr(Y) (i.e. “if everybody is a professor, then there is at least one secretary”).

Given a FOL KB K and a FOL formula ax , we call K̃ and ãx the signature of K and the signature of
ax , respectively. The former comprises all predicate, function and constant symbols occurring in K and
the latter all predicate, function and constant symbols occurring in ax . The signature of the example KB
given in Chapter 1 is {res, writes, paper, secr, gen, pam} and the signature of formula 1.2 of this KB
is {writes, res}.

10These conventions apply to Parts I-III and Part VII. Each of the Parts IV-VI is self-contained w.r.t. the used notation.
11We do not use any function symbols throughout this work.
12We do not use equality = in FOL formulas throughout this work.

2.3. NOTATIONAL REMARKS 25

Remark 2.2 By analogy with the definition of coherency in DL (see Section 2.2), we call a FOL KB K
incoherent iff K |= ∀X1, . . . , Xk ¬p(X1, . . . , Xk) for some k-place predicate symbol p in the signature
of K where k ≥ 1.

Remark 2.3 We want to point out that whenever we will speak of entailment computation we address
the invocation of a sound reasoning service that is guaranteed to terminate after finite execution time and
returns a finite number of entailments for any KB given as input (cf. Remark 2.1). Similarly, when we say
that all entailments of a KB are computed, we always refer to a finite set of entailments of certain types
output by such a reasoning service. Examples of such entailment types regarding DL are the (a) classifi-
cation and (b) realization entailments, by which we mean (a) all the subsumption relationships between
concept names appearing in the KB, i.e. entailments of the form C1 v C2 for concept names C1, C2 ∈ K̃
and (b) all the concept names instantiated by a given individual for all individuals appearing in the KB,
i.e. entailments of the form C(a) for concepts names C ∈ K̃ and individual names a ∈ K̃.

26 CHAPTER 2. PRELIMINARIES

Symbol Meaning

2X the powerset of X where X is a set

UX the union of all elements in X where X is a set of sets

L a (monotonic, idempotent, extensive) logical knowledge representation language

K(i) a (faulty) KB (optionally with an index)

ax (i) a formula in a KB (an axiom in an ontology)

B(i) a (correct) background KB (optionally with an index)

P the set of positive test cases (each test case is a set of logical formulas)

p(i) a positive test case (optionally with an index)

N the set of negative test cases (each test case is a set of logical formulas)

n(i) a negative test case (optionally with an index)

R the set of requirements to the correct KB

〈K,B,P ,N 〉R a diagnosis problem instance (DPI)

aDDPI the set of all diagnoses w.r.t. the DPI DPI

mDDPI the set of minimal diagnoses w.r.t. the DPI DPI

D(i) a (minimal) diagnosis (optionally with an index)

Dt the true diagnosis

aCDPI the set of all conflict sets w.r.t. the DPI DPI

mCDPI the set of minimal conflict sets w.r.t. the DPI DPI

C(i) a (minimal) conflict set (optionally with an index)

Q an ordered queue of open nodes in a hitting set tree algorithm

n(i), nd(i), node(i) nodes in a hitting set tree algorithm (optionally with an index)

context-dependent (will be clear from the context):

(1) an ordered list of the elements a1, . . . , an or[a1, . . . , an]

(2) a (non-ordered) minimal diagnosis comprising formulas a1, . . . , an

context-dependent (will be clear from the context):

(1) a tuple of elements a1, . . . , an or〈a1, . . . , an〉

(2) a (non-ordered) minimal conflict set comprising formulas a1, . . . , an

u the user interacting with the debugging system

u() the (user) function that maps queries to answers

Q(i) a query (optionally with an index)

QD,DPI the set of all queries w.r.t. the leading diagnoses D and the DPI DPI

P(Q) the q-partition of the query Q (abbreviated form)〈
D+(Q),D−(Q),D0(Q)

〉
the q-partition of the query Q (written-out form)

EX(D)DPI the set of all extensions w.r.t. a diagnosis D and a DPI DPI

SolDPI the set of all solution KBs w.r.t. the DPI DPI

Solmax
DPI the set of all maximal solution KBs w.r.t. the DPI DPI

Table 2.1: Symbols and abbreviations used throughout this work (cf. footnote 10).

Chapter 3

Knowledge Base Debugging

KB debugging can be seen as a test-driven procedure comparable to test-driven software development
and debugging, where test cases are specified to restrict the possible faults until the user detects the
actual fault manually or there is only one (highly probable) fault remaining which is in line with the
specified test cases. In this chapter, we want to study the theory of (non-interactive) KB debugging,
present and discuss mechanisms that can be employed for the debugging of KBs and reveal drawbacks
of such systems. In (non-interactive) KB debugging we assume test cases fixed during the debugging
procedure. That is, a user might specify a set of test cases offline, run a debugging system and investigate
the output solution(s). In case no satisfactory solution has been returned, some additional test cases might
be defined offline before the debugger might be invoked again.

The inputs to a KB debugging problem can be characterized as follows: Given is a KB K and a KB
B (background knowledge), both formulated over some logic L complying with the conditions 1 – 4
given in Chapter 2. All formulas in B are considered to be correct and all formulas in K are consid-
ered potentially faulty. K ∪ B does not meet postulated requirements R where {consistency} ⊆ R ⊆
{coherency, consistency} or does not feature desired semantic properties, called test cases.13 Positive test
cases (aggregated in the set P) correspond to desired entailments and negative test cases (N) represent
undesired entailments of the correct (repaired) KB (along with the background KB B). Each test case
p ∈ P and n ∈ N is a set of logical formulas over L. The meaning of a positive test case p ∈ P is that
the correct KB integrated with B must entail each formula (or the conjunction of formulas) in p, whereas
a negative test case n ∈ N signalizes that some formula (or the conjunction of formulas) in n must not
be entailed by the correct KB integrated with B.

Remark 3.1 In the sequel, we will write K |= X for some set of formulas X to denote that K |= ax for
all ax ∈ X and K 6|= X to state that K 6|= ax for some ax ∈ X .

The described inputs to the KB debugging problem are captured by the notion of a diagnosis problem
instance:

Definition 3.1 (Diagnosis Problem Instance). Let

• K be a KB over L,

• P ,N sets including sets of formulas over L,

• {consistency} ⊆ R ⊆ {coherency, consistency},
13We assume consistency a minimal requirement to a solution KB provided by a debugging system, as inconsistency makes a KB

completely useless from the semantic point of view.

27

28 CHAPTER 3. KB DEBUGGING

• B be a KB over L such that K ∩ B = ∅ and B satisfies all requirements r ∈ R,

• the cardinality of all sets K, B, P , N be finite.

Then we call the tuple 〈K,B,P ,N 〉R a diagnosis problem instance (DPI) over L.14

Note that, for now, we do not make any assumptions about the contents of the sets K, B, P and N
that go beyond Definition 3.1. So, it might be well the case, for example, to specify a DPI according to
Definition 3.1 for which there are no solutions or for which only trivial solutions exist. Later on, we will
discuss properties a DPI must fulfill to guarantee existence of solutions for it.

We define a solution KB for a DPI as follows:

Definition 3.2 (Solution KB). Let 〈K,B,P ,N 〉R be a DPI. Then a KB K∗ is called solution KB w.r.t.
〈K,B,P ,N 〉R, written as K∗ ∈ Sol〈K,B,P,N 〉R , iff all the following conditions hold:

∀ r ∈ R : K∗ ∪ B fulfills r (3.1)
∀ p ∈ P : K∗ ∪ B |= p (3.2)
∀n ∈ N : K∗ ∪ B 6|= n. (3.3)

A solution KB K∗ w.r.t. a DPI is called maximal, written as K∗ ∈ Solmax
〈K,B,P,N 〉R , iff there is no solution

KB K′ such that K′ ∩ K ⊃ K∗ ∩ K.

Now, the problem of KB debugging can be formalized:

Problem Definition 3.1 (KB Debugging). Given a DPI 〈K,B,P ,N 〉R, find a solution KB w.r.t.
〈K,B,P ,N 〉R.

Note that basically any KBK∗ that meets conditions (3.1) - (3.3) is a solution KB in the sense of Def-
inition 3.2. Hence, K∗ does not even need to have a non-empty intersection with K. Only the postulation
of maximality of a solution KB (as detailed later in Section 3.1) establishes a relationship to the given KB
K.

Remark 3.2 Let K′ := K ∪ B ∪ UP . Then, conditions (3.1) - (3.3) can be reduced to conditions (3.2)
and (3.3) if

• N := N ∪ {{false}} given R = {consistency} or

• N := N ∪ {{∀X1, . . . , Xk p(X1, . . . , Xk)→ false} | p is k-place predicate
symbol in K̃′, k ≥ 1} ∪ {{false}} in case R = {consistency, coherency}.

This holds because a KBK is inconsistent iffK |= {false} andK is incoherent iff some predicate symbol
in K′ must be false for any instantiation. Notice that the latter must hold for all predicate symbols in K′
and not only in K (see Example 3.1). For PL and DL, the definitions of N are analogous (cf. Chapter 2),
but for PL coherency is not defined wherefore only the first bullet is relevant for PL. In what follows we
will stick to the more explicit characterization of a solution KB given by Definition 3.2.

14In the following we will often call a DPI over L simply a DPI for brevity and since the concrete logic will not be relevant in
our theoretical analyses as long as it is compliant with the conditions 1 – 4 given in Chapter 2. Nevertheless we will mean exactly
the logic over which a particular DPI is defined when we use the designator L.

29

Example 3.1 Let a DL DPI be defined as

K := {B v C}
B := {A v B,C v ¬A}
P := ∅
N := ∅
R := {coherency, consistency}

Then, K̃ = {B,C}, but there is some concept A /∈ K̃, but A ∈ K̃′, which is unsatisfiable w.r.t. K ∪ B.
Since we want a solution KB integrated with B to meet the conditions (3.1) - (3.3),K is not a solution KB
w.r.t. 〈K,B,P ,N 〉R despite the fact that it is perfectly consistent and coherent as an isolated KB.

Whereas the definition of a solution KB refers to the desired properties of the output of a KB debug-
ging system, the following definition can be seen as a characterization of KBs provided as an input to
a KB debugger. If a KB is valid w.r.t. the background knowledge, the requirements and the test cases,
then finding a solution KB w.r.t. the DPI is trivial. Otherwise, obtaining a solution KB from it involves
modification of the input KB and subsequent addition of suitable formulas. Usually, the KB K part of the
DPI given as an input to a debugger is assumed to be invalid w.r.t. this DPI.

Definition 3.3 (Valid KB). Let 〈K,B,P ,N 〉R be a DPI. Then, we say that a KB K′ is valid w.r.t.
〈·,B,P ,N 〉R iff K′ ∪ B ∪ UP does not violate any r ∈ R and does not entail any n ∈ N . A KB is
said to be invalid (or faulty) w.r.t. 〈·,B,P ,N 〉R iff it is not valid w.r.t. 〈·,B,P ,N 〉R.15

Intuitively, if a KB K is faulty w.r.t. 〈·,B,P ,N 〉R, then there is at least one incorrect formula in K
that needs to be corrected or deleted; if a KB K is valid w.r.t. 〈·,B,P ,N 〉R, a solution KB can be directly
obtained by simply extending K by the set UP of all sentences comprised in positive test cases. Note,
however, that K being valid w.r.t. 〈·,B,P ,N 〉R does not necessarily mean that K ∪ B entails any p ∈ P .

Proposition 3.1. Let 〈K,B,P ,N 〉R be a DPI. Then, K′ ∪ UP ∈ Sol〈K,B,P,N 〉R iff K′ is valid w.r.t.
〈·,B,P ,N 〉R.

Proof. “⇒”: If K′ ∪ UP is a solution KB, then K′ ∪ UP ∪ B meets all r ∈ R as per condition (3.1) and
does not entail any n ∈ N as per condition (3.3). Hence, K′ is valid w.r.t. 〈·,B,P ,N 〉R.

“⇐”: IfK′ is valid w.r.t. 〈·,B,P ,N 〉R, then (K′∪UP)∪B meets all r ∈ R, i.e. meets condition (3.1).
Moreover, (K′ ∪UP)∪B 6|= n for all n ∈ N , i.e. (K′ ∪UP)∪B meets condition (3.3). By extensiveness
of the used language L, (K′∪UP)∪B |= p for all p ∈ P , i.e. condition (3.2) is fulfilled by (K′∪UP)∪B.
Thus, K′ ∪ UP is a solution KB.

Definition 3.4 (Extension). Let 〈K,B,P ,N 〉R be a DPI over L and K′ ⊆ K. A set of formulas E over L
is called an extension w.r.t. K′ and 〈K,B,P ,N 〉R, written as E ∈ EX(K′)〈K,B,P,N 〉R , iff (K \ K′) ∪ E
is a solution KB w.r.t. 〈K,B,P ,N 〉R.

Definition 3.5 (Diagnosis). Let 〈K,B,P ,N 〉R be a DPI. A set of formulas D ⊆ K is called a diagnosis
w.r.t. 〈K,B,P ,N 〉R, written as D ∈ aD〈K,B,P,N 〉R , iff there exists some E ∈ EX(D)〈K,B,P,N 〉R , i.e.
(K \ D) ∪ E is a solution KB w.r.t. 〈K,B,P ,N 〉R.

A diagnosisD w.r.t. 〈K,B,P ,N 〉R is minimal, written asD ∈mD〈K,B,P,N 〉R , iff there is noD′ ⊂ D
such that D′ is a diagnosis w.r.t. 〈K,B,P ,N 〉R. A diagnosis D w.r.t. 〈K,B,P ,N 〉R is a minimum cardi-
nality diagnosis w.r.t. 〈K,B,P ,N 〉R iff there is no diagnosisD′ w.r.t. 〈K,B,P ,N 〉R such that |D′| < |D|.

15It would be more precise to call a KB valid w.r.t. the elements B, P , N , R of a DPI. Though, for brevity, we stick to the
presented notation where the dot · in 〈·,B,P ,N 〉R signalizes the irrelevance of the first element K of a DPI 〈K,B,P ,N 〉R for
determining validity of a KB K′ w.r.t. this DPI.

30 CHAPTER 3. KB DEBUGGING

Proposition 3.2. Let 〈K,B,P ,N 〉R be a DPI. Then, D ∈ aD〈K,B,P,N 〉R iff K \ D is valid w.r.t.
〈·,B,P ,N 〉R.

Proof. “⇒”: If D is a diagnosis w.r.t. 〈K,B,P , N 〉R, there is some extension E w.r.t. D and 〈K,B,P ,
N 〉R which implies that (K \ D) ∪ E is a solution KB w.r.t. 〈K,B,P ,N 〉R. Now, assume that K \ D is
not valid w.r.t. 〈·,B,P ,N 〉R. By Proposition 3.1, this means that (K \ D) ∪ UP is not a solution KB.
Hence, (K \ D) ∪ UP ∪ B violates some r ∈ R or entails some n ∈ N . As (K \ D) ∪ E is a solution
KB, we have that (K \ D) ∪ E ∪ B |= p for all p ∈ P . So, by idempotency of L, (K \ D) ∪ E ∪ B ≡
(K \ D) ∪ E ∪ B ∪ UP ⊇ (K \ D) ∪ UP ∪ B which violates some r ∈ R or entails some n ∈ N . By
monotonicity of L, (K\D)∪E ∪B also violates some r ∈ R or entails some n ∈ N whereby (K\D)∪E
is not a solution KB which is a contradiction.

“⇐”: IfK\D is valid w.r.t. 〈·,B,P ,N 〉R, then (K\D)∪B∪UP does not violate any r ∈ R and does
not entail any n ∈ N . Since (K\D)∪B∪UP also entails each positive test case p ∈ P by extensiveness
of L, we can conclude that (K \ D) ∪ UP is a solution KB. By Definition 3.4, UP ∈ EX(D)〈K,B,P,N 〉R
and thus D is a diagnosis w.r.t. 〈K,B,P ,N 〉R.

In other words, D is a diagnosis w.r.t. 〈K,B,P ,N 〉R iff (K \ D) ∪ B meets all requirements, i.e.
consistency and/or coherency, as per condition (3.1), does not entail any negative test cases as per con-
dition (3.3), and the positive test cases p ∈ P can be added to (K \ D) ∪ B without violating any of the
conditions (3.1) or (3.3).

From a given DPI 〈K,B,P ,N 〉R, a solution KB K∗ can be obtained by a deletion and an expansion
step. The deletion step involves the elimination of a diagnosis D ⊆ K from K. Note that, due to
monotonicity of L, only deletion (and not expansion) of the KB can effectuate a repair of inconsistencies,
incoherencies and unwanted entailments. Note, if K is already valid w.r.t. 〈·,B,P ,N 〉R, then D can be
set to ∅ and the deletion step can be omitted. The expansion step aims at the fulfillment of positive test
cases P , i.e. condition (3.2), which is not necessarily the case after the deletion step. In fact, some new
logical sentences E ∈ EX(D)〈K,B,P,N 〉R may need to be added to (K \D) ∪ B to grant entailment of all
positive test cases.

Corollary 3.1. Let D be a diagnosis w.r.t. 〈K,B,P ,N 〉R. Then there is a set of logical sentences E ∈
EX(D)〈K,B,P,N 〉R over L such that:

∀ r ∈ R : (K \ D) ∪ E ∪ B fulfills r

∀ p ∈ P : (K \ D) ∪ E ∪ B |= p

∀n ∈ N : (K \ D) ∪ E ∪ B 6|= n.

Proof. The proposition of the corollary is a direct consequence of Definition 3.2 and Definition 3.5.

From the point of view of a solution KB K∗ w.r.t. 〈K,B,P ,N 〉R, K \ K∗ is a diagnosis w.r.t.
〈K,B,P ,N 〉R and K∗ \ K is one possible extension w.r.t. D and 〈K,B,P ,N 〉R.

Proposition 3.3. For each solution KB K∗ w.r.t. 〈K,B,P ,N 〉R there is a diagnosis w.r.t. 〈K,B,P ,N 〉R
and an extension E w.r.t. D and 〈K,B,P ,N 〉R such that K∗ = (K \ D) ∪ E and E ∩ D = ∅.

Proof. LetK∗ be a solution KB w.r.t. 〈K,B,P ,N 〉R. ThenK∗ can be written asK∗ = (K∩K∗)∪ (K∗ \
K) = (K \ (K \ K∗)) ∪ (K∗ \ K). Let K \ K∗ =: D and K∗ \ K =: E , then E ∩ D = ∅. Further on,
D ⊆ K holds and E is a set of logical sentences such thatK∗ = (K\D)∪E ∈ Sol〈K,B,P,N 〉R . Therefore,
D ∈ aD〈K,B,P,N 〉R and E ∈ EX(D)〈K,B,P,N 〉R .

Corollary 3.2. The (non-)existence of a diagnosis w.r.t. 〈K,B,P ,N 〉R is equivalent to the (non-)existence
of a solution KB w.r.t. 〈K,B,P ,N 〉R.

31

Proof. Proposition 3.3 shows that there is a diagnosis for each solution KB. By Definition 3.5, there is
also a solution KB for each diagnosis.

The next Proposition gives sufficient and necessary criteria for the existence of a solution, i.e. a
diagnosis or a solution KB, respectively, for a given DPI.

Proposition 3.4. Let 〈K,B,P ,N 〉R be a DPI. Then, a diagnosis D w.r.t. 〈K,B,P ,N 〉R exists iff

• ∀ r ∈ R : B ∪ UP fulfills r and

• ∀n ∈ N : B ∪ UP 6|= n .

Proof. “⇐”: Let us define D := K. Then X := (K \ D) ∪ B ∪ UP = B ∪ UP . Consequently, X
satisfies each r ∈ R as per condition (3.1), X 6|= n for each n ∈ N as per condition (3.3), and finally
X |= p for each p ∈ P by extensiveness of L and thus meets condition (3.2). So, X is a solution KB
w.r.t. 〈K,B,P ,N 〉R wherefore D must be a diagnosis.

“⇒”: Let D ⊆ K be some diagnosis w.r.t. 〈K,B,P ,N 〉R. Then, by definition of a diagnosis, there is
some solution KB K∗ w.r.t. 〈K,B,P ,N 〉R. Then K∗ ∪ B |= p for all p ∈ P by condition (3.2), which
implies that K∗ ∪ B ∪ UP does not feature any new entailments compared to K∗ ∪ B by idempotency
of L. So, K∗ ∪ B ≡ K∗ ∪ B ∪ UP holds. Now, for arbitrary n ∈ N , since K∗ ∪ B 6|= n we have that
K∗ ∪ B ∪ UP 6|= n , and, by monotonicity of L, that B ∪ UP 6|= n . Analogously, for any r ∈ R, because
K∗ ∪ B satisfies r, it must be true that K∗ ∪ B ∪ UP satisfies r and, by monotonicity of L, that B ∪ UP

satisfies r.

Definition 3.6 (Admissible DPI). We call a DPI 〈K,B,P ,N 〉R admissible iff there is at least one diag-
nosis D ∈ aD〈K,B,P,N 〉R .

A non-admissible DPI may arise in a situation where a user specifies test cases manually. For this
procedure a similar error-proneness as for the user’s formulation of KB formulas can be assumed. And
there are lots of pitfalls to escape, as Proposition 3.4 shows. In particular, the specified test cases in P
and N must be “compatible” with each other, i.e. positive test cases must not contradict negative ones.
For example, adding p1 := {A v C,E ≡ B} and p2 := {C v E} to P and n1 := {A v B} to N leads
to a contradiction between P and N and consequently to the non-admissibility of a DPI comprising P
and N . Furthermore, the background KB B which is considered as correct, must indeed be correct, at
least in terms of R; and negative test cases must be specified in a way not to postulate non-entailment of
knowledge specified in B. A counterexample is B := {∃r.> v A, r(x, y), A v C} and N := {{C(x)}}.
And third, the union of positive test cases together with B must be in compliance with R, particularly the
formulas in P must not be inconsistent or incoherent. Because the union of positive test cases UP can be
viewed as an own KB since all logical sentences occurring in some p ∈ P must be true in the solution
KB. So, in a setting where test cases are specified manually, faults occur as likely in UP as they do in K.

The debugging system presented in this work, however, guarantees by automatic test case generation
that admissibility of a DPI is satisfied at any time, provided that an admissible DPI is given as an initial
input to the debugging system.

Remark 3.3 In case of a present DPI 〈K,B,P ,N 〉R which is non-admissible, the DPI must be prop-
erly modified before it can be used with our debugging system. More concretely, the sets B, P as well
as N must be prepared in a way that the two conditions in Proposition 3.4 are satisfied. When supposing
that B is an already approved and correct KB (which is a reasonable assumption for a KB used as back-
ground knowledge during a debugging session), then there are (at least) the following ways to obtain an
admissible DPI from a given non-admissible DPI without modifying B.

(a) One straightforward way to achieve that is the deletion of all manually specified test cases from
P and N . After that, both sets are either the empty set (if no automatic test cases, e.g. from former

32 CHAPTER 3. KB DEBUGGING

debugging sessions were included in these sets) or comprise only automatically generated test cases.
The former case yields an admissible DPI independently of K by the property of B to not violate any
requirements in R (see Definition 3.1). That the latter case implies the admissibility of the DPI is a
property of the debugging system described in this work (as we will show later by Corollary 7.3).

(b) Another way to resolve the non-admissibility of a DPI 〈K,B,P ,N 〉R is to first check whether
〈UP ,B, ∅,N 〉R is admissible (verification of Proposition 3.4 by means of a reasoning service). If so, it
is clear that B does not conflict with N . Then, a debugger (like the one presented in this work) can be
exploited to find an as small as possible subset of the set of all formulas occurring in the positive test
cases, the removal of which causes the DPI to become admissible. This would be accomplished by the
computation of a minimal diagnosis DP w.r.t. 〈UP ,B, ∅,N 〉R and the usage of the modified admissible
DPI 〈K,B, {UP \ DP} ,N 〉R instead of the original one. In this case, only a set-minimal set DP of
formulas that were desired entailments of the user are lost. This modification is possible in polynomial
time apart from the reasoning costs, i.e. by means of a polynomial number of calls to a reasoner (cf.
Chapter 1).

(c) Otherwise, i.e. if B already conflicts with the negative test cases N , then an algorithm similar to
Algorithm 1 (that will be presented in Section 4.4.1) can be employed to determine a maximal subset
N ′ of N w.r.t. set inclusion such that B will not be in conflict with N ′. This approach also requires
only a polynomial number of calls to a reasoner (cf. Proposition 4.8). If the resulting modified DPI
〈K,B,P ,N ′〉R is not yet admissible, i.e. after adding the positive test cases UP to B there are again
conflicts with N ′, method (b) must be executed in order to finally obtain an admissible DPI.

That is, given a non-admissible DPI, there is a transformation achievable in polynomial time which
enables the establishment of admissibility involving a set-minimal number of modifications to the given
test cases. Thence, in the rest of this work, we will assume that a DPI given as an input to our algorithms
is admissible.

In general, there are multiple (minimal) diagnoses for a DPI, i.e. |aD〈K,B,P,N 〉R | ≥ |mD〈K,B,P,N 〉R |
> 1, and there are multiple, in fact infinitely many, extensions E ∈ EX(D)〈K,B,P,N 〉R for a fixed diagno-
sis D ∈ aD〈K,B,P,N 〉R . The task addressed in this work is finding an optimal diagnosis for a given DPI,
whereas the identification of an optimal extension w.r.t. that diagnosis and the DPI is not the aim. What
we understand by “optimality” of a diagnosis will be addressed in more detail in Part II. Instead, we will
content ourselves with finding any extension that enables to formulate a solution KB given a DPI and a
diagnosis for that DPI. In fact, the problem of finding a solution KB for a DPI can be reduced to finding
a diagnosis for that DPI since a suitable extension can be easily formulated for any diagnosis, as the next
proposition shows:

Proposition 3.5. Let 〈K,B,P ,N 〉R be a DPI and D ∈ aD〈K,B,P,N 〉R . Then UP is an extension w.r.t. D
and 〈K,B,P ,N 〉R.

Proof. Let us assume that there is some D ∈ aD〈K,B,P,N 〉R and UP is not an extension w.r.t. D and
〈K,B,P ,N 〉R. By the definition of a diagnosis, this is equivalent to stating that (K \ D) ∪ UP is not
a solution KB which in turn means that at least one condition (3.1), (3.2) or (3.3) of Definition 3.2
is violated by (K \ D) ∪ UP . However, the fact that D is a diagnosis implies the existence of some
extension E ∈ EX(D)〈K,B,P,N 〉R that can be added to (K \ D) to obtain a solution KB. This means
that conditions (3.1) and (3.3) must be already valid for (K \ D), since, by monotonicity of L, addition
of logical sentences E can neither solve inconsistencies or incoherencies necessary for fulfillment of
condition (3.1) nor invalidate non-desired entailments as per condition (3.3). As a consequence, condition
(3.2) must be violated by (K \ D) ∪ UP . By extensiveness of L it holds that (K \ D) ∪ UP |= p for all
p ∈ P whereby we obtain that condition (3.2) is fulfilled which yields a contradiction.

Proposition 3.5 claims that the expansion operation, i.e. identifying a concrete extension for a di-
agnosis, is trivial, at least for our purposes, namely formulating an extension reflecting only evident

3.1. PARSIMONIOUS KB DEBUGGING 33

entailments given by the set of positive test cases P . Consequently, in order to find a solution KB for
some DPI, it is sufficient to concentrate on the deletion step, i.e. on the search for diagnoses.

Note that using UP as a canonical extension when computing diagnoses does not affect the set of
identified diagnoses. In other words, exchanging E ∈ EX(D)〈K,B,P,N 〉R for UP in Definition 3.5 yields
an equivalent definition. The following corollary proves this statement and summarizes the relationship
between the notions diagnosis, solution KB and valid KB.

Corollary 3.3. The following statements are equivalent:

1. D is a diagnosis w.r.t. 〈K,B,P ,N 〉R

2. (K \ D) ∪ UP is a solution KB w.r.t. 〈K,B,P ,N 〉R

3. (K \ D) is valid w.r.t. 〈·,B,P ,N 〉R.

Proof. That (1) is equivalent to (2) follows from Definition 3.5 which states that D is a diagnosis w.r.t.
〈K,B,P ,N 〉R iff there is some set of sentences E ∈ EX(D)〈K,B,P,N 〉R such that (K \ D) ∪ E is a
solution KB, and from Proposition 3.5 which proves that UP is an extension w.r.t. any diagnosis D and
〈K,B,P ,N 〉R.

That (1) is equivalent to (3) follows directly from Proposition 3.2 and the equivalence of (2) and (3)
has been shown in Proposition 3.1.

3.1 Parsimonious Knowledge Base Debugging
Why are minimal diagnoses interesting? First, the set of minimal diagnoses w.r.t. a DPI captures all the
information that explains the unwanted properties, i.e. violation of requirements or test cases, of the DPI.
In other words, the minimal diagnoses represent all subset-minimal possibilities to modify a KB in a way
it becomes a valid KB w.r.t. the given DPI (e.g. by simply deleting a minimal diagnosis from the KB in
the trivial case). By monotonicity of the logic L, each superset of a minimal diagnosis w.r.t. a DPI is a
diagnosis w.r.t. this DPI. That is, aD〈K,B,P,N 〉R can be easily reconstructed given mD〈K,B,P,N 〉R . There
is however no evidence (in terms of specified requirements and test cases) in a DPI that would justify
the selection of a non-minimal diagnosis. That is, if K is a KB and D ⊆ K a minimal diagnosis w.r.t. a
DPI including K, K \ D does not violate any of the postulated properties that must hold for a KB to be
valid w.r.t. this DPI. For that reason, there is no evident need to delete or modify any other sentences in
K except for the ones in some minimal diagnosis D.

Second, usually a setting can be assumed where the author of a KB specifies formulas to the best of
their knowledge. Hence, the assumption that a formula is rather correct than faulty, or in other words, that
the KB author wants to keep as many formulated sentences as possible in a solution KB obtained from a
debugger, is practical.

This also motivates the importance of a certain subset of minimal diagnoses, namely minimum cardi-
nality diagnoses, which are the solutions of choice in scenarios where no probabilistic information about
the KB authors’ faults is available, e.g. in terms of statistics retrieved from log data of the used IDE (see
Section 4.6 for details). In an application where such information is given, minimum cardinality diag-
noses might not always be the appropriate choice (for details see Part II). In this case the aim is to find a
minimal diagnosis with a maximal probability of including only sentences that are actually faulty (which
might not necessarily be a minimum cardinality diagnosis).

Third, minimality of diagnoses will be a necessary condition to guarantee the possibility of dis-
crimination between different (candidate) diagnoses to formulate a solution KB, as will be seen later in
Chapter 7.

Fourth, focusing only on minimal diagnoses rather than all diagnoses can greatly reduce the search
space for diagnoses and therefore greatly speed up the debugging procedure (cf. [dKW87]).

34 CHAPTER 3. KB DEBUGGING

Projected to the task of KB debugging, namely finding a solution KB w.r.t. a given DPI, this means
we are interested in minimal invasiveness, that is making as few formula-deletion-modifications to the
input KB K as possible in the course of the performed debugging actions. That is, the actual goal is to
find some maximal solution KB K∗ for a DPI. Compare with “The Principle of Parsimony” in [Rei87,
p. 7] [BATJ91].

Problem Definition 3.2 (Parsimonious KB Debugging). Given a DPI 〈K,B,P ,N 〉R, the task is to
find a maximal solution KB w.r.t. 〈K,B,P ,N 〉R.

The next proposition shows that this problem can be reduced to finding a minimal diagnosis.

Proposition 3.6. (i) K \ K∗ is a minimal diagnosis w.r.t. 〈K,B,P ,N 〉R for each maximal solution KB
K∗ w.r.t. 〈K,B,P ,N 〉R.

(ii) If D is a minimal diagnosis w.r.t. 〈K,B,P ,N 〉R, then (K\D)∪E is a maximal solution KB w.r.t.
〈K,B,P ,N 〉R for all extensions E ∈ EX(D)〈K,B,P,N 〉R .

Proof. Ad (i): Let K∗ be an arbitrary maximal solution KB w.r.t. 〈K,B,P ,N 〉R. The first observation
is that D := K \ K∗ is a diagnosis w.r.t. 〈K,B,P ,N 〉R since K∗ \ K ∈ EX(D)〈K,B,P,N 〉R by the fact
that K∗ = (K \ D) ∪ (K∗ \ K) is a solution KB by assumption. Let us assume that there is a diagnosis
Dk ∈ aD〈K,B,P,N 〉R such that D ⊃ Dk. Since Dk is a diagnosis, it holds per Definition 3.5 that there
is an extension E ∈ EX(Dk)〈K,B,P,N 〉R such that K∗k := (K \ Dk) ∪ E is a solution KB. Further on,
K∩K∗k = K∩((K\Dk)∪E) = (K\Dk)∪(K∩E). SinceK∩K∗ can be written asK\(K\K∗) = K\D
which is a strict subset ofK\Dk which in turn is a subset of (K\Dk)∪(K∩E) = K∩K∗k. Consequently,
K∩K∗ ⊂ K∩K∗k holds, which is by Definition 3.2 a contradiction to the maximality of the solution KB
K∗. Thus, D = K \ K∗ is a minimal diagnosis w.r.t. 〈K,B,P ,N 〉R.

Ad (ii): Let D be a minimal diagnosis w.r.t. 〈K,B,P ,N 〉R. Then, by Definition 3.5, there is an
extension E ∈ EX(D)〈K,B,P,N 〉R such that K∗ := (K \ D) ∪ E is a solution KB. Let us assume that
E ∩ D 6= ∅. We can rewrite K∗ as K∗ = (K \ D) ∪ (E ∩ D) ∪ (E \ D). Since ∅ ⊂ E ∩ D ⊆ D, we
have that (K \ D) ∪ (E ∩ D) ⊃ K \ D. Thus, there is a D′ := D \ (E ∩ D) ⊂ D and an extension
E ′ ∈ EX(D′)〈K,B,P,N 〉R such that E ′ := E \ D such that K∗ = (K \ D′) ∪ E ′. As K∗ is a solution KB,
this is a contradiction to the minimality of D. Therefore, (*) E ∩ D = ∅ for all E ∈ EX(D)〈K,B,P,N 〉R
must hold.

Let E be any extension w.r.t.D and 〈K,B,P ,N 〉R. Then we can writeK∩K∗ = K∩((K\D)∪E) =
(K\D)∪(K∩E) and by (*) alsoK∩E = ((K\D)∪D)∩E = ((K\D)∩E)∪(D∩E) = (K\D)∩E ⊆ K\D.
Consequently, (**) K ∩ K∗ = K \ D. Now, assume that there is a solution KB K∗k with the property
K∩K∗k ⊃ K∩K∗. By (**), this implies that K∩K∗k ⊃ K \D which means that there is a Dk ⊂ D ⊆ K
such that K ∩ K∗k = K \ Dk ⊆ K∗k. Now K∗k is a solution KB w.r.t. 〈K,B,P ,N 〉R and can be written as
K∗k = (K∗k ∩ K) ∪ (K∗k \ K) = (K \ Dk) ∪ (K∗k \ K). By Dk ⊆ K and since there is a set of formulas
E := K∗k \ K such that (K \ Dk) ∪ E ∈ Sol〈K,B,P,N 〉R we have that E ∈ EX(Dk)〈K,B,P,N 〉R must hold
wherefore Dk is a diagnosis by Definition 3.5. This, however, is a contradiction to the minimality of D.
Therefore, K∗ = (K \ D) ∪ E must be a maximal solution KB for any E ∈ EX(D)〈K,B,P,N 〉R .

By claim (i), Proposition 3.6 assures that each maximal solution KB can be found by investigating
all minimal diagnoses w.r.t. a DPI. Claim (ii) shows that any solution KB built from a minimal diagnosis
is indeed maximal. Thus, finding a suitable minimal diagnosis solves the problem of parsimonious KB
debugging completely.

3.2 Background Knowledge
The general debugging setting considered in this work envisions the opportunity for the user to specify
some background knowledge B, i.e. a set of formulas that are known (or strongly assumed) to be correct

3.2. BACKGROUND KNOWLEDGE 35

in advance. Note that, in order for the debugging procedure to work soundly, before some background
knowledge is incorporated into the DPI, it is necessary to verify its conformance with the postulated
requirements R (cf. Definition 3.1).We can distinguish between two basic scenarios how background
knowledge can be leveraged: (1) We have an initial KB Kinit and we know or want to assume that a
subset of formulas in Kinit is correct, i.e. B ∩ Kinit 6= ∅, and (2) we have an initial KB Kinit and some
background knowledge disjoint from Kinit, i.e. B ∩ Kinit = ∅.

Example use cases for scenario (1) are situations where a user knows that a subset of formulas B in K
is definitely sound or wants to restrict the scope of debugging to a particular part of the KB. Concretely,
this may occur, for instance, when B is the result, i.e. the finally output solution KB K∗, of a former
successful debugging session and K is a further development of K∗, or in a collaborative setting where
many users are involved in the development of K and one of them may want to debug only formulas
authored by herself and not touch foreign formulas, which are thus assumed as correct and assigned to B.
In (1), Kinit ∩ B and Kinit \ B partition the original KB Kinit into a set of correct and a set of possibly
incorrect formulas, respectively. The corresponding DPI would thus be 〈Kinit \ B,B,P ,N 〉R for some
sets of test cases P and N . Note that this DPI does meet the necessary condition (cf. Definition 3.1)
K∩B = ∅ as (Kinit \ B)∩B = ∅. So, in the debugging session, onlyK := Kinit \ B is used to search for
diagnoses, which can reduce the search space substantially. Though, B is incorporated in the calculations
throughout the KB debugging procedure, but no formula in B may take part in a diagnosis. The advantage
of this over simply not considering the formulas in B at all is, that the semantics of formulas inB is not lost
and can be exploited, e.g., to grant the desired semantic properties also in the context of existing approved
knowledge or to facilitate a greater choice of queries to interact with a user, which can be exploited to ask
queries with lower cardinality or involving less complex formulas (see Chapter 7 for details on queries).

In scenario (2), the corresponding DPI looks like 〈Kinit,B,P ,N 〉R for some sets of test cases P and
N . An application of this scenario could be the reuse of an existing KB to support an increase of the fault
detection rate and thus more sustainable debugging. For example, when formulating a KB Kinit about a
domain, a reference KB B in that domain that is thoroughly curated by experts could be leveraged. The
use of such a KB B is possible both if Kinit is correct as a standalone KB, i.e. Kinit is already a solution
KB for 〈Kinit, ∅,P ,N 〉R, or not. In the first case, Kinit might still contain formulations conflicting with
B. In this vein, in both cases, faults may be detected that would have been missed otherwise.

Chapter 4

Diagnosis Computation

In this chapter we describe methods for computing minimal diagnoses w.r.t. a given admissible DPI,
provide an in-depth theoretical analysis of these methods including correctness proofs and illustrate the
presented algorithms by various examples.

4.1 Conflict Sets
The search space for minimal diagnoses w.r.t. 〈K,B,P ,N 〉R the size of which is in general O(2|K|) (if
all subsets of the KB K are investigated) can be reduced to a great extent by exploiting the notion of a
conflict set [Rei87, dKW87, SFFR12].

Definition 4.1 (Conflict Set). Let 〈K,B,P ,N 〉R be a DPI. A set of formulas C ⊆ K is called a conflict set
w.r.t. 〈K,B,P ,N 〉R, written as C ∈ aC〈K,B,P,N 〉R , iff C ∪ UP is not a solution KB w.r.t. 〈K,B,P ,N 〉R.
A conflict set C is minimal, written as C ∈mC〈K,B,P,N 〉R , iff there is no C′ ⊂ C such that C′ is a conflict
set.

Simply put, a (minimal) conflict set is a (minimal) faulty KB that is a subset of K. That is, a conflict
set is one source causing the faultiness of K in the context of B ∪ UP . In other words, a valid KB may
not include all the formulas of any conflict set.

Corollary 4.1. C ⊆ K is a conflict set w.r.t. 〈K,B,P ,N 〉R iff C is invalid w.r.t. 〈·,B,P ,N 〉R.

Proof. If C is a conflict set w.r.t. 〈K,B,P ,N 〉R, then C∪UP is not a solution KB, i.e. C∪B∪UP violates
some r ∈ R, some p ∈ P or some n ∈ N . By extensiveness of L, C ∪ B ∪ UP |= p for all p ∈ P , so
C ∪ B ∪ UP must violate some r ∈ R or entail some n ∈ N . Thus, by Definition 3.3, C is invalid w.r.t.
〈·,B,P ,N 〉R.

If C ⊆ K is not valid w.r.t. 〈·,B,P ,N 〉R, then C∪B∪UP violates some r ∈ R or entails some n ∈ N ,
wherefore C∪UP /∈ Sol〈K,B,P,N 〉R . Hence, by Definition 4.1, C is a conflict set w.r.t. 〈K,B,P ,N 〉R.

Consequently, a conflict set C along with the background knowledge B either violates some r ∈ R,
entails some n ∈ N , or yields to a violation of some r ∈ R or entailment of some n ∈ N if all formulas
UP comprised by the positive test cases are added to C. Any KB K that is not valid w.r.t. 〈·,B,P ,N 〉R is
itself a conflict set and includes at least one minimal conflict set.

Proposition 4.1. Let 〈K,B,P ,N 〉R be a DPI. Then, K is not valid w.r.t. 〈·,B,P ,N 〉R iff K includes at
least one minimal conflict set w.r.t. 〈K,B,P ,N 〉R.

37

38 CHAPTER 4. DIAGNOSIS COMPUTATION

Proof. “⇒”: LetK be not valid w.r.t. 〈·,B,P ,N 〉R. ThenK∪UP is not a solution KB w.r.t. 〈K,B,P ,N 〉R,
which means thatK is a conflict set w.r.t. 〈K,B,P ,N 〉R by definition 4.1. So, eitherK is a already a min-
imal conflict set or there must be some subset C ⊂ K which is a minimal conflict set w.r.t. 〈K,B,P ,N 〉R.

“⇐”: Let K include at least one minimal conflict set w.r.t. 〈K,B,P ,N 〉R. Then, by Definition 4.1,
there is some C ⊆ K such that C ∪ UP is not a solution KB. Hence, by the monotonicity of L, K ∪ UP

cannot be a solution KB either. So, by Proposition 3.1, K is not valid w.r.t. 〈·,B,P ,N 〉R.

As a consequence, a complete and sound method for computing minimal conflict sets w.r.t. a DPI
〈K,B,P ,N 〉R can be used to decide validity of K w.r.t. 〈·,B,P ,N 〉R. Moreover, such a method can
be used to decide whether a given DPI is admissible, i.e. has solutions. For, if a DPI is admissible and
the given KB is invalid w.r.t. this DPI, then there cannot be an empty conflict set. In other words, if the
empty KB is a conflict set – or, equivalently, an empty conflict set exists w.r.t. a DPI –, then the DPI is
not admissible.

Proposition 4.2. Let 〈K,B,P ,N 〉R be a DPI and K be invalid w.r.t. 〈·,B,P ,N 〉R. Then, there exists a
minimal conflict set C 6= ∅ w.r.t. 〈K,B,P ,N 〉R iff 〈K,B,P ,N 〉R is admissible.

Proof. SinceK is not valid w.r.t. 〈·,B,P ,N 〉R, there must be at least one conflict set w.r.t. 〈K,B,P ,N 〉R
by Proposition 4.1. Assume that there exists a minimal conflict set C 6= ∅ w.r.t. 〈K,B,P ,N 〉R. This can
be true iff ∅ is not a (minimal) conflict set w.r.t. 〈K,B,P ,N 〉R. By Corollary 4.1 and Definition 3.3, this
is equivalent to the fact that ∅ ∪ B ∪ UP ≡ B ∪ UP does not violate any r ∈ R and does not entail any
n ∈ N . By Proposition 3.4, this holds iff there exists a diagnosis w.r.t. 〈K,B,P ,N 〉R. By Definition 3.6,
this is equivalent to 〈K,B,P ,N 〉R being admissible.

The following proposition provides information about the relationship between (minimal) conflict
sets and the background knowledge as well as the positive test cases.

Proposition 4.3. Let 〈K,B,P ,N 〉R be a DPI and C a conflict set w.r.t. 〈K,B,P ,N 〉R. Then the following
holds:

1. C ∩ B = ∅.

2. If C is a minimal conflict set w.r.t. 〈K,B,P ,N 〉R, then C ∩ UP = ∅.

Proof. 1): C ∩ B = ∅ holds since C ⊆ K (Definition 4.1) and K ∩ B = ∅ (Definition 3.1).
2): Assume that C is a minimal conflict set w.r.t. 〈K,B,P ,N 〉R and C ∩ UP 6= ∅. Since C is a

conflict set, we have that C ∪ B ∪ UP violates some r ∈ R or entails some n ∈ N by Corollary 4.1
and Definition 3.3. Since (C \ UP) ∪ B ∪ UP = C ∪ B ∪ UP and (C \ UP) ⊂ C, this implies that
(C \ UP) is a conflict set w.r.t. 〈K,B,P ,N 〉R which in turn implies that C /∈ mC〈K,B,P,N 〉R which is a
contradiction.

4.2 Conflict Sets versus Justifications
The notion of a conflict set is closely related to the notion of a justification [HPS08, HPS09, HPS10,
Hor11, HBP11, HPS12a] which is frequently adopted in the field of the Semantic Web (cf. Section 2.2)
in order to find minimal explanations for particular entailments in DL ontologies. Thus, the paradigm
of a justification can be a useful aid in the debugging of faulty ontologies [Kal06]. Note that sometimes
justifications are referred to as MinAs (Minimal Axiom Sets) [BP08] or MUPS (Minimal Unsatisfiabil-
ity Preserving Sub-TBoxes) [SHCH07] where the latter term is mostly used in the context of ontology
debugging. The notion of a (minimal) conflict set, on the other hand, has been mainly adopted in the
Diagnosis community [Rei87, dKW87, PW03, WSM02, FFJS04]. In this section we want to establish

4.2. CONFLICT SETS VERSUS JUSTIFICATIONS 39

a relationship between these two widely used instruments used for debugging. It will turn out that both
terms are strongly related, but in debugging systems like the ones proposed in our work conflict sets are
better suited as they automatically focus only on the minimal explanations for faults in a KB.

For example, the author of [Kal06] i.a. discusses the use of justifications to aid the debugging of inco-
herent ontologies, i.e. ontologies that include unsatisfiable concepts (cf. Section 2.2). If there are multiple
unsatisfiable concepts, then some of these might be only unsatisfiable due to the unsatisfiability of an-
other concept. Assume, for instance, an incoherent DL KBK := {A < B,B v E u ¬E}. InK there are
two unsatisfiable concepts A and B where A’s unsatisfiability is dependent on B’s unsatisfiability. Using
the terminology of [Kal06, Hor11], A would be called a purely derived unsatisfiable concept whereas B
would be called a root unsatisfiable concept. Because the (only) justification for the unsatisfiability of A
is JA := K whereas the (only) justification for the unsatisfiability of B is JB = {B v E u ¬E} ⊂ JA.
Therefore, [Kal06] proposes to resolve root unsatisfiable concepts first since this might resolve some
(purely) derived concepts as well, as in this example. However, finding out whether a concept is root
or derived involves the computation of justifications for all unsatisfiable concepts in a KB. On the other
hand, reliance on minimal conflict sets would implicate a direct focus on the faultiness (in this example:
the incoherency) of the KB and not necessarily on the exact explanations of all unsatisfiable concepts that
cause the incoherency. In this vein, no justification for a purely derived concept can be a minimal conflict
set. So, the computation of minimal conflict sets involves only the determination of those justifications
for faults that must necessarily be resolved. Therefore, for the given example, the only minimal conflict
set is JB .

A justification for a given formula (axiom) relative to a KB is a (subset-)minimal subset of the KB
that entails the given formula.

Definition 4.2 (Justification for a Formula). [KPHS07] Let K be a KB and α a formula, both over L.
Then J ⊆ K is called a justification for α w.r.t. K, written as J ∈ Just(α,K), iff J |= α and for all
J ′ ⊂ J it holds that J ′ 6|= α.

Since we consider test cases which are sets of formulas over L, we generalize the definition of a
justification as follows:

Definition 4.3 (Justification for a Set of Formulas). Let K, K′ be KBs over L. Then J ⊆ K is called
a justification for K′ w.r.t. K, written as J ∈ Just(K′,K), iff J |= K′ and for all J ′ ⊂ J it holds that
J ′ 6|= K′.16

In order to express the connection between justifications and conflict sets, we require yet another
generalization of this definition. To this end, the following definition characterizes a justification for a set
X of KBs relative to a KB K as a (subset-)minimal subset of K such that this subset entails some KB in
X .

Definition 4.4 (Justification for a Set of Sets of Formulas). Let K be a KB over L and X a set of KBs
over L. Then J ⊆ K is called justification for X w.r.t. K, written as J ∈ Just(X,K), iff J |= K′ for
some K′ ∈ X and for all J ′ ⊂ J it holds that J ′ 6|= K′′ for all K′′ ∈ X .

Based on Definition 4.4, the relation between conflict sets and justifications is captured by the fol-
lowing Proposition 4.4. Intuitively, any conflict set w.r.t. 〈K,B,P ,N 〉R is the part of a justification for a
fault that is relevant for the debugging task, where fault refers to an inconsistency (and/or incoherency)
and/or a negative test case entailed by K ∪ B ∪ UP . Since debugging focuses on the deletion of KB
formulas only, “relevant” in this context refers to the subset of the justification that does not contain any
sentences in B and UP , but solely sentences from K. Importantly, there may be justifications, in general,
the relevant subset of which is not a minimal conflict set. The reason why this case can arise in spite of

16Remember that J |= K′ means that J |= ax for each ax ∈ K′ (cf. Remark 3.1).

40 CHAPTER 4. DIAGNOSIS COMPUTATION

the set-minimality of justifications is that the relevant part of a justification (for some set of sentencesK1,
e.g. a negative test case n1 ∈ N) may be a superset of the relevant part of another justification (for some
other set of sentences K2, e.g. another negative test case n2 ∈ N) whereas both justifications are not in
a subset-relationship (i.e. contain different sentences from B and/or UP). This circumstance is illustrated
by the following example:

Example 4.1 Let a DPI 〈K,B,P ,N 〉R be defined as

K := {B v E,E v ∃r.G}
B := {A v B}
N := {{A v E} , {B v ∃r.G}}
P := ∅
R := {consistency}

We have thatK∪B∪UP is consistent and thus no requirement in R is violated. But, the two negative test
cases are both entailed byK∪B∪UP whereforeK is invalid w.r.t. 〈·,B,P ,N 〉R. The set of justifications
for the violation of the first negative test case is Jn1

= {{A v B,B v E}}; for the second one it is
Jn2

= {{B v E,E v ∃r.G}}. The relevant subset of the justification J1 in Jn1
is J1,rel = {B v E}

(since {A v B} is in B) whereas the relevant subset of the justification J2 in Jn2 is J2,rel = {B v E,
E v ∃r.G}, i.e. J1,rel ⊂ J2,rel despite that there is no set subset-relationship between J1 and J2. Hence,
there are two justifications that explain the invalidity of K w.r.t. 〈·,B,P ,N 〉R, but there is only one
minimal conflict set C = J1,rel w.r.t. 〈K,B,P ,N 〉R.

So, generally, the set of minimal conflict sets w.r.t. a DPI is a subset of the set of justifications for
faults in K ∪ B ∪ UP , which is due to the focus on just the parts of justifications that are relevant for the
KB debugging task.

Proposition 4.4. Let 〈K,B,P ,N 〉R be a DPI. Additionally, let

(a) X := {{Ai v ⊥} |Ai ∈ NC} ∪ {{ri v ⊥} | ri ∈ NR} ∪ {{> v ⊥}} ∪N
if R = {consistency, coherency} and

(b) X := {{> v ⊥}} ∪N if R = {consistency}.17

Then the following holds:

1. If C is a minimal conflict set w.r.t. 〈K,B,P ,N 〉R, then there is some J ∈ Just(X,K ∪ B ∪ UP)
such that (J ∩ K) \ UP = C.

2. For all J ∈ Just(X,K ∪ B ∪ UP) it is true that C := (J ∩ K) \ UP is a conflict set w.r.t.
〈K,B,P ,N 〉R, but not necessarily a minimal one.

Proof. 1): Assume that C ∈mC〈K,B,P,N 〉R and for all J ∈ Just(X,K∪B ∪UP) it holds that (J ∩K) \
UP 6= C. There are two cases to distinguish between: (a) there is some sentence in (J ∩ K) \ UP that is
not in C and (b) there is some sentence in C that is not in (J ∩ K) \ UP .

Let us first assume (a), i.e. for all J ∈ Just(X,K ∪ B ∪ UP) it holds that there is some sentence ax
in (J ∩ K) \ UP that is not in C. Additionally, assume there is a J ∈ Just(X,K ∪ B ∪ UP) such that
J ⊆ C ∪ B ∪ UP . We can write J as J = S1 ∪ S2 ∪ S3 for S1 := [(J ∩ K) \ UP], S2 := [J ∩ B] and
S3 := [J∩UP]. Since J = S1∪S2∪S3 ⊆ C∪B∪UP it must hold in particular that S1 ⊆ C∪B∪UP and

17We use DL notation in this proposition since justifications, as argued, are mostly applied to DL KBs. An equivalent formulation
of the proposition for FOL or PL is straightforward (cf. Example 2.1 and Remark 3.2). Note that for PL only (b) is relevant since
coherency is not defined for PL. Further, recall that NC and NR are defined in Section 2.2.

4.3. RELATION BETWEEN CONFLICT SETS AND DIAGNOSES 41

therefore ax ∈ C ∪ B ∪UP . However, ax /∈ C by assumption, ax /∈ B since ax ∈ K and B ∩K = ∅, and
ax /∈ UP since ax ∈ S1 and S1∩UP = ∅. This is a contradiction. Hence, for all J ∈ Just(X,K∪B∪UP)
it holds that J 6⊆ C ∪ B ∪ UP . Since X captures all r ∈ R and n ∈ N , we can conclude that C is not a
conflict set w.r.t. 〈K,B,P ,N 〉R which is a contradiction to C ∈mC〈K,B,P,N 〉R .

Let us now assume (b), i.e. for all J ∈ Just(X,K ∪ B ∪ UP) it holds that there is some sentence ax
in C that is not in (J ∩ K) \ UP . Since C is a conflict set and since X captures all r ∈ R and n ∈ N ,
we have that C ∪ B ∪ UP |= K′ for some K′ ∈ X . So, there must be some J0 ∈ Just(X,K ∪ B ∪ UP)
such that J0 ⊆ C ∪B ∪UP . As C ∈mC〈K,B,P,N 〉R , there cannot be any J ∈ Just(X,K∪B ∪UP) with
J ⊆ C′ ∪B ∪UP for arbitrary C′ ⊂ C. This must hold in particular for J0 which implies that J0 ∩ C = C
which is equivalent to C ⊆ J0. As (1) C ⊆ K (Definition 4.1) and, by Proposition 4.3 and by the fact that
C ∈ mC〈K,B,P,N 〉R , (2) C ∩ UP = ∅, we can conclude that C ⊆ (J0 ∩ K) \ UP which is a contradiction
since there cannot be a ax in C that is not in (J0 ∩ K) \ UP .

2): If J ∈ Just(X,K∪B∪UP), then, by Definition 4.4, J |= K′ for someK′ ∈ X and J ⊆ K∪B∪UP .
So, [(J ∩ K) \ UP] ∪ B ∪ UP = (J ∩ K) ∪ B ∪ UP ⊇ J wherefore [(J ∩ K) \ UP] ∪ B ∪ UP |= K′ by
monotonicity of L. As K′ ∈ X and X captures all the reasons why some r ∈ R or some n ∈ N may not
be fulfilled (cf. the discussion in Chapter 3), we have that [(J ∩K)\UP]∪B∪UP violates some r ∈ R or
entails some n ∈ N . This implies that [(J ∩K) \UP] ∪UP /∈ Sol〈K,B,P,N 〉R . Since (J ∩K) \UP ⊆ K
is also true, (J ∩ K) \ UP ∈ aC〈K,B,P,N 〉R by Definition 4.1.

To see that (J ∩ K) \ UP /∈ mC〈K,B,P,N 〉R holds in general, reconsider Example 4.1 where (J2 ∩
K) \ UP = J2 ⊃ C holds for the justification J2 and the minimal conflict set C.

4.3 The Relation between Conflict Sets and Diagnoses
A minimal conflict set has the property that deletion of any formula in it yields a set of formulas which is
correct in the context of B, P , N and R.

Proposition 4.5. If C is a minimal conflict set w.r.t. 〈K,B,P ,N 〉R, then C′ is valid w.r.t. 〈·,B,P ,N 〉R
for each C′ ⊂ C.

Proof. Since C ∈ mC〈K,B,P,N 〉R , it must hold that C′ /∈ aC〈K,B,P,N 〉R . Then, by Corollary 4.1, C′ is
valid w.r.t. 〈·,B,P ,N 〉R.

Hence, by deletion of at least one formula from each minimal conflict set w.r.t. 〈K,B,P ,N 〉R, a valid
KB can be obtained fromK. Thus, a solution KB (K\D)∪UP can be obtained by calculation of a hitting
set D of all minimal conflict sets in mC〈K,B,P,N 〉R . The Hitting Set problem is defined as follows:

Definition 4.5 (Hitting Set). Let S = {S1, . . . , Sn} be a set of sets. Then, H is called a hitting set of S
iff H ⊆ US and H ∩ Si 6= ∅ for all i = 1, . . . , n.

A hitting set H of S is minimal iff there is no hitting set H ′ of S such that H ′ ⊂ H .

Proposition 4.6. [FS05] A (minimal) diagnosis w.r.t. the DPI 〈K,B,P ,N 〉R is a (minimal) hitting set of
all minimal conflict sets w.r.t. 〈K,B,P ,N 〉R.

Now, we want to contemplate two example DPIs and analyze them regarding the their minimal conflict
sets and minimal diagnoses:

Example 4.2 In this example, we analyze the PL DPI 〈K,B,P ,N 〉R given by Table 15.3. There are
two minimal conflict sets w.r.t. 〈K,B,P ,N 〉R, i.e. mC〈K,B,P,N 〉R = {C1, C2} = {〈1, 2, 5〉 , 〈1, 2, 7〉}.18

18Please notice that we sometimes write i instead of ax i for brevity when it is clear what is meant. We will do so in many other
examples as well.

42 CHAPTER 4. DIAGNOSIS COMPUTATION

Why is C1 a conflict set w.r.t. 〈K,B,P ,N 〉R? We recall Definition 4.1 and argue as follows to de-
duce the entailment C1 |= n1 where n1 ∈ N (left of the colon: the formulas used in the deduction are
underlined; right of the colon: the relevant implications are underlined):

ax 1 : A → E

ax 2 : X ∨ E → F ∧ Y ∧ Z
ax 5 : Y → ¬A

ax 1, ax 2, ax 5 : A → ¬A ≡ ¬A ∨ ¬A ≡ ¬A
n1 ∈ N : ¬A

Minimality of C2 is obvious from this argumentation. i.e. we cannot deduce n1 if any one of the formulas
1, 2 or 5 is omitted, and there is no other fault except for the violation of n1.

Why is C2 a conflict set w.r.t. 〈K,B,P ,N 〉R? We recall Definition 4.1 and argue as follows to deduce
the entailment C2 ∪ B |= n1 where n1 ∈ N (left of the colon: the formulas used in the deduction are
underlined; right of the colon: the relevant implications are underlined):

ax 1 : A → E

ax 2 : X ∨ E → F ∧ Y ∧ Z
ax 7 : Z → G

(G → ¬A) ∈ B : G → ¬A
ax 1, ax 2, ax 7,B : A → ¬A ≡ ¬A ∨ ¬A ≡ ¬A

n1 ∈ N : ¬A

Minimality of C2 is obvious from this argumentation. i.e. we cannot deduce n1 if any one of the formulas
1, 2 or 7 is omitted, and there is no other fault except for the violation of n1.

There are no further minimal conflict sets w.r.t. 〈K,B,P ,N 〉R. This is fairly easy to see since

• K ∪ B ∪UP = K ∪B cannot be inconsistent due to the fact that the only negative literal occurring
on the righthand side of an implication is ¬A and A does not occur at the righthand side of any
implication in K ∪ B,

• there is no other way to deduce n1 than using a superset of the formulas in C1 or C2 and

• n1 is the only negative test case in N .

Hence, the set of all minimal diagnoses mD〈K,B,P,N 〉R = {D1,D2,D3} = {[1], [2], [5, 7]} is obtained
by computing all minimal hitting sets of mC〈K,B,P,N 〉R = {C1, C2} (cf. Proposition 4.6).

Example 4.3 In this example, we analyze the DL DPI 〈K,B,P ,N 〉R given by Table 4.2. There are
four minimal conflict sets w.r.t. 〈K,B,P ,N 〉R, i.e.

mC〈K,B,P,N 〉R = {C1, C2, C3, C4} = {〈1, 2, 5〉 , 〈2, 4, 6〉 , 〈1, 3, 4〉 , 〈1, 5, 6, 8〉}

Why is C1 a conflict set w.r.t. 〈K,B,P ,N 〉R? We recall Definition 4.1 and argue as follows to deduce the
entailment C1 |= n1 where n1 ∈ N (left of the colon: the formulas used in the deduction are underlined;

4.3. RELATION BETWEEN CONFLICT SETS AND DIAGNOSES 43

right of the colon: the relevant implications are underlined):

ax 1 : A v B

ax 2 : B v G

ax 5 : G v K

ax 1, ax 2, ax 5 : A v K

n1 ∈ N : A v K

Minimality of C1 is follows from this argumentation. i.e. we cannot deduce n1 if any one of the formulas
1, 2 or 5 is omitted, and from the fact that we cannot deduce an incoherency (r2), inconsistency (r1) or
the entailment of any other negative test case n ∈ N for any KB C′1 ∪ B ∪ UP for any C′1 ⊂ C1.

Why is C2 a conflict set w.r.t. 〈K,B,P ,N 〉R? We recall Definition 4.1 and argue as follows to deduce
that C2 ∪ B is incoherent and thus violates the requirement r2 ∈ R (left of the colon: the formulas used
in the deduction are underlined; right of the colon: the relevant implications are underlined):

ax 2 : B v G

ax 6 : G v ∃r.F
(1) : ax 2, ax 6 : B v ∃r.F

ax 4 : B v ∀r.H
(H v ¬F) ∈ B : H v ¬F

(2) : ax 4,B : B v ∀r.¬F
(1) and (2) : B v ⊥

r1 ∈ R : B 6v ⊥

Since we cannot deduce an incoherency (r2), inconsistency (r1) or the entailment of any negative test
case n ∈ N for any KB C′2 ∪ B ∪ UP for any C′2 ⊂ C2, the minimality of C2 follows.

Why is C3 a conflict set w.r.t. 〈K,B,P ,N 〉R? We recall Definition 4.1 and argue as follows to deduce
that C3 ∪B ∪UP is inconsistent and thus violates the requirement r1 ∈ R (left of the colon: the formulas
used in the deduction are underlined; right of the colon: the relevant implications are underlined):

A(x) ∈ B : A(x)

ax 1 : A v B

(1) : ax 1,B : B(x)

(2) : p1 ∈ P : r(x, y)

ax 4 : B v ∀r.H
(3) : (1) and ax 4 : H(y)

(4) : ax 3 : ¬H(y)

(3) and (4) : E

No inconsistency (r1) or incoherency (r2) can be derived and no negative test case n ∈ N is entailed
from any C′3 ∪ B ∪ UP for C′3 ⊂ C3. Hence, C3 is a minimal conflict set w.r.t. 〈K,B,P ,N 〉R.

Why is C4 a conflict set w.r.t. 〈K,B,P ,N 〉R? We recall Definition 4.1 and argue as follows to deduce
the entailment C4 ∪ B |= n2 where n2 ∈ N (left of the colon: the formulas used in the deduction are

44 CHAPTER 4. DIAGNOSIS COMPUTATION

underlined; right of the colon: the relevant implications are underlined):

ax 8 : L v G

ax 6 : G v ∃r.F
(1) : ax 6, ax 8 : L v ∃r.F

A(x) ∈ B : A(x)

(2) : ax 1,B : B(x)

(3) : ax 5 : G v K

(1) and (2) and (3) : L v ∃r.F, B(x), G v K

n1 ∈ N : L v ∃r.F, B(x), G v K

No inconsistency (r1) or incoherency (r2) can be derived and no negative test case n ∈ N is entailed
from any C′4 ∪ B ∪ UP for C′4 ⊂ C4. Thus, C4 is a minimal conflict set w.r.t. 〈K,B,P ,N 〉R.

Hence, the set of all minimal diagnoses mD〈K,B,P,N 〉R , obtained by computing all minimal hitting
sets of mC〈K,B,P,N 〉R = {C1, C2, C3, C4} (cf. Proposition 4.6), comprises ten minimal diagnoses Di for
i = 1, . . . , 10:

D1 = [1, 2] D2 = [1, 4]

D3 = [1, 6] D4 = [2, 3, 5]

D5 = [2, 3, 6] D6 = [2, 3, 8]

D7 = [2, 4, 6] D8 = [2, 4, 8]

D9 = [3, 5, 6] D10 = [4, 5]

Although the DPI 〈K,B,P ,N 〉R is very small in size, i.e. number of formulas occurring in it is very
small, the reader might agree that it is not trivial on the one hand (1) to realize which subsets of this KB
K are (minimal) conflict sets, (2) to see that or why a subset of this KB K along with the background
knowledge B and the union of the positive test cases UP is a (minimal) conflict set (cf. [HBP11]), and
(3) to assess that there are no further minimal conflict sets w.r.t. 〈K,B,P ,N 〉R. This example gives a little
bit of an impression that tool assistance in the debugging of KBs is inevitable especially for real-world
KBs that are huge in size and/or complex in terms of the expressivity of the used logic or in terms of their
“debugging properties”, i.e. large number and/or size of minimal conflict sets and/or minimal diagnoses.

A means to handle problems (1) and (3) is provided by some method for the computation of a min-
imal conflict set (e.g. QX given by Algorithm 1 below, see Section 4.4.1) coupled with a hitting set
tree algorithm (e.g. HS described by Algorithm 2 below, see Section 4.5) for the systematic compu-
tation of different minimal conflict sets, or other mechanisms such as the ALL_JUST_ALG presented
in [KPHS07] which computes all justifications for some particular entailment (but, some post-processing
of the justifications is necessary to obtain minimal conflict sets, cf. Section 4.2).

Problem (2) and its complexity for humans has been studied in [HBP11] with a focus on justifica-
tions in DL or OWL KBs. Since a minimal conflict set can be regarded as the relevant (i.e. potentially
faulty) part of a justification for some undesired entailment (i.e. a violated requirement or test case) as we
analyzed in Section 4.2, the cognitive complexity model proposed by [HBP11] applies also to minimal
conflict sets. Ways to facilitate the understanding of justifications for humans (that might be successfully
applied also to conflict sets) have been addressed in [HPS10, HPS09, HPS08]. Moreover, there is an
ontology editing browser SWOOP [KPS+06] equipped with a strikeout feature [Kal06] that highlights
parts of justifications that are relevant for the entailment by striking out all irrelevant parts. This is more
or less the automation of our analyses of the conflict sets by underlining the relevant parts of the formulas
in this example and Example 4.2.

4.4. METHODS FOR DIAGNOSIS COMPUTATION 45

i ax i K B

1 A→ E •
2 X ∨ E → F ∧ Y ∧ Z •
3 F → B •
4 B → X •
5 Y → ¬A •
6 B → Z •
7 Z → G •
8 G→ ¬A •

i pi ∈ P

× ×

i ni ∈ N

1 ¬A

i ri ∈ R

1 consistency

Table 4.1: Propositional Logic Example DPI

4.4 Methods for Diagnosis Computation

Two common methods employed for the computation of (minimal) diagnoses [SFFR12, RSFF13] are
the QuickXPlain algorithm [Jun04] (in short QX) and a hitting set search tree [Rei87, GSW89] (in short
HS). Thereby, QX serves as a deterministic method for computing one minimal conflict set w.r.t. a given
DPI 〈K,B,P ,N 〉R per call. Since a diagnosis is a hitting set of all minimal conflict sets, more than
one minimal conflict set is generally required to compute a diagnosis. Due to its determinism, however,
QX always computes the same minimal conflict set for the same input DPI. Thus, in order to compute
different (or all) minimal conflict sets, the input to QX needs to be varied accordingly. This can be done
by means of HS which serves as a search tree to systematically and successively explore all minimal
conflict sets w.r.t. an initially given DPI. Note that often not all minimal conflict sets w.r.t. a DPI are
necessary to obtain a minimal diagnosis w.r.t. this DPI. This is the case when different minimal conflict
sets overlap, i.e. have a non-empty intersection. In the extreme case, when all minimal conflict sets w.r.t.
a DPI share some formulas, then the computation of any single minimal conflict set can suffice to obtain
a minimal diagnosis, which is actually even a minimum cardinality diagnosis.

Another approach for computing a minimal conflict set (or justification) is the “expand-and-shrink”
algorithm presented in [KPHS07]. However, empirical evaluations and a theoretical analysis of the best
and worst case complexity of the “expand-and-shrink” method compared to QX performed in [SFJ08]
revealed that the latter is preferable over the former.

Also, alternative strategies for the computation of minimal diagnoses have been suggested. One
common method is to avoid the indirection of diagnosis computation via minimal conflict sets and use
algorithms that determine diagnoses directly [SU06], i.e. without the necessity to compute conflict sets.
This approach has been applied for the non-interactive debugging of ontologies [DQPS11] and con-
straints [FSZ11]. In our previous work, we adopted such a direct technique for the interactive debugging
of KBs [SFRF14c]. The reason why we stick to the conflict-based approach in this work is that we want
to present best-first algorithms that figure out minimal diagnoses in descending order of their probability.
This is not (systematically) realizable with a direct approach.

46 CHAPTER 4. DIAGNOSIS COMPUTATION

i ax i K B

1 A v B •
2 B v G •
3 ¬H(y) •
4 B v ∀r.H •
5 G v K •
6 G v ∃r.F •
7 A(x) •
8 L v G •
9 H v ¬F •

i pi ∈ P

1 r(x, y)

i ni ∈ N

1 A v K

2 L v ∃r.F,B(x), G v K

i ri ∈ R

1 consistency

2 coherency

Table 4.2: Description Logic Example DPI

4.4.1 Computation of a Minimal Conflict Set
The QX algorithm takes a DPI 〈Korig,Borig,P ,N 〉R over some monotonic logic L as input and returns
a minimal conflict set C ⊆ Korig w.r.t. 〈Korig,Borig,P ,N 〉R as output, if some conflict set exists for the
DPI, and ’no conflict’ otherwise.

Monotonic Properties. Basically, QX can be employed to find for an input set X a set-minimal subset
Xmin ⊆ X that has a certain property prop for problems of completely different nature such as propo-
sitional unsatisfiability or over-constrainedness of constraint satisfaction problems. The only postulated
prerequisite for QX to work correctly is that prop is a monotonic property. A property is monotonic if
and only if the binary function that returns 1 if the property holds for the input set and 0 otherwise is a
monotonic function.

Definition 4.6 (Binary Monotonic Function). Let X be a set and f : 2X → {0, 1} be a binary function
defined for all subsets of X . Then, f is monotonic iff

∀X ′, X ′′ ⊆ X : X ′ ⊂ X ′′ ∧ f(X ′) = 1 =⇒ f(X ′′) = 1

So, prop is monotonic iff, given that prop holds for some set X ′, it follows that prop also holds
for any superset X ′′ of X ′. Note that, by simple logical transformation, an equivalent statement can be
derived from Definition 4.6; namely that, given that prop does not hold for some set X ′′, it follows that
prop does not hold for any subset X ′ of X ′′ either.

As inconsistency and incoherency as well as the entailment of some n ∈ N over some monotonic
language L are clearly monotonic properties, the following proposition holds.

Proposition 4.7. Let 〈K,B,P ,N 〉R be a DPI. Then, the invalidity of K′ ⊆ K w.r.t. 〈·,B,P ,N 〉R (as per
Definition 3.3) is a monotonic property.

4.4. METHODS FOR DIAGNOSIS COMPUTATION 47

By Corollary 4.1, a (minimal) conflict set w.r.t. 〈K,B,P ,N 〉R is a (minimal) invalid sub-KB of K
w.r.t. 〈·,B,P ,N 〉R. Therefore:

Corollary 4.2. Let 〈K,B,P ,N 〉R be a DPI. Then, being a conflict set w.r.t. 〈K,B,P ,N 〉R is a monotonic
property.

Thus, QX is applicable for the problem of finding a minimal conflict set w.r.t. a DPI. As we shall see
later in Chapter 8, another monotonic property will enable us to apply QX also for the minimization of
queries asked to an interacting user in the interactive debugging of KBs.

How QX (Algorithm 1) Works. After verifying that the trivial cases, i.e. Korig is already a valid KB
w.r.t. 〈·,Borig,P ,N 〉R or Korig = ∅, are not met, a non-empty minimal conflict set w.r.t. 〈Korig,Borig,
P ,N 〉R must exist. So, the algorithm enters the recursive procedure QX′(∅, 〈Korig,Borig,P ,N 〉R). Note
that the parameters P ,N ,R of QX′ are used for validity tests (ISKBVALID, line 9) only and are main-
tained invariant during the entire recursive execution. In case Korig is not a singleton, i.e. it does not
hold for sure that Korig is an element of a minimal conflict set w.r.t. 〈Korig,Borig,P ,N 〉R, the idea is to
apply a divide-and-conquer strategy to reduceKorig into two subproblems and solve one subproblem first,
i.e. find a minimal conflict set for this subproblem, and then the second subproblem. The union of the
minimal conflict sets found for the subproblems is then a minimal conflict set for the original problem.
This division into smaller problems is recursively executed for each subproblem until the trivial case, i.e.
the KB of the subproblem that is analyzed includes only one element, occurs. Then this element is an
element of a minimal conflict set w.r.t. the original problem.

Simply put, one can imagine that QX takes Korig, partitions it into K1 and K2 and first considers the
DPI with KB K2 and background knowledge B ∪K1 (line 16). If the latter already includes a conflict set
(second condition in line 9), then K2 can be safely discarded and does not need to be further considered.
Instead, K1 is further investigated, i.e. the DPI with KB K1,2 and background knowledge B∪K1,1 where
K1,1 and K2,2 partition K1. Notice that, in this way, |K2| sentences can be dismissed by a single call to
ISKBVALID which is the only function in Algorithm 1 that calls a reasoner.

If, on the other hand, B∪K1 includes no conflict set, K2 is partitioned intoK2,1 andK2,2 and the two
DPIs, the first with KB K2,2 and background knowledge B∪K1∪K2,1 and the second with KB K2,1 and
background knowledge B ∪K1 ∪ C2,2, are recursively analyzed where C2,2 is the result computed for the
first DPI.

This recursion is executed until encountering a trivial case, i.e. a leaf node of the recursion tree, along
each path. Then, the recursion unwinds by building the union of all leaf nodes, i.e. the union of all
returned sets for subproblems where a trivial case occurred.

The next example illustrates one execution of QX which computes one minimal conflict set:

Example 4.4 Let us consider the DL example DPI depicted by Table 4.3. We will now demonstrate
how a minimal conflict set is computed by Algorithm 1 (see Fig. 4.1). Since K is not the empty set and
not a valid KB w.r.t. the DPI (conditions in lines 4 and 2 are false), QX′(∅, 〈K,B,P ,N 〉R) is called in
line 7. This call is illustrated by the root node (node 1©) of the recursion tree given in Fig. 4.1 (whereas
the evaluations made by QX prior to this call are not depicted in the figure). Notice that each node in the
tree shows only the values of C, K and B since all other parameters P , N and R are invariant throughout
the entire execution of Algorithm 1.

Due to the fact that C = ∅ and K includes five formulas and is thus not a singleton, K = {ax 1, . . . ,
ax 5} is partitioned into K1 = {ax 1, ax 2, ax 3} and K2 = {ax 4, ax 5} and QX′ is recursively called in
line 16 with parameters C = K1, K = K2 and B = B ∪ {ax 1, ax 2, ax 3} which is expressed in the
figure by a left branch to node 2©. This call, however, returns ∅ directly since B ∪ {ax 1, ax 2, ax 3}
is already invalid w.r.t. 〈·, ∅,P ,N 〉R because B ∪ {ax 1, ax 2, ax 3} ∪ UP =

{
A(w), A(v), s(v, w)

}
∪{

A v B,B v E,B vD u ¬∃s.C
}
∪{{B(w)}} |= {¬C(w)} which is a negative test case, i.e. must not

48 CHAPTER 4. DIAGNOSIS COMPUTATION

Algorithm 1 QX: Computation of a Minimal Conflict Set

Input: a DPI 〈Korig,Borig,P ,N 〉R
Output: a minimal conflict set w.r.t. 〈Korig,Borig,P ,N 〉R

1: procedure QX(〈Korig,Borig,P ,N 〉R)
2: if ISKBVALID(Korig, (Borig,P ,N ,R)) then
3: return ‘no conflict’
4: else if Korig = ∅ then
5: return ∅
6: else
7: return QX′(∅, 〈Korig,Borig,P ,N 〉R)

8: procedure QX′(C, 〈K,B,P ,N 〉R)
9: if C 6= ∅ ∧ ¬ISKBVALID(B, 〈·, ∅,P ,N 〉R) then

10: return ∅
11: if |K| = 1 then
12: return K
13: k ← SPLIT(|K|)
14: K1 ← GET(K, 1, k)
15: K2 ← GET(K, k + 1, |K|)
16: C2 ← QX′(K1, 〈K2,B ∪ K1,P ,N 〉R)
17: C1 ← QX′(C2, 〈K1,B ∪ C2,P ,N 〉R)
18: return C1 ∪ C2

19: procedure ISKBVALID(K, 〈·,B,P ,N 〉R)
20: K′ ← K ∪ B ∪

⋃
p∈P p

21: if ¬VERIFYREQ(K′,R) then
22: return false

23: for n ∈ N do
24: if ENTAILS(K′,n) then
25: return false

26: return true

be entailed by a solution KB w.r.t. the input DPI (the parts of the formulas relevant for the entailment to
hold are underlined). Returning ∅ in this case means discarding K2 = {ax 4, ax 5}.

So, the algorithm opens a right branch from the root to node 3© by calling QX′ (line 17) with param-
eters C = ∅ (result of left branch), K = K1 = {ax 1, ax 2, ax 3} and B = B. During the execution of this
call K1 is partitioned into {ax 1, ax 2} (left branch to node 4©) and {ax 3} (right branch to node 5©). In
node 4©, it holds that B∪{ax 1, ax 2} can be extended to a solution KB by adding UP , i.e. B∪{ax 1, ax 2}
is valid. As it is already an established fact since the execution of node 2© that B ∪ {ax 1, ax 2, ax 3} is
invalid, it must be the case that ax 3 is an element of a minimal conflict set w.r.t. the input DPI (as there
is a conflict set w.r.t. the input DPI in {ax 1, ax 2, ax 3}, but there is none in {ax 1, ax 2}). The algorithm
accounts for that by checking whether K is a singleton (line 11) in which case it is guaranteed that K is
a subset of a minimal conflict set w.r.t. the input DPI. So, node 4© returns {ax 3}. This procedure is con-
tinued until each path from the root node reaches a node where a trivial case is met. Then the recursion
unwinds and, when arrived at the root node, the minimal conflict set 〈ax 1, ax 3〉 is returned.

That C := 〈ax 1, ax 3〉 is indeed a conflict set can be recognized easily by the underlinings in the
formulas given before. Minimality is given since B ∪ C ∪ UP is neither inconsistent nor incoherent
and the deletion of any formula from C breaks the entailment of n1. Hence, QX has returned a sound
output.

4.4. METHODS FOR DIAGNOSIS COMPUTATION 49

i ax i K B

1 A v B •
2 B v E •
3 B v D u ¬∃s.C •
4 C v ¬(D t E) •
5 D v ¬B •
6 A(w) •
7 A(v) •
8 s(v, w) •

i pi ∈ P

1 B(w)

i ni ∈ N

1 ¬C(w)

i ri ∈ R

1 consistency

2 coherency

Table 4.3: Description Logic Example DPI 2

The complexity of Algorithm 1 in terms of the number of calls to the function ISKBVALID, which
is the only place in the algorithm where a reasoning service is consulted, is captured by the following
proposition.

Proposition 4.8 (Complexity of QX). [Jun04] Let 〈K,B,P ,N 〉R be a DPI and the function SPLIT
(line 13 of Algorithm 1) be defined as SPLIT(n) = bn2 c where n is a natural number. Then, the worst
case number of calls to ISKBVALID during one call to QX(〈K,B,P ,N 〉R) is in O(|C| log |K||C|) where C
is the output of QX(〈K,B,P ,N 〉R).

For any other definition of the function SPLIT, the worst case number of ISKBVALID invocations gets
larger.

4.4.2 Correctness of Conflict Set Computation
This section is dedicated to the proof of correctness of Algorithm 1. First, we show some essential prop-
erties of QX by various Lemmata which will finally be exploited to demonstrate the overall soundness of
QX.

The QX algorithm accepts a DPI 〈Korig,Borig,P ,N 〉R over some monotonic language L as input and
returns a minimal conflict set C ⊆ Korig w.r.t. 〈Korig,Borig,P ,N 〉R as output. First, the algorithm checks
whether Korig is a valid KB w.r.t. the input DPI 〈·,Borig,P ,N 〉R (line 2). If so, there is no conflict set
for the DPI by Proposition 4.1 and the algorithm returns ’no conflict’. Otherwise, the test Korig = ∅ is
performed (line 4). If so, then the negative outcome of the validity test executed in line 2 actually means
that one of the two criteria of Proposition 3.4 is violated which, by Definition 3.6, implies that the DPI
is not admissible. Invalidity of Korig w.r.t. 〈·,Borig,P ,N 〉R and non-admissiblity of 〈Korig,Borig,P ,N 〉R
mean that there is only one minimal conflict set C = ∅ by Proposition 4.2. Thus, ∅ is returned in line 5.

Lemma 4.1. Let 〈K,B,P ,N 〉R be an admissible DPI and K be invalid w.r.t. 〈·,B,P ,N 〉R. Then, there
is a minimal conflict set C ⊃ ∅ w.r.t. 〈K,B,P ,N 〉R.

Proof. The proposition is a direct consequence of Proposition 4.2.

50 CHAPTER 4. DIAGNOSIS COMPUTATION

∅, {ax1, ax2, ax3, ax4, ax5} ,B
1©

��))

output // 〈ax1, ax3〉

{ax1, ax2, ax3} , {ax4, ax5} ,B ∪ {ax1, ax2, ax3}
2©

{}

@@

∅, {ax1, ax2, ax3} ,B
3©

uu ��

{ax1,ax3}

ll

{ax1, ax2} , {ax3} ,B ∪ {ax1, ax2}
4©

{ax3}

>>

{ax3} , {ax1, ax2} ,B ∪ {ax3}
5©

uu ��

{ax1}

^^

{ax1} , {ax2} ,B ∪ {ax3, ax1}
6©

{}

>>

∅, {ax1} ,B
7©

{ax1}

^^

Figure 4.1: Recursion tree produced during the computation of the minimal conflict set 〈ax1, ax3〉 w.r.t. the
DPI shown by Table 4.3 using Algorithm 1. Nodes in the depicted tree represent calls QX′(C, 〈K,B,P ,N 〉R)

and are written in format C,K,B
k©

where k is a counter starting from 1 that indicates when the respective
call is made. A recursive call to QX′ (left branch = call in line 16; right branch = call in line 17) is denoted by
a normal arrow whereas the return of a set is visualized by a dashed arrow.

So, if both initial tests (lines 2 and 4) are negative, then, by Lemma 4.1, there is a non-trivial mini-
mal conflict set w.r.t. 〈Korig,Borig,P ,N 〉R wherefore the algorithm enters the recursion by a call to the
procedure QX′.

The argumentation so far proves the following lemma.

Lemma 4.2.

• QX(〈K,B,P ,N 〉R) returns ’no conflict’ iff there is no (minimal) conflict w.r.t. 〈K,B,P ,N 〉R.

• QX(〈K,B,P ,N 〉R) returns ∅ iff ∅ is the only (minimal) conflict w.r.t. 〈K,B,P ,N 〉R.

• QX(〈K,B,P ,N 〉R) returns QX′(∅, 〈K,B,P ,N 〉R) iff there is some minimal conflict C ⊃ ∅ w.r.t.
〈K,B,P ,N 〉R.

Corollary 4.3. QX(〈K,B,P ,N 〉R) returns QX′(∅, 〈K,B,P ,N 〉R) iff 〈K,B,P ,N 〉R is an admissible
DPI.

Proof. By the third proposition of Lemma 4.2 and Proposition 4.1 we have that QX(〈K,B,P ,N 〉R)
returns QX′(∅, 〈K,B,P ,N 〉R) iff K is invalid w.r.t. 〈·,B,P ,N 〉R. By Proposition 4.2, we can then
conclude that QX(〈K,B,P ,N 〉R) returns QX′(∅, 〈K,B,P ,N 〉R) iff 〈K,B,P ,N 〉R is an admissible
DPI.

The input arguments (at any call) to QX′ are (a) some subset C of the original input KB Korig to QX
and (b) a DPI 〈K,B,P ,N 〉R where K ⊆ Korig and B ⊇ Borig.

4.4. METHODS FOR DIAGNOSIS COMPUTATION 51

The principle of QX′ relies on the following fact.

Lemma 4.3. [Jun04] Let K1,K2 be a partition of K. If C2 is a minimal conflict set w.r.t. 〈K2,B ∪
K1,P ,N 〉R and C1 is a minimal conflict set w.r.t. 〈K1,B∪C2,P ,N 〉R, then C1 ∪C2 is a minimal conflict
set w.r.t. 〈K1 ∪ K2,B,P ,N 〉R = 〈K,B,P ,N 〉R.

Proof. Since C1 is a minimal conflict set w.r.t. 〈K1,B ∪ C2,P ,N 〉R, we have that C1 is invalid w.r.t.
〈·,B ∪ C2,P ,N 〉R. From that we obtain that C1 ∪ C2 must be invalid w.r.t. 〈·,B,P ,N 〉R. Further on,
by the fact that K1,K2 partition K we have that C1 ⊆ K1 ⊆ K since C1 is a minimal conflict set w.r.t.
〈K1,B ∪ C2,P ,N 〉R and C2 ⊆ K2 ⊆ K since C2 is a minimal conflict set w.r.t. 〈K2,B ∪ K1,P ,N 〉R.
Consequently, C1∪C2 ⊆ Kmust be true. So, by Corollary 4.1, C1∪C2 is a conflict set w.r.t. 〈K,B,P ,N 〉R.

To show the minimality of C1 ∪ C2, assume that C ⊂ C1 ∪ C2 is a minimal conflict set w.r.t. 〈K,
B,P ,N 〉R. Due to K1 ∩ K2 = ∅ and C1 ⊆ K1 and C2 ⊆ K2, it must hold that C1 ∩ C2 = ∅. Thus,
(1) C ∩ C1 ⊂ C1 or (2) C ∩ C2 ⊂ C2.

Let us assume (1) holds. Then, C is invalid w.r.t. 〈·,B,P ,N 〉R, i.e. C∪B∪UP = (C′1∪C2)∪B∪UP =
C′1∪(B∪C2)∪UP violates some r ∈ R or some n ∈ N where C′1 ⊂ C1. This, however, is a contradiction
to the minimality of the conflict set C1 w.r.t. 〈K1,B ∪ C2,P ,N 〉R.

Now, let us assume (2) holds. Then, C is invalid w.r.t. 〈·,B,P ,N 〉R, i.e. C ∪ B ∪ UP = (C1 ∪ C′2) ∪
B ∪ UP violates some r ∈ R or some n ∈ N where C′2 ⊂ C2. By monotonicity of L and C1 ⊆ K1, this
implies C′2 ∪ (K1 ∪ B) ∪ UP violates some r ∈ R or some n ∈ N , i.e. C′2 ⊂ K2 is a conflict set w.r.t.
〈K2,B ∪ K1,P ,N 〉R which is a contradiction due to C′2 ⊂ C2 and the minimality of the conflict set C2
w.r.t. 〈K2,B ∪ K1,P ,N 〉R.

QX′(C, 〈K,B,P ,N 〉R) computes a minimal conflict set w.r.t. 〈K,B,P ,N 〉R in a divide-and-conquer
fashion whereby the argument C is the set of sentences of Korig that has been added to B in the current
iteration. That is, in this iteration QX′ will output either (1) ∅ if the current B (which includes C) already
contains a minimal conflict set w.r.t. the original DPI 〈Korig,Borig,P ,N 〉R or (2) a minimal conflict set
w.r.t. the current DPI 〈K,B,P ,N 〉R (i.e. a subset of a minimal conflict set w.r.t. the original DPI) which
does not include any sentence from C.

Lemma 4.4.

1. For each call QX′(C, 〈K,B,P ,N 〉R) within Algorithm 1 it holds that C ⊆ B.

2. If QX′(C, 〈K,B,P ,N 〉R) is called in line 16 of Algorithm 1, C 6= ∅ holds.

3. If QX′(C, 〈K,B,P ,N 〉R) returns ∅, then there is some non-empty minimal conflict set w.r.t. 〈C,B\
C,P ,N 〉R.

4. If QX′(C, 〈K,B,P ,N 〉R) returns ∅, then ∅ is the only minimal conflict set w.r.t. 〈K,B,P ,N 〉R.

5. QX′(C, 〈K,B,P ,N 〉R) terminates.

Proof.
1): There are three situations when QX′(C, 〈K,B,P ,N 〉R) is called within Algorithm 1, namely in

lines 7, 16 and 17. In line 7, C := ∅ ⊆ B holds. In line 16, C := K1 ⊆ B ∪ K1 =: B holds. In line 17,
C := C2 ⊆ B ∪ C2 =: B holds.

2): In line 16, QX′ is called with C := K1, which is always not the empty set due to the definition of
the SPLIT function in line 13 that is used to extract K1 from K.

3): The first observation is that QX′(C, 〈K,B,P ,N 〉R) cannot return ∅ if C = ∅ as in this case the
first condition in line 9 is not met. Thus, in particular, QX′ cannot return ∅ if called in line 7.

So, ∅ can be returned by QX′(C, 〈K,B,P ,N 〉R) only if it is called (1) in line 16 or (2) in line 17.

52 CHAPTER 4. DIAGNOSIS COMPUTATION

If QX′(C, 〈K,B,P ,N 〉R) returns ∅, then C 6= ∅ and B is invalid w.r.t. 〈·, ∅,P ,N 〉R (line 9), i.e.
B contains a minimal conflict set w.r.t. 〈B, ∅,P ,N 〉R which is non-empty by Proposition 4.2 since
〈B, ∅,P ,N 〉R is an admissible DPI by admissibility of the input DPI and the invariance of P ,N ,R
throughout QX′. Additionally, C ⊆ B holds by the first proposition of this lemma. Now, assume that
there is no non-empty (minimal) conflict set w.r.t. 〈C,B \ C,P ,N 〉R. Then, for each minimal conflict set
C′ (which we know is non-empty) w.r.t. 〈B, ∅,P ,N 〉R it must hold that C ∩ C′ = ∅, i.e. there is already a
non-empty minimal conflict set w.r.t. 〈B \ C, ∅,P ,N 〉R.

Case (1): Let us assume first that the call to QX′ was made in line 16. Then, before this call to QX′,
B was exactly B \ C. By the second proposition of this lemma, C 6= ∅ as QX′ was called in line 16. Thus,
before the current call to QX′, the algorithm must have already returned ∅ (both conditions in line 9
are met) in line 10 which is a contradiction to the assumption that QX′(C, 〈K,B,P ,N 〉R) was called in
line 16.

Case (2): Now, assume that the call to QX′(C2, 〈K1,B ∪ C2,P ,N 〉R) was made in line 17. Then C2
is the result of the call to QX′(K1, 〈K2,B ∪ K1,P ,N 〉R) in line 16. By the argumentation above, we
have that C2 6= ∅ and there is a non-empty minimal conflict set w.r.t. 〈B ∪ C2, ∅,P ,N 〉R. Moreover, we
have that there is a non-empty minimal conflict set w.r.t. 〈B, ∅,P ,N 〉R. However, as QX′(K1, 〈K2,B ∪
K1,P ,N 〉R) in line 16 did not return ∅ andK1 6= ∅ by the second proposition of this lemma, it must hold
that B ∪ K1 is valid w.r.t. 〈·, ∅,P ,N 〉R, i.e. there is no (minimal) conflict set w.r.t. 〈B ∪ K1, ∅,P ,N 〉R.
By monotonicity of L, this is a contradiction to the fact that there is a non-empty minimal conflict set
w.r.t. 〈B, ∅,P ,N 〉R.

4): Assume QX′(C, 〈K,B,P ,N 〉R) returns ∅ and there is some non-empty minimal conflict set w.r.t.
〈K,B,P ,N 〉R. Since ∅ is returned, both conditions in line 2 must be met, i.e. in particular B must be
invalid w.r.t. 〈·, ∅,P ,N 〉R which means that 〈K,B,P ,N 〉R is not admissible. By Proposition 4.2, there
cannot be a non-empty (minimal) conflict set w.r.t. 〈K,B,P ,N 〉R. This yields a contradiction.

5): QX′(C, 〈K,B,P ,N 〉R) either returns ∅ in line 10 iff the conditions in line 9 are met or otherwise
returns K in line 12 iff |K| = 1 or otherwise calls itself recursively in lines 16 and 17. However, for
each recursive call QX′(C′, 〈K′,B′,P ,N 〉R) within QX′(C, 〈K,B,P ,N 〉R) it holds that K′ ⊂ K as
K′ ∈ {K1,K2} and K1,K2 ⊂ K due to the definition of the SPLIT function in line 13 that is used to
computeK1 andK2 fromK in lines 14 and 15. Hence, each recursive call must finally reach the stopping
criterion |K| = 1 and return K if it does not reach the stopping criterion in line 9 before.

Lemma 4.5. Let 〈K,B,P ,N 〉R be an admissible DPI. If QX′(C, 〈K,B,P ,N 〉R) is called, then at least
one of the immediate recursive calls of QX′ in line 16 or line 17 is given an admissible DPI as argument.

Proof. Let us assume that 〈K,B,P ,N 〉R is an admissible DPI. Within QX′(C, 〈K,B, P ,N 〉R), the
immediate recursive call is QX′(K1, 〈K2,B∪K1,P ,N 〉R) in line 16 and QX′(C2, 〈K1,B∪C2,P ,N 〉R)
in line 17 where K1,K2 is a partition of K and C2 is the result of QX′(K1, 〈K2,B ∪ K1,P ,N 〉R). If
〈K2,B ∪ K1,P ,N 〉R is admissible, then the proposition of the lemma is fulfilled. So, assume that that
〈K2,B ∪K1,P ,N 〉R is not admissible. Due to this non-admissibility, it must hold that B ∪K1 is invalid
w.r.t. 〈·, ∅,P ,N 〉R, so the second condition in line 2 is met. As the call to QX′(K1, 〈K2,B∪K1,P ,N 〉R)
was made in line 16, it must be true by Lemma 4.4, prop. 2 that K1 6= ∅ wherefore the first condition in
line 2 is met as well. Thus, the result of the call of QX′ in line 16 must be ∅. So, the call of QX′ in line 17
looks like QX′(∅, 〈K1,B,P ,N 〉R). However, the DPIs 〈K1,B,P ,N 〉R and 〈K,B,P ,N 〉R are identical
except for the first entries, i.e. K1 and K. We know that the latter DPI is admissible. Due to the fact that
admissibility of a DPI is defined independently of the KB (the first entry of the DPI tuple), we have that
〈K1,B,P ,N 〉R must be admissible. This completes the proof.

As long as the algorithm goes downwards in the recursion tree (and has never gone upwards), (1) the
invariant that a minimal conflict set exists for each recursive call to QX′ holds, (2) each call to QX′ that

4.4. METHODS FOR DIAGNOSIS COMPUTATION 53

returns, returns a singleton or empty set and (3) the two calls to QX′ immediately before going upwards
in the recursion tree for the first time must both return either a singleton or an empty set.

Lemma 4.6 (QX: Downwards Correctness). Let 〈K,B,P ,N 〉R be an admissible DPI and let there be a
non-empty minimal conflict set w.r.t. 〈K,B,P ,N 〉R. Then, the following propositions hold:

1. Before line 18 has ever been reached during the execution of QX′(C, 〈K, B,P , N 〉R), the following
holds: If some call to QX′(C′, 〈K′,B′,P ,N 〉R) returns a set S, then S = ∅ or |S| = 1.

2. Before line 18 has ever been reached during the execution of QX′(C, 〈K, B,P , N 〉R), the following
holds: If QX′(C′, 〈K′,B′,P ,N 〉R) is recursively called, then there is some non-empty minimal
conflict set w.r.t. 〈K′ ∪ C′,B′ \ C′,P ,N 〉R.

3. Before line 18 has ever been reached during the execution of QX′(C, 〈K,B,P , N 〉R), the following
holds: If some call to QX′(C′, 〈K′,B′,P ,N 〉R) returns a set S, then S is a minimal conflict set
w.r.t. 〈K,B,P ,N 〉R.

4. When line 18 is reached for the first time, each of the calls to QX′ immediately before in lines 16
and 17 must have returned ∅ or some K with |K| = 1.

Proof.
1): Assume the opposite, i.e. some call to QX′(C′, 〈K′,B′,P ,N 〉R) returns a set S with |S| > 1

before line 18 has ever been reached. There are three places where QX′ can return, namely in line 10, in
line 12 or in line 18. However, in line 10, only ∅ and in line 12 only a singleton set can be returned. That
is, S must be returned in line 18 which is a contradiction to the assumption that line 18 has not yet been
reached.

2): Induction Base: The first recursive call QX′(C′, 〈K′,B′,P ,N 〉R) can only occur at line 16 where
C′ = K1, K′ = K2 and B′ = B ∪ K1 and K1,K2 is a partition of K as per the definition of the SPLIT
and GET functions in lines 13-15. So, K′ ∪ C′ = K and B′ \ C′ = B. The latter holds since C′ ⊆ K
and for each DPI K ∩ B = ∅ holds by Definition 3.1. As there is a non-empty minimal conflict set w.r.t.
〈K,B,P ,N 〉R we have that there is a non-empty minimal conflict set w.r.t. 〈K′ ∪ C′,B′ \ C′,P ,N 〉R by
the fact that 〈K,B,P ,N 〉R = 〈K′ ∪ C′,B′ \ C′,P ,N 〉R. Thus, the existence of a non-empty minimal
conflict set w.r.t. 〈K′ ∪ C′,B′ \ C′,P ,N 〉R is given during the execution of the first recursive call to QX′.

Induction Assumption: Now, let us assume that the existence of a non-empty minimal conflict set
w.r.t. 〈K ∪ C,B \ C,P ,N 〉R is given during some call QX′(C, 〈K,B,P , N 〉R). The goal is now to show
that the existence of a non-empty minimal conflict set w.r.t. 〈K′ ∪ C′,B′ \ C′,P ,N 〉R is given during any
recursive call QX′(C′, 〈K′,B′,P ,N 〉R) that is invoked during execution of QX′(C, 〈K,B,P ,N 〉R).

Induction Step: Now, there are three cases where this recursive call to QX′ can take place, namely
(1) in line 16, (2) in line 17 where the result of QX′ in line 16 is C2 = ∅ and (3) in line 17 where the result
of QX′ in line 16 is some C2 with |C2| = 1. The case where some C2 with |C2| > 1 is returned by QX′ in
line 16, is impossible due to the assumption that line 18 has not yet been reached and the first proposition
of this lemma.

Case (1): Let us assume that the call QX′(C′, 〈K′,B′,P ,N 〉R) is made in line 16. Since that call is
made within QX′(C, 〈K,B,P ,N 〉R), it must hold that some condition in line 2 during QX′(C, 〈K,B,P ,
N 〉R) is violated, as otherwise a return would have taken place in line 10 which is a contradiction to the
assumption that QX′(C′, 〈K′,B′,P ,N 〉R) is called in line 16.

Let us first assume that C = ∅ holds. In this case, the first condition in line 2 is violated and, by
the Induction Assumption, it is true that there is a non-empty minimal conflict set w.r.t. the DPI 〈K ∪
C,B \ C,P ,N 〉R which is equal to the DPI 〈K,B,P ,N 〉R by C = ∅. So, an equal argumentation to the
one of the Induction Base can be applied to derive that there is a non-empty minimal conflict set w.r.t.
〈K′ ∪ C′,B′ \ C′,P ,N 〉R.

54 CHAPTER 4. DIAGNOSIS COMPUTATION

If C 6= ∅ holds, on the other hand, then the first condition in line 2 is satisfied wherefore the second
condition in line 2 must be violated. That is, there is no conflict set w.r.t. 〈B, ∅,P ,N 〉R. As there is a
non-empty minimal conflict set w.r.t. 〈K ∪ C,B \ C,P ,N 〉R by the Induction Assumption, C ⊆ B by
Lemma 4.4, prop. 1 and |K| ≥ 2 by the fact that there was no return in line 12, there must be a non-empty
minimal conflict set w.r.t. 〈K,B,P ,N 〉R. Again, an equal argumentation to the one of the Induction Base
can be applied to derive that there is a non-empty minimal conflict set w.r.t. 〈K′ ∪ C′,B′ \ C′,P ,N 〉R.

Case (2): Here, we assume that the recursive call QX′(C′, 〈K′,B′,P ,N 〉R) is made in line 17 and
the result of QX′ in line 16 is C2 = ∅. So, it holds that C′ = C2 = ∅, K′ = K1 and B′ = B, i.e. the
recursive call can be written as QX′(∅, 〈K1,B,P ,N 〉R). By the fact that QX′(K1, 〈K2,B∪K1,P ,N 〉R)
called in line 16 returned ∅, both conditions in line 2 during QX′(K1, 〈K2,B ∪ K1,P ,N 〉R) must have
been met. Thus, in particular the existence of a non-empty minimal conflict set w.r.t. 〈B ∪K1, ∅,P ,N 〉R
must be given. Further on, by the Induction Assumption there is a non-empty minimal conflict set w.r.t.
〈C ∪ K,B \ C,P ,N 〉R.

Let us first assume C = ∅. In this case 〈C ∪ K,B \ C,P ,N 〉R can be written as 〈K,B,P ,N 〉R
and it holds that there is a non-empty minimal conflict set w.r.t. 〈K,B,P ,N 〉R, i.e. K is invalid w.r.t.
〈·,B,P ,N 〉R. By Proposition 4.2, this implies that 〈K,B,P ,N 〉R is admissible. In other words, there is
no conflict set w.r.t. 〈B, ∅,P ,N 〉R. Consequently, there must be a non-empty minimal conflict set w.r.t.
〈K1,B,P ,N 〉R.

If C 6= ∅, on the other hand, then the second condition in line 2 during QX′(C, 〈K,B,P ,N 〉R) must
be invalid, i.e. there is no conflict set w.r.t. 〈B, ∅,P ,N 〉R. Consequently, there must be a non-empty
minimal conflict set w.r.t. 〈K1,B,P ,N 〉R.

Case (3): Here, we assume that the recursive call QX′(C′, 〈K′,B′,P ,N 〉R) is made in line 17 and the
result of QX′ in line 16 is C2 6= ∅. As C2 6= ∅ and line 18 has never been reached by assumption, C2 must
have been returned in line 12 of QX′(K1, 〈K2,B ∪K1,P ,N 〉R) (which was called in line 16) wherefore
C2 = K2 must hold. So, it holds that C′ = K2, K′ = K1 and B′ = B ∪ K2, i.e. the recursive call can be
written as QX′(K2, 〈K1,B ∪ K2,P ,N 〉R). By the Induction Assumption, there is a non-empty minimal
conflict set w.r.t. 〈C ∪ K,B \ C,P ,N 〉R. Moreover, C ⊆ B by Lemma 4.4, prop. 1 and (*) there is a non-
empty minimal conflict set w.r.t. the DPI 〈K,B,P ,N 〉R which is equal to the DPI 〈K1 ∪ K2,B,P ,N 〉R
by the fact that K1,K2 partition K as per the definition of the SPLIT and GET functions in lines 13-15.

What must still be proven, is (*): Let us first assume that C = ∅ holds. In this case, 〈C ∪ K,B \
C,P ,N 〉R = 〈K,B,P ,N 〉R and thus there is a non-empty minimal conflict set w.r.t. 〈K,B,P ,N 〉R.

If C 6= ∅, on the other hand, then the second condition in line 2 during QX′(C, 〈K,B,P ,N 〉R)
must be invalid as otherwise ∅ would have been returned which is a contradiction to the assumption that
the recursive call QX′(C′, 〈K′,B′,P ,N 〉R) was invoked in line 17. So, there is no conflict set w.r.t.
〈B, ∅,P ,N 〉R. Consequently, there must be a non-empty minimal conflict set w.r.t. 〈K,B,P ,N 〉R due
to C ⊆ B by Lemma 4.4, prop. 1.

3): Case S 6= ∅: By S 6= ∅ and the fact that line 18 has not yet been reached, we obtain by the first
proposition of this lemma that |S| = 1 must hold.

There are two cases that can trigger QX′(C, 〈K,B,P ,N 〉R) to return K with |K| = 1, i.e. case 1
involving C 6= ∅ and case 2 involving C = ∅.

In case 1, B must be valid w.r.t. 〈·, ∅,P ,N , 〉R as otherwise ∅ would be returned in line 10. So, there
is no (minimal) conflict set w.r.t. 〈B, ∅,P ,N 〉R.

As |K| = 1 by assumption and by the fact that C ⊆ B (holds by Lemma 4.4, prop. 1) and there is
some non-empty minimal conflict set w.r.t. 〈K∪C,B\C,P ,N 〉R (holds by the second proposition of this
lemma), K must include a non-empty minimal conflict set w.r.t. 〈K,B,P ,N 〉R. Since the only proper
subset of K is the empty set, K must be a minimal conflict set w.r.t. 〈K,B,P ,N 〉R.

Case 2 can arise only when QX′(C, 〈K,B,P ,N 〉R) is called in line 7 or line 17. In line 16 QX′ is
called with C 6= ∅ by Lemma 4.4, prop. 2.

In line 7 QX′ is called with C = ∅ and, by Corollary 4.3, with an admissible DPI 〈K,B,P ,N 〉R for

4.4. METHODS FOR DIAGNOSIS COMPUTATION 55

which a non-empty minimal conflict set exists as arguments. By the second proposition of this lemma,
there is some non-empty minimal conflict set w.r.t. 〈K ∪ ∅,B \ ∅,P ,N 〉R = 〈K,B,P ,N 〉R, and, by
admissibility of 〈K,B,P ,N 〉R, there is no (minimal) conflict set w.r.t. 〈B, ∅,P ,N 〉R. By |K| = 1, K
must be a minimal conflict set w.r.t. 〈K,B,P ,N 〉R.

A necessary condition for QX′ to be called with C = ∅ in line 17 is obviously that QX′(K1, 〈K2,B ∪
K1,P ,N 〉R) called in line 16 returns ∅. By the Lemma 4.4, prop. 3, there is some non-empty mini-
mal conflict set w.r.t. 〈K1,B,P ,N 〉R. In line 17, the call QX′(∅, 〈K1,B,P ,N 〉R) is made which, by
assumption, returns K1 with |K1| = 1. That means K1 is a minimal conflict set w.r.t. 〈K1,B,P ,N 〉R.

Case S = ∅: Here, both conditions in line 2 must be met, i.e. in particular B is invalid w.r.t.
〈·, ∅,P ,N 〉R which implies thatK is invalid w.r.t. 〈·,B,P ,N 〉R and 〈K,B,P ,N 〉R is admissible. There-
fore, by Proposition 4.2, there is no non-empty minimal conflict set w.r.t. 〈K,B,P ,N 〉R. However, since
K is invalid w.r.t. 〈·,B,P ,N 〉R, there must be a conflict set w.r.t. 〈K,B,P ,N 〉R. So, there is only the
empty minimal conflict set w.r.t. 〈K,B,P ,N 〉R.

4): This proposition is an immediate consequence of the first proposition of this lemma.

Lemma 4.7. Let 〈K,B,P ,N 〉R be a non-admissible DPI. Then, ∅ is the only minimal conflict set w.r.t.
〈K,B,P ,N 〉R and QX′(C, 〈K,B,P ,N 〉R) with C 6= ∅ returns ∅ immediately in line 10.

Proof. Since 〈K,B,P ,N 〉R is non-admissible, B ∪ UP violates some r ∈ R or B ∪ UP |= n for some
n ∈ N . Therefore, ∅ is invalid w.r.t. 〈·,B,P ,N 〉R, which, by Corollary 4.1, implies that ∅ is a (minimal)
conflict set w.r.t. 〈K,B,P ,N 〉R.

QX′(C, 〈K,B,P ,N 〉R) returns ∅ in line 10 as both conditions in line 9 are satisfied due to C 6= ∅ and
the non-admissibility of 〈K,B,P ,N 〉R.

Lemma 4.8. Let 〈K,B,P ,N 〉R be an admissible DPI. Then QX′(C, 〈K,B,P ,N 〉R) does not return in
line 10.

Proof. By Definition 3.6, B must be valid w.r.t. 〈·, ∅,P ,N 〉R. Hence, the second condition in line 9 is
not satisfied wherefore a return cannot take place in line 10.

Lemma 4.9. Let 〈K,B,P ,N 〉R be an admissible DPI and let there be a non-empty minimal conflict set
w.r.t. 〈K,B,P ,N 〉R. Then the following holds: When QX′(C, 〈K,B,P ,N 〉R) reaches line 18 for the
first time, C1 ∪ C2 is a non-empty minimal conflict set w.r.t. 〈K,B,P ,N 〉R.

Proof. The premises of this lemma are the same as those of Lemma 4.6. By Lemma 4.6, prop. 4 we know
that for C2 and C1 that are returned by the the calls to QX′ in lines 16 and 17 |C1| ≤ 1 and |C2| ≤ 1 holds.
Moreover, we know by Lemma 4.3 that C1 ∪ C2 is a minimal conflict set w.r.t. 〈K,B,P ,N 〉R.

What remains open is to show that C1 ∪ C2 6= ∅. To this end, we first assume that C 6= ∅. Then,
by Lemma 4.7, 〈K,B,P ,N 〉R must be an admissible DPI since it does not return in line 10, but only in
line 18.

If, on the other hand, C = ∅ holds, we can apply Lemma 4.6, prop. 2 to obtain that there is a non-empty
minimal conflict set w.r.t. 〈K,B,P ,N 〉R. This implies that K is invalid w.r.t. 〈·,B,P ,N 〉R. Therefore,
we can conclude by means of Proposition 4.2 that 〈K,B,P ,N 〉R is an admissible DPI.

Thus, in both cases we have that 〈K,B,P ,N 〉R is an admissible DPI. Applying Lemma 4.5 yields
that at least one recursive call to QX′ in lines 16 and 17 is given an admissible DPI as argument. By
Lemma 4.8, this call cannot return in line 10. So, it must return in line 12 by the assumption that line 18
has not yet been reached before, wherefore it must return a set of cardinality 1. This completes the
proof.

As long as the algorithm goes upwards after going upwards for the first time, a non-empty minimal
conflict set is propagated upwards.

56 CHAPTER 4. DIAGNOSIS COMPUTATION

Lemma 4.10 (QX: Upwards Correctness). Let 〈K,B,P ,N 〉R be an admissible DPI and let there be a
non-empty minimal conflict set w.r.t. 〈K,B,P ,N 〉R. Then: After QX′(C, 〈K,B,P ,N 〉R) has reached
line 18 for the first time, the following holds: As long as line 16 is not reached, each return in line 18
returns a minimal conflict set w.r.t. 〈K,B,P ,N 〉R.

Proof. The premises of this lemma are the same as those of Lemma 4.6. By Lemma 4.9 we know that a
non-empty minimal conflict C set is returned at the first return that is made in line 18. As, by assumption,
C is not the result C2 of a prior call to QX′ in line 16, it must be the result C1 of a prior call to QX′

in line 17. Since the premises of Lemma 4.6 are fulfilled, Lemma 4.6 can be applied. Since the call
QX′(K1, 〈K2,B∪K1,P ,N 〉) (that returned C2) in line 16 took place before line 18 was first reached, we
have that C2 is a minimal conflict set w.r.t. 〈K2,B ∪ K1,P ,N 〉 by Lemma 4.6, prop. 3. By Lemma 4.3,
we have that C2 ∪ C is a minimal conflict set w.r.t. 〈K,B,P ,N 〉. As long as line 16 is not reached, the
same argumentation can be used to show that a minimal conflict set is returned in line 18.

When the algorithm goes downwards again after going upwards for the first time, the invariant that
that a minimal conflict set exists for each recursive downwards call to QX′ holds.

Lemma 4.11 (QX: Downwards-after-upwards Correctness). Let 〈K,B,P ,N 〉R be an admissible DPI
and let there be a non-empty minimal conflict set w.r.t. 〈K,B,P ,N 〉R. Then: After QX′(C, 〈K,B,P ,
N 〉R) has reached line 18 for the first time, the following holds: If line 16 is reached for the first time, then,
if the DPI 〈K1,B∪C2,P ,N 〉R which is the argument to the immediate call QX′(C2, 〈K1,B∪C2,P ,N 〉R)
in line 17 is admissible, then there is a non-empty minimal conflict set w.r.t. 〈K1,B ∪ C2,P ,N 〉R.

Proof. The premises of this lemma are the same as those of Lemma 4.6. Since line 16 is first reached after
line 18 has been reached for the first time, it must hold that QX′(K1, 〈K2,B ∪ K1,P ,N 〉R) in line 16
was called before line 18 has been reached. The reason for this to hold is the fact that only returns and no
new calls to QX′ can have been made between the first occurrence of line 18 and the next occurrence of
line 16.

Therefore, the result C2 of the call QX′(K1, 〈K2,B ∪K1,P ,N 〉R) in line 16 is a minimal conflict set
w.r.t. 〈K2,B ∪ K1,P ,N 〉R due to Lemma 4.6, prop. 3. As a consequence, C2 ∪ B ∪ K1 ∪ UP violates
some r ∈ R or some N ∈ N . As the DPI 〈K1,B ∪ C2,P ,N 〉R is admissible by assumption, it holds that
C2 ∪ B ∪ UP does not violate any r ∈ R or N ∈ N . Hence, K1 must be invalid w.r.t. 〈·,B ∪ C2,P ,N 〉R
which implies that there must be a non-empty minimal conflict set S w.r.t. 〈K1,B ∪ C2,P ,N 〉R.

By applying the argumentation of Lemmas 4.6, 4.10 and 4.11 recursively on the entire recursion tree,
we can prove the correctness of QX′.

Lemma 4.12. If QX′(C, 〈Korig,Borig,P ,N 〉R) is called in line 7 by Algorithm 1, it returns a non-empty
minimal conflict set w.r.t. 〈Korig,Borig,P ,N 〉R.

Proof. If QX′(C, 〈Korig,Borig,P ,N 〉R) is called in line 7 of Algorithm 1, it must be true, by Lemma 4.2,
prop. 4.2 and Corollary 4.3, that 〈Korig,Borig,P ,N 〉R is an admissible DPI for which a non-empty mini-
mal conflict set exists. As a consequence, the premises of Lemma 4.6 are met for 〈Korig,Borig,P ,N 〉R.

There are two cases to consider: Either (a) |Korig| ≤ 1 or (b) |Korig| > 1 for the initial call to
QX′(C, 〈Korig,Borig,P ,N 〉R) in line 7. In case (a), 0 = |Korig| < 1 cannot hold as there must be a non-
empty minimal conflict set C w.r.t. 〈Korig,Borig,P ,N 〉R due to Lemma 4.2, prop. 4.2. Since ∅ ⊂ C ⊆
Korig must hold for C, this would be a contradiction to |Korig| = 0.

So, |Korig| = 1 holds in case (a). In this case, QX′ returns Korig immediately in line 12, since
C = ∅ and thus the conditions checked in line 9 cannot be met. In this case, Korig is indeed a non-
empty minimal conflict set since for the DPI 〈Korig,Borig,P ,N 〉R given as argument there is a non-empty
minimal conflict set by Lemma 4.2, prop. 4.2. Therefore ∅ cannot be a conflict set w.r.t. this DPI whereby
Korig is the only possible minimal conflict set due to |Korig| = 1.

4.4. METHODS FOR DIAGNOSIS COMPUTATION 57

Case (b): In this case, a direct return can neither take place in line 10 by C = ∅ nor in line 12 by
|Korig| > 1. So, QX′ is called recursively in lines 16 and 17. Since QX′ terminates due to Lemma 4.2,
prop. 5, QX′ must reach line 18. The first time some recursive call QX′(C, 〈K,B,P ,N 〉R) reaches
line 18, it returns a non-empty minimal conflict set w.r.t. 〈K,B,P ,N 〉R due to Lemma 4.9.

By Lemma 4.10, as long as line 16 is not reached, i.e. no “left branch” (call to QX′ in line 16) but
only “right branches” (calls to QX′ in line 17) return, a minimal conflict set S is returned for each call to
QX′ that “wraps” (is higher in the recursion tree than) the call that was the first to reach line 18. It holds
that S 6= ∅ since S is a union of sets including the non-empty set returned when line 18 was first reached.

When it comes to an execution of line 16, i.e. the left branch returns, then the algorithm will take the
right branch by executing line 17, i.e. calling QX′(C2, 〈K1,B ∪ C2,P ,N 〉R), and go downwards in the
recursion tree.

Now, there are two cases. First, 〈K1,B ∪ C2,P ,N 〉R is non-admissible. Then, by Lemma 4.7, there
is only one minimal conflict set w.r.t. 〈K1,B∪C2,P ,N 〉R, namely ∅, and QX′(C2, 〈K1,B∪C2,P ,N 〉R)
directly returns ∅. As also the result C2 of the call to QX′(K1, 〈K2,B∪K1,P ,N 〉R) immediately before in
line 16 is a minimal conflict set w.r.t. 〈K2,B∪K1,P ,N 〉R, as established above, we can apply Lemma 4.3
to derive that indeed a minimal conflict set w.r.t. 〈K,B,P ,N 〉R is returned in line 18. Thus, Lemma 4.10
can be further applied to move upwards in the recursion tree until line 16 occurs again.

Second, 〈K1,B ∪ C2,P ,N 〉R is admissible. Then, by Lemma 4.11, there is a non-empty minimal
conflict set w.r.t. 〈K1,B ∪ C2,P ,N 〉R. Hence, Lemma 4.6 can be used again for the subtree of the
recursion tree rooted at the call QX′(C2, 〈K1,B ∪ C2,P ,N 〉R). That is, it can be used to show that each
call to QX′ within this subtree returns a minimal conflict set w.r.t. the DPI given as argument as long as
the algorithm moves downwards in the tree. Having reached line 18 for the first time, Lemma 4.9 lets us
conclude again that a non-empty conflict set w.r.t. the respective argument DPI is actually returned at this
place. Subsequently, Lemma 4.10 can be applied to show that each return gives back a minimal conflict
set w.r.t. the argument DPI of the respective call, as long as the algorithm moves upwards in the recursion
tree.

What is still open is to show that the call QX′(C2, 〈K1,B ∪ C2,P ,N 〉R) in line 17 that is made
immediately after the algorithm first reached line 16 after moving upwards after reaching line 18 for the
first time returns a minimal conflict set w.r.t. 〈K1,B ∪ C2,P ,N 〉R, indeed. This holds by the fact that
Lemmas 4.6 and 4.10 guarantee that a left branch always returns a minimal conflict set, Lemma 4.11
guarantees that Lemmas 4.6 and 4.10 can be applied after making a single right branch. However, as
QX′ terminates the recursion tree is finite and thus the case must arise where the right branch directly
returns. In case the DPI 〈K,B,P ,N 〉R given as argument for this right branch is non-admissible, the
only minimal conflict set ∅ is returned, as established above. If the DPI 〈K,B,P ,N 〉R given as argument
for this right branch is admissible, on the other hand, then we have already shown above that there is a
non-empty minimal conflict set w.r.t. this DPI. Moreover, |K| = 1 must hold due to the fact that this right
branch directly returns (without entering a further recursion). Therefore, K is returned which is actually
a minimal conflict set w.r.t. 〈K,B,P ,N 〉R as K is the only non-empty subset of K.

Proposition 4.9. Let 〈K,B,P ,N 〉R be a DPI. Then, QX(〈K,B,P ,N 〉R) terminates and returns

• ’no conflict’ iff there is no conflict w.r.t. 〈K,B,P ,N 〉R
(K is valid w.r.t. 〈·,B,P ,N 〉R)

• ∅ iff ∅ is the only minimal conflict set w.r.t. 〈K,B,P ,N 〉R
(DPI is non-admissible)

• a non-empty minimal conflict set w.r.t. 〈K,B,P ,N 〉R iff there is a non-empty minimal conflict set
w.r.t. 〈K,B,P ,N 〉R
(DPI is admissible and K is invalid w.r.t. 〈·,B,P ,N 〉R).

Proof. The proposition is a direct consequence of Lemma 4.2 and Lemma 4.12.

58 CHAPTER 4. DIAGNOSIS COMPUTATION

4.5 Hitting Set Tree Based Diagnosis Computation
One way to compute minimal diagnoses from minimal conflict sets is to use a hitting set tree algorithm
which was originally proposed by Reiter [Rei87]. In this work we describe methods for non-interactive
and interactive diagnosis computation based on the ones used in [FS05, SF10, SFFR12] which are closely
related to the original hitting set tree algorithm. Differences of the described non-interactive algorithm to
the original one of Reiter are

1. the usage of different edge weights (probabilities) inducing an order of node generation (uniform-
cost) different to breadth-first and

2. the opportunity to specify an execution time threshold t as well as a minimal (nmin) and maximal
(nmax) desired number of minimal diagnoses to be computed by the algorithm.

In this vein, the algorithm computes at least the nmin most-probable minimal diagnoses w.r.t. the given
probabilities and goes on computing further next most-probable minimal diagnoses until either overall
computation time reaches the time limit t or nmax diagnoses have been computed.

Such a time threshold and an interval of minimal and maximal number of diagnoses is particularly
relevant in settings where not all potential minimal faulty sets need to be computed, such as iterative,
interactive settings where reaction time is crucial (since a user is waiting to interact with the system).
Instead, in such settings only a “representative” set of minimal diagnoses is exploited to decide which
question to ask a user such that the answer to that question allows the constructed partial tree to be
pruned. After pruning, the tree is expanded again to compute another “representative” set of minimal
diagnoses. Such an interactive KB debugging algorithm will be presented in Part II. The non-interactive
version of the KB debugging algorithm is delineated by Algorithm 2 and described next.

Inputs. The algorithm takes as input an admissible DPI 〈K,B,P ,N 〉R, some computation timeout t, a
desired minimal (nmin) and maximal (nmax) number of minimal diagnoses to be returned, and a function
p : K → (0, 0.5) that assigns to each formula ax ∈ K a weight that represents the (estimated) likeliness
of ax to be faulty and thereby determines the search strategy, e.g. breadth-first or uniform-cost. Within
the algorithm, p() is used to impose an order on open nodes that tells the algorithm which node to expand
next. Details concerning the function p() will be discussed in Section 4.6 after demonstrating various
ways of obtaining information relevant to p() and detailing how p() can be defined by means of such
information. Throughout the rest of the current Section 4.5 we assume that p() implies a first-in-first-out
sorting of open nodes, i.e. a breadth-first search strategy as described in [Rei87].

4.5.1 Breadth-First Diagnosis Computation
Algorithm Overview and Implementation Remarks. To compute minimal diagnoses w.r.t. 〈K,B,P ,
N 〉R from minimal conflict sets w.r.t. 〈K,B,P ,N 〉R, the algorithm produces a labeled tree where a non-
closed node is labeled by a minimal conflict set and a closed node is labeled by either valid or closed.
From a non-closed node labeled by a minimal conflict set C = {axp, . . . , ax q} there are |C| outgoing
edges, each labeled by one ax ∈ C and each leading to a new node that needs to be labeled. Closed nodes
are leaf nodes of the produced tree, i.e. they have no successor nodes, and correspond to non-minimal or
duplicate hitting sets (label closed) or to minimal hitting sets (label valid) of all minimal conflict sets
w.r.t. the input DPI 〈K,B,P ,N 〉R. Conflict sets to label nodes are computed only on-demand for time
efficiency after the attempt to reuse an already computed one fails. In case an appropriate order of node
labeling (e.g. breadth-first tree construction) is used, the complete tree given when all nodes in the tree are
closed contains all minimal diagnoses w.r.t. the DPI 〈K,B,P ,N 〉R provided as input. In this complete
tree, the set of edge labels on each path from the root node to a node labeled by valid is a minimal
diagnosis.

4.5. HITTING SET TREE BASED DIAGNOSIS COMPUTATION 59

What Algorithm 2 actually does is building up a pruned HS-tree for a given DPI. So, we next provide
formal definitions of a (partial) HS-tree and a (partial) pruned HS-tree based on the definitions given
in [Rei87].

Definition 4.7 (HS-Tree). Let 〈K,B,P ,N 〉R be an admissible DPI. An edge-labeled and node-labeled
tree T is called an HS-tree w.r.t. 〈K,B,P ,N 〉R iff it is a smallest tree with the following properties:

1. The root of T is labeled by valid if K is valid w.r.t. 〈·,B,P ,N 〉R. Otherwise, the root is labeled by
a conflict set w.r.t. 〈K,B,P ,N 〉R.

2. If n is a node of T , define H(n) to be the set of edge labels on the path in T from the root node to
n. If n is labeled by valid, it has no successor nodes in T . If n is labeled by a conflict set C w.r.t.
〈K,B,P ,N 〉R, then for each ax ∈ C, n has a successor node nax joined to n by an edge labeled
by ax . The label for nax is a conflict set C′ w.r.t. 〈K,B,P ,N 〉R such that C′ ∩H(nax) = ∅ if such
a set C′ exists. Otherwise, nax is labeled by valid.

T is called a partial HS-tree w.r.t. 〈K,B,P ,N 〉R iff T is a HS-tree w.r.t. 〈K,B,P ,N 〉R where not all
nodes in T are labeled and non-labeled nodes have no successors.

Definition 4.8 (Pruned HS-Tree). Let 〈K,B,P ,N 〉R be an admissible DPI. An edge-labeled and node-
labeled tree T is called a pruned HS-tree (pHS-tree) w.r.t. 〈K,B,P ,N 〉R iff T is the result of constructing
an HS-tree w.r.t. 〈K,B,P ,N 〉R with due regard to the following rules:

1. Label nodes in the HS-tree in breadth-first order.

2. Use only minimal conflict sets w.r.t. 〈K,B,P ,N 〉R to label nodes in T .

3. Reusing node labels: If node n is labeled by C and n′ is a node such that H(n′) ∩ C = ∅, label n′

by C.

4. Non-minimality pruning rule: If node n is labeled by valid and node n′ is such thatH(n) ⊆ H(n′),
label n′ by closed.

5. If node n is labeled by closed, it has no successors.

6. Duplicate pruning rule: If node n is next to be labeled and there is some node n′ such that H(n′) =
H(n), then label n by closed.

T is called a partial pruned HS-tree iff T is a pruned HS-tree where not all nodes in T have been labeled
yet and non-labeled nodes have no successors.

Remark 4.1 Notice that we use a definition of a pruned HS-tree that slightly differs from the definition
given in [Rei87] in that we inherently assume that only minimal conflict sets w.r.t. the given DPI are used
to label nodes in the tree. Therefore we could omit the last rule in the definition of [Rei87]. Namely, such
a situation where some node has been labeled by a subset of the label of another node cannot arise in our
definition since no minimal conflict set can be a subset of another different minimal conflict set w.r.t. the
same DPI.

In general, there are multiple different pHS-trees w.r.t. one and the same DPI [GSW89]. Reason for
this is that

• the order of adding successor nodes (on the same tree level) to the queue Q and

• which of generally multiple minimal conflict sets to (re)use to label a node

60 CHAPTER 4. DIAGNOSIS COMPUTATION

is not determined by Definition 4.8.

By [Rei87, Theorem 4.8] and Proposition 4.6, the following holds:

Proposition 4.10. Let 〈K,B,P ,N 〉R be an admissible DPI and T a pHS-tree w.r.t. 〈K,B,P ,N 〉R. Then,
{H(n) | n is a node of T labeled by valid} = mD〈K,B,P,N 〉R , i.e. the set of all minimal diagnoses w.r.t.
〈K,B,P ,N 〉R.

Remark 4.2 A node nd in Algorithm 2 is defined as the set of formulas that label the edges on the path
from the root node to nd. In other words, we associate a node n with H(n). In this vein, Algorithm 2
internally does not store a labeled tree, but only “relevant” sets of nodes and conflict sets. That is, it does
not store any

• non-leaf nodes,

• labels of non-leaf nodes, i.e. it does not store which minimal conflict set labels which node,

• edges between nodes,

• labels of edges and

• leaf nodes labeled by closed.

Let T denote the (partial) pHS-tree produced by Algorithm 2 at some point during its execution (Corol-
lary 4.4 will show that Algorithm 2 using breadth-first search in fact produces a (partial) pHS-tree). Then,
Algorithm 2 only stores

• a set of nodes Dcalc where each node corresponds to the edge labels along a path in T leading to a
leaf node that has been labeled by valid (minimal diagnoses w.r.t. 〈K,B,P ,N 〉R),

• a list of open (non-closed) nodes Q where each node in Q corresponds to the edge labels along a
path in T leading from the root node to a leaf node that has been generated, but has not yet been
labeled and

• the set Ccalc of already computed minimal conflict sets w.r.t. 〈K,B,P ,N 〉R that have been used
to label non-leaf nodes in T .

We call 〈Dcalc,Q,Ccalc〉 the relevant data of T . If T is a pHS-tree, then Q is the empty list.
This internal representation of the constructed (partial) pHS-tree by its relevant data does not constrain

the functionality of the algorithm. This holds as diagnoses are paths from the root, i.e. nodes in the internal
representation, and the goal of a (partial) pHS-tree is to determine minimal diagnoses w.r.t. the given DPI.
The node labels or edge labels along a certain path and their order along this path is completely irrelevant
when it comes to finding a label for the leaf node of this path. Instead, only the set of edge labels is
required for the computation of the label for a leaf node. Also, to rule out nodes corresponding to non-
minimal diagnoses, it is sufficient to know the set of already found diagnoses Dcalc. No already closed
nodes are needed for the correct functionality of Algorithm 2.

Initialization. First, Algorithm 2 initializes the variable tstart with the current system time (GETTIME),
the set of calculated minimal diagnoses Dcalc to the empty set and the ordered queue of open nodes Q to
a list including the empty set only (i.e. only the unlabeled root node).

4.5. HITTING SET TREE BASED DIAGNOSIS COMPUTATION 61

The Main Loop. Within the loop (line 5) the algorithm gets the node to be processed next, namely
the first node node (GETFIRST, line 6) in the list of open nodes Q ordered by the function pnodes() and
removes node from Q (DELETEFIRST, line 7). Note that pnodes() can be directly obtained from p(). As
mentioned before, for the moment the reader should simply suppose that pnodes() imposes an order on
Q which effectuates a breadth-first labeling of open nodes in the tree. A definition of pnodes() will be
given by Definition 4.9 after a motivation and detailed explanation of pnodes() will have been given in
Section 4.6.

Computation of Node Labels. Then, a label is computed for node in line 8. Nodes are labeled by
valid, closed or a minimal conflict set w.r.t. 〈K,B,P ,N 〉R by the procedure LABEL (line 18 ff.). This
procedure gets as inputs the DPI 〈K,B,P ,N 〉R, the current node node, the set of already computed
minimal conflicts (Ccalc) and minimal diagnoses (Dcalc) and the queue Q of open nodes, and it returns
an updated set of computed minimal conflicts Ccalc and a label for node. It works as follows:

A node node is labeled by closed iff (a) there is an already computed minimal diagnosis D in Dcalc

that is a subset of this node, i.e. D ⊆ node, which means that node cannot be a minimal diagnosis (non-
minimality criterion, lines 19-21) or (b) there is some node nd in the queue of open nodes Q such that
node = nd which means that one of the two tree branches with an equal set of edge labels can be closed,
i.e. removed from Q (duplicate criterion, lines 22-24).

If none of these closed-criteria is met, the algorithm searches for some C in Ccalc, the set of already
computed minimal conflict sets, such that C ∩ node = ∅ and returns the label C for node (reuse criterion,
lines 25-27). This means that the path represented by node cannot be a diagnosis as there is (at least) one
minimal conflict set, namely C, that is not hit by node.

If the reuse criterion does not apply, a call to QX(〈K \ node,B,P ,N 〉R) is made (line 28) in order
to check whether there is a not-yet-computed minimal conflict set that is not hit by node. Note that
the KB K \ node that is given to QX as part of the argument DPI ensures that only minimal conflict sets
C ⊆ K\node can be computed, i.e. ones that do not share any single formula with node (cf. Section 4.4.1).

Remark 4.3 A minimal conflict set computed by QX(〈K \ node,B,P ,N 〉R) is a minimal conflict set
w.r.t. 〈K,B,P ,N 〉R indeed since (i) QX(〈K \ node,B,P ,N 〉R) returning a set C means that C is a mini-
mal conflict set w.r.t. 〈K \ node,B,P ,N 〉R by Proposition 4.9 and (ii) the “⇒” direction of Corollary 4.1
implies that C is not valid w.r.t. 〈·,B,P ,N 〉R and (iii) the “⇐” direction of Corollary 4.1 lets us conclude
that C is a minimal conflict w.r.t. 〈X,B,P ,N 〉R where X is any superset of C, in particular X := K.

QX may then return (a) ’no conflict’, i.e. K \ node is already valid w.r.t. 〈·,B,P ,N 〉R, or (b) a new
conflict set L 6= ∅ such that L /∈ Ccalc. Note that the case of the output L = ∅ of QX cannot arise since
(i) the DPI provided as input to the algorithm is assumed to be admissible, (ii) no other DPI for which QX
is called can be non-admissible since admissibility is defined only by the sets B,P ,N ,R which remain
unmodified throughout the execution of Algorithm 2, and (iii) as per Proposition 4.9, QX returns ∅ only
if the DPI given to it as an argument is non-admissible. Further on, we point out that the conflict set L in
case (b) must be a new conflict set since the reuse criterion is always checked before the call to QX and
thus must be negative. That is, each C ∈ Ccalc is hit by node and L is not hit by node wherefore L 6= C
must hold for all C ∈ Ccalc.

In each of the described cases, the LABEL procedure returns a tuple including the respective label as
explained and the set Ccalc where Ccalc is equal to the input argument Ccalc in all cases except for the
case where a new minimal conflict set is computed by QX. In this case, the newly computed conflict set
is added to Ccalc (line 32) before the procedure returns.

Processing of a Node Label. Back in the main procedure, Ccalc is updated (line 9) and then the label
L returned by procedure LABEL is processed as follows:

62 CHAPTER 4. DIAGNOSIS COMPUTATION

If L = valid, then there is no minimal conflict set w.r.t. 〈K,B,P ,N 〉R that is not hit by (i.e. has
an empty intersection with) the current node node. Thus, node is added to the set of calculated minimal
diagnoses Dcalc. Minimality of diagnoses added to Dcalc is guaranteed by the pruning rule (lines 19-
21) which eliminates non-minimal nodes (paths) and the way the tree is built level by level by the used
breadth-first strategy. In case a uniform-cost variant of tree construction is used, certain properties of the
function p() need to be postulated to preserve this minimality guarantee. We discuss these properties in
Section 4.6.

If, on the other hand, L = closed is the returned label of the procedure LABEL, then there is either
a minimal diagnosis in Dcalc that is a subset of the current node node or a duplicate of node is already
included in Q. Consequently, node must simply be removed from Q which has already been executed in
line 7.

In the third case, if a minimal conflict set L is returned in line 8, then L is a label for node meaning
that |L| successor nodes of node need to be added to Q in sorted order using the function pnodes()
(INSERTSORTED, line 15), as will be explained in more detail in Section 4.6.

Recap. To summarize, in each iteration, the node node that is the first element of the queue Q is deleted
from Q and,

1. if node is a diagnosis, it is added to the set Dcalc

2. if there is some diagnosis in Dcalc that is a proper subset of node or node is equal to some other
node in Q, no action is performed, i.e. the algorithm deletes node without substitution

3. if there is some minimal conflict set that node does not hit, then such a conflict set C is computed
and for each ax ∈ C a new node node ∪ {ax} is added to Q.

We call each node nd that is added to Q in the latter case a successor of the node node.

4.5.2 Correctness of Breadth-First Diagnosis Computation
For the discussion of the output of Algorithm 2 we will exploit the following result saying that Algo-
rithm 2 computes all and only minimal diagnoses, if it executes until the queue of open nodes becomes
the empty set.

Proposition 4.11 (Soundness and Completeness of Algorithm 2 using Breadth-First Search). Let 〈K,
B,P ,N 〉R be an admissible DPI given as input to Algorithm 2. If Algorithm 2 using a breadth-first tree
construction strategy terminates due to Q = [], then the algorithm returns exactly the set of all minimal
diagnoses w.r.t. 〈K,B,P ,N 〉R.

Proof. This proposition is a consequence of Proposition 4.10 and the following Lemma 4.13 which wit-
nesses that Algorithm 2 using a breadth-first tree construction strategy produces a pHS-tree as per Defi-
nition 4.8.

Lemma 4.13. Algorithm 2 with the admissible input DPI 〈K,B,P ,N 〉R using a breadth-first tree con-
struction strategy is a procedure for producing a pHS-tree T w.r.t. 〈K,B,P ,N 〉R.

Proof. We verify whether all rules given by Definitions 4.7 and 4.8 are satisfied by Algorithm 2.

• Definition 4.7, rule 1: The root node ∅ which is the only element of the initial list Q is labeled by
the first call to LABEL for node := ∅ in line 8. If valid is returned, then QX(〈K,B,P ,N 〉R) must
have returned ’no conflict’ which is the case if K is valid w.r.t. 〈·,B,P ,N 〉R.

4.5. HITTING SET TREE BASED DIAGNOSIS COMPUTATION 63

Otherwise, if valid is not returned by LABEL, then some minimal conflict setLw.r.t. 〈K,B,P ,N 〉R
must have been returned in line 33. L is a minimal conflict set w.r.t. 〈K,B,P ,N 〉R by Proposi-
tion 4.9 and since QX(〈K,B,P ,N 〉R) has not returned ’no conflict’ as otherwise valid would
have been returned contradicting our assumption and since 〈K,B,P ,N 〉R is an admissible DPI by
assumption. LABEL cannot have returned earlier in line 21 or line 24, since Dcalc is the empty set
and Q the empty list at this time. The former holds since Dcalc is only extended in line 11 which
cannot ever have been reached before the first call to LABEL has returned. The latter holds as Q
initially contained only ∅ and as ∅ was deleted from Q in line 7 before the call to LABEL was made
in line 8.

• Definition 4.7, rule 2: Suppose a node node is labeled by valid, then it is added to Dcalc in line 11.
Since node can only get a label different from closed if it is the only exemplar of this node in Q
due to the duplicate criterion (lines 22-24), it must be the case that node /∈ Q (line 7) after node has
been labeled by valid. Only nodes that get labeled by a conflict set can have successor nodes added
to Q in line 15. Only nodes in Q can get a label (cf. lines 6 and 8). For node to be added to Q at
some later point in time there must be a proper subset of node that is still in Q as each node newly
added to Q is a proper superset of some node in Q (cf. line 15 which is the only position in the
algorithm where nodes are added to Q). This is impossible due to the breadth-first tree construction
strategy which implies that all nodes of cardinality |node| − 1 have already been labeled (and thus
deleted from Q in line 7) when node is being labeled. Hence, if node is labeled by valid, then it
has no successors.

If node is labeled by some conflict set L, then Algorithm must come to line 15, where a successor
node ∪ {e} is added to Q for all e ∈ L.

How node nodee := node ∪ {e} must be labeled is overridden by the rules 3, 4 and 6 of Defini-
tion 4.8 (see below).

• Definition 4.8, rule 1: This is true by our assumption about p() and pnodes().

• Definition 4.8, rule 2: This holds since QX(〈K\node,B,P ,N 〉R) computes only minimal conflict
sets w.r.t. 〈K,B,P ,N 〉R (cf. Remark 4.3).

• Definition 4.8, rule 3: All minimal conflict sets that have been used to label nodes so far are stored
in Ccalc. Before a minimal conflict to label node might be computed by a call to QX in line 28, the
reuse criterion in lines 25-27 checks whether there is a set C in Ccalc with C ∩ node. If positive, C
is returned as a label for node.

• Definition 4.8, rule 4: This is accomplished by the non-minimality criterion in lines 19-21 which
checks for existence of a node already labeled by valid which is a subset of the node to be labeled
right now. All nodes labeled by valid are stored in Dcalc (cf. lines 10 and 11).

• Definition 4.8, rule 5: If some node node is labeled by closed, then no action is performed (cf.
line 12). Before each node is labeled in line 8, it is deleted from Q in line 7. That node can-
not be inserted into Q at some later point in time follows from the argumentation used above to
demonstrate that Definition 4.7, rule 2 is met.

• Definition 4.8, rule 6: This is achieved by the duplicate criterion in lines 22-24 where Q is browsed
for some node equal to the one that is to be labeled right now. When some node node is next to be
labeled, then all duplicates of node must already be in Q as reasoned above in the argumentation
to show that Definition 4.7, rule 2 is satisfied. Thus, the criterion must search for duplicates in no
other collections than Q. Indeed, only one (i.e. the last non-deleted) exemplar of these duplicates
of node in Q can get a label other than closed due to the duplicate criterion which closes duplicates
as long as there are any.

64 CHAPTER 4. DIAGNOSIS COMPUTATION

We conclude that Algorithm 2 is a procedure for constructing a pHS-tree.

By Proposition 4.11 and the fact that there is no place in Algorithm 2 where nodes are removed from
Dcalc (which implies that only minimal diagnoses can be added to Dcalc), the following corollary is
obvious.

Corollary 4.4. Algorithm 2 with the admissible input DPI 〈K,B,P ,N 〉R using a breadth-first tree con-
struction strategy stores by 〈Dcalc,Q,Ccalc〉 the relevant data of

• a pHS-tree w.r.t. 〈K,B,P ,N 〉R if Algorithm 2 stops due to Q = [],

• a partial pHS-tree w.r.t. 〈K,B,P ,N 〉R otherwise.

If a pHS-tree is computed in breath-first order, minimal diagnoses are generated with increasing
cardinality, as the following Corollary 4.5 attests. Consequently, for the generation of all minimum
cardinality diagnoses, only the first level of the tree has to be generated, where a node is labeled.

Corollary 4.5. The following holds for the set D returned by Algorithm 2 using breadth-first search: If D
contains some diagnosis of cardinality k, then it includes all diagnoses w.r.t. 〈K,B,P ,N 〉R of cardinality
lower than k.

Proof. By Proposition 4.11, it is a fact that Algorithm 2 computes all and only minimal diagnoses w.r.t.
〈K,B,P ,N 〉R. As these are computed in breadth-first order, the first computed diagnoses must be the
minimum cardinality ones. To see this, assume that Algorithm 2 returns D which includes one non-
minimum cardinality diagnosis D and does not comprise a minimum cardinality diagnosis D′, i.e. |D| >
|D′|. By breadth-first search, nodes are labeled in ascending order of their cardinality. And, if the first
node of cardinality k is labeled, no more nodes of cardinality k−1 can be in Q (cf. proof of Lemma 4.13).
So, we have that the pHS-tree obtained by further execution of the algorithm until Q = [] can never label
D′ since |D| > |D′| andD has already been labeled. Hence, the algorithm would not returnD′ in its final
output D. Since each minimum cardinality diagnosis is a minimal diagnosis, D′ is a minimal diagnosis.
Thus, we have a contradiction to the fact that the algorithm computes all minimal diagnoses.

Output. The repeat-loop is iterated until the stop criterion (line 16) applies. In case at least nmin

minimal diagnoses w.r.t. 〈K,B,P ,N 〉R exist, there are two cases:

• If the finding of the nmin-th minimal diagnosis happens after t′ < t time has passed since the
start of Algorithm 2, then the algorithm will continue iterating and terminate only if execution time
amounts to at least t time or |D| = nmax at the time line 16 is processed.

• Otherwise, if the detection of the nmin-th minimal diagnosis takes place after processing longer
than t time, then the algorithm will terminate immediately after having determined the nmin-th
minimal diagnosis.

In both cases, the output is a set D of minimal diagnoses w.r.t. 〈K,B,P ,N 〉R such that nmin ≤ |D| ≤
nmax and D is the set of best minimal diagnoses as per p(), in this case the set of minimal diagnoses with
minimum cardinality since p() is assumed to be specified as to cause a breadth-first tree construction.

If fewer than nmin minimal diagnoses exist w.r.t. 〈K,B,P ,N 〉R, then Q = [] will be the cause for the
algorithm to terminate. In this case, the pHS-tree w.r.t. 〈K,B,P ,N 〉R has been built up and all minimal
diagnoses w.r.t. 〈K,B,P ,N 〉R are stored in Dcalc. Thus, the output is the set mD〈K,B,P,N 〉R of all
minimal diagnoses w.r.t. 〈K,B,P ,N 〉R.

4.6. DIAGNOSIS PROBABILITY SPACE 65

Termination. The next proposition shows that Algorithm 2 must yield a set of minimal diagnoses after
finite time.

Proposition 4.12. Algorithm 2 always terminates.

Proof. This is due to the fact that minimal conflict sets used to label non-leaf nodes are subsets of K and
that nodes in Q are subsets of K, which is a finite set by Definition 3.1. Moreover, a node in Q is either
deleted without substitution from Q if valid or closed (line 7) or deleted (line 7) and replaced by proper
supersets of it (INSERTSORTED in line 15). This means that the cardinality of all nodes in Q is strictly
monotonically increasing. Thus each node (path) node is guaranteed to be closed (valid or closed) when
node = K as in this case node must hit all possible (minimal) conflict sets Ci w.r.t. 〈K,B,P ,N 〉R since
Ci ⊆ K holds by Definition 4.1. So, after finite time the queue Q definitely becomes the empty list which
is a stop criterion (line 16).

The argumentation so far proves the following

Proposition 4.13. Let 〈K,B,P ,N 〉R be an admissible DPI, t, nmin, nmax ∈ N and p : K → (0, 0.5) de-
fined in a way that Q is always ordered first-in-first-out. For these inputs, Algorithm 2 always terminates
and returns a set D of minimal diagnoses w.r.t. 〈K,B,P ,N 〉R which is

• the set of the |D| minimal diagnoses of minimum cardinality w.r.t. 〈K,B,P ,N 〉R (i.e. the first |D|
elements in mD〈K,B,P,N 〉R if mD〈K,B,P,N 〉R is assumed to be sorted in ascending order by cardi-
nality) such that nmin ≤ |D| ≤ nmax, if at least nmin minimal diagnoses exist w.r.t. 〈K,B,P ,N 〉R,
or

• the set of all minimal diagnoses w.r.t. 〈K,B,P ,N 〉R, otherwise.

4.6 Diagnosis Probability Space
The induction of a probability space [Dur10] over diagnoses facilitates incorporation of well-established
probability theoretic methods into the process of KB debugging; for example, a Bayesian approach
[SFFR12, RSFF13, dKW87] for identifying the true diagnosis, i.e. the one which leads to a solution
KB with the desired semantics, by repeated measurements (see Part II). Let the true diagnosis be denoted
as Dt in the sequel.

The Probability Space of All Diagnoses. From the point of view of probability theory, a diagnosis can
be viewed as an atomic event in a probability space 〈Ω, E , p〉 defined as follows:

• Ω is the sample space consisting of all possible diagnoses w.r.t. a DPI 〈K,B,P ,N 〉R, i.e. Ω =
aD〈K,B,P,N 〉R ,

• E is a sigma-algebra on Ω, in our case the powerset 2Ω of Ω, and

• p is a probability measure assigning a probability to each event in E , i.e. p : E → [0, 1] such that∑
ω∈Ω p({ω}) = 1 which means

∑
D∈aD〈K,B,P,N〉R

p({D}) = 1.

So, p({D}) for D ∈ aD〈K,B,P,N 〉R can be seen as the probability that D is the true diagnosis, i.e. the
probability of the event Dt = D (or Dt ∈ {D}). Consequently, p({D}) for D ∈ aD〈K,B,P,N 〉R is the
probability distribution of the random variableDt, i.e. the probability distribution of the true diagnosis. In
this vein, the probability of a set {Di, . . . ,Dj} ∈ E is interpreted as the likeliness of this set to comprise
the true diagnosis Dt. That is, p({Di, . . . ,Dj}) = p(Dt ∈ {Di, . . . ,Dj}) = p(Dt = Di ∨ · · · ∨ Dt =

66 CHAPTER 4. DIAGNOSIS COMPUTATION

Algorithm 2 HS: Computation of Minimal Diagnoses

Input: an admissible DPI 〈K,B,P ,N 〉R, a desired computation timeout t, a desired minimal (nmin) and maximal
(nmax) number of diagnoses to be returned, a function p : K → (0, 0.5)

Output: a set D which is
(a) a set of most probable (according to p()) minimal diagnoses w.r.t. 〈K,B,P ,N 〉R such that nmin ≤ |D| ≤
nmax, if at least nmin minimal diagnoses exist w.r.t. 〈K,B,P ,N 〉R, or
(b) the set of all minimal diagnoses w.r.t. 〈K,B,P ,N 〉R otherwise

1: procedure HS(〈K,B,P ,N 〉R, t, nmin, nmax, p())
2: tstart ← GETTIME()
3: Dcalc,Ccalc ← ∅
4: Q← [∅]
5: repeat
6: node← GETFIRST(Q)
7: Q← DELETEFIRST(Q)
8: 〈L,C〉 ← LABEL(〈K,B,P ,N 〉R, node,Ccalc,Dcalc,Q)
9: Ccalc ← C

10: if L = valid then
11: Dcalc ← Dcalc ∪ {node}
12: else if L = closed then . do nothing
13: else . L must be a minimal conflict set
14: for e ∈ L do
15: Q← INSERTSORTED(node ∪ {e} ,Q, pnodes())

16: until Q = [] ∨ [|Dcalc| ≥ nmin ∧ (|Dcalc| = nmax ∨ GETTIME()− tstart > t)]
17: return Dcalc

18: procedure LABEL(〈K,B,P ,N 〉R, node,Ccalc,Dcalc,Q)
19: for nd ∈ Dcalc do
20: if node ⊇ nd then . non-minimality
21: return 〈closed,Ccalc〉
22: for nd ∈ Q do
23: if node = nd then . remove duplicates
24: return 〈closed,Ccalc〉
25: for C ∈ Ccalc do
26: if C ∩ node = ∅ then . reuse C
27: return 〈C,Ccalc〉
28: L← QX(〈K \ node,B,P ,N 〉R)
29: if L = ’no conflict’ then . node is a diagnosis
30: return 〈valid,Ccalc〉
31: else . L is new minimal conflict set (/∈ Ccalc)
32: Ccalc ← Ccalc ∪ {L}
33: return 〈L,Ccalc〉

Dj) = 0.3 means that Dt is an element of {Di, . . . ,Dj} with 30% probability. Note that singletons are
often written without curly braces, i.e. p({Di}) is usually written as p(Di); we will also do so in the rest
of this work.

The elements of the sample space Ω of a probability space are often called atomic events because
they must be mutually exclusive (i.e. two atomic events cannot “happen” at the same time as an outcome
of the fictive experiment a probability space describes) and exhaustive (i.e. for each “execution” of the
experiment the probability space describes one atomic event must “happen”). Since the true diagnosisDt

4.6. DIAGNOSIS PROBABILITY SPACE 67

must be a diagnosis w.r.t. 〈K,B,P ,N 〉R and Ω by definition comprises all such diagnoses, exhaustiveness
is clearly fulfilled. Mutual exclusiveness is a consequence of the fact that each diagnosisD gives complete
information about the correctness of each formula axk ∈ K. In other words, Dt ∈ {D} is a shorthand
for the statement that all ax i ∈ D are faulty and all ax j ∈ K \ D are correct. Thus, any two different
diagnoses are mutually exclusive events, i.e. Dt = Di implies Dt 6= Dj for all Dj ∈ aD such that
Di 6= Dj .

The probability measure p is completely defined if a probability p(D) for each diagnosis D ∈ Ω
is given. Then, by the mutual exclusiveness of events Dt ∈ {Di} and Dt ∈ {Dj} for Di 6= Dj , the
probability

p(E) =
∑
D∈E

p(D) (4.1)

for each event E ∈ E .

Restricted Probability Spaces of Diagnoses. In many cases, only a restricted set of diagnoses w.r.t.
a DPI is considered relevant for the debugging task. That is, the focus is on locating the true diagnosis
among a predefined subset of all diagnoses aD〈K,B,P,N 〉R . This involves an adaptation of the probability
space, in particular of the set Ω. For instance, if not the set of all, but only the set of minimal diagnoses
mD〈K,B,P,N 〉R w.r.t. 〈K,B,P ,N 〉R should be considered by a debugging system – as motivated in Sec-
tion 3.1 – then Ω := mD〈K,B,P,N 〉R . The other properties E = 2Ω and

∑
ω∈Ω p({ω}) = 1 remain the

same for each restricted probability space, but depend on Ω. Thus, for example, a probability p(D) for
D ∈mD〈K,B,P,N 〉R ⊆ aD〈K,B,P,N 〉R must be generally defined differently, i.e. assigned a higher value,
when Ω = mD〈K,B,P,N 〉R instead of Ω = aD〈K,B,P,N 〉R . This is due to the condition that all probabil-
ities of atomic events in Ω must sum up to 1. In practice, because of the computational complexity of
diagnosis computation, the used probability space will usually need to be restricted even further in that Ω
comprises only a set of “leading diagnoses” which is a subset of all minimal diagnoses w.r.t. a DPI (see
Chapter 7).

4.6.1 Construction of a Probability Space
Since a diagnosis constitutes an assumption about the correctness of each formula in the KB, the prob-
ability of a diagnosis D (to be the true diagnosis Dt) can be computed by means of fault probabilities
of formulas. In other words, computing the probability of the event D = Dt corresponds to computing
the probability of the event that exactly all formulas in D are faulty and all other formulas in the KB are
correct.

Estimating Fault Probabilities of Formulas in the KB

Next we discuss various possibilities of how the probability of an ax ∈ K might be assessed. To this end,
we first make a distinction between situations where some useful empirical data is available or not and
then we differentiate between different sorts of such available data and how to take advantage of it.

Empirical Data is Accessible. Let us first reflect on how to utilize different empirical data sources in
order to compute formula probabilities. Data can be of the following kinds (enumeration may not be
complete):

(a) Regarding formulas: Change logs of formulas in the KB

(b) Regarding the user: Data about common mistakes of the user who has formulated the KB

68 CHAPTER 4. DIAGNOSIS COMPUTATION

Ad (a): Prerequisite for the availability of change logs of formulas in the KB is the usage of some KB
engineering software with integrated logging or change management. Examples of such KB (ontology)
developing environments are Protégé [NSD+00], Web Protégé [TNNM13], SWOOP [KPS+06], On-
toEdit [SEA+02] or KAON2.19 Given a formula ax ∈ K and its change log, the fault probability p(ax)
of this formula can be estimated by counting the number of modifications accomplished for ax in the
change log. The intuition is, the more often ax has been altered, the more uncertain the (set of) author(s)
might be about its correctness. This method of probability computation however suffers from a cold-start
problem. If a KB is completely newly created, then such information is not available at all. On the other
hand, for KBs that are being developed over a long period of time, this method can be assumed to be a
rather reliable way of assessing the likeliness of formulas to be faulty.

Ad (b): Clearly, data about common mistakes of a user has to be related to some type of entity that
is recurrent and not dependent on a particular KB. Formulas are therefore not suitable and too coarse-
grained since one and the same formula will rarely occur in many KBs. More adequate entities to relate
a user fault to are predicates (terms) and logical connectives – these usually (re-)appear in many different
KBs. In this way, the extrapolation and reusability of collected personal fault information of a user within
one KB and between different KBs is granted.

One way of obtaining data about common mistakes of user u on this syntactical level is, for instance,
the examination of diagnoses got as a result of past debugging sessions performed on KBs authored by u.
Another way is, again, to use the change logs (if available) of formulas in KBs user u has created in the
past.

Given such a past diagnosis D, we know that all formulas ax ∈ D that had been written by u have
been confirmed to be faulty by a user. So, these formulas could be analyzed for contained predicates
(terms) and logical connectives and the probability of being faulty of those syntactical constructs could
be raised relative to those constructs that do not occur in formulas inD. At this, the following assumptions
could be made:

• If a formula has been confirmed to be faulty by the user, then the meaning of all predicates (terms)
appearing in this formula is not correct (because in the domain that should be modeled the relation-
ship between the predicates (terms) occurring in the formula stated by the formula must not hold).
So, all predicates (terms) in ax get more suspicious of being faulty in general if ax ∈ D for some
past solution diagnosis D.

• If a formula including some logical connective is part of some past solution diagnosis, then this
type of logical connective gets more suspicious of being faulty in general.

When exploiting change logs of formulas authored by u, the following assumptions could be made:

• If a formula has been modified, then a user has changed the meaning of all predicates (terms)
appearing in this formula. So, all predicates (terms) in ax get more suspicious of being faulty in
general if ax has been edited at least once. The more often it has been altered, the more suspicious
the predicates (terms) get.

• If some logical connective in a formula is modified, i.e. deleted or added, then this type of logical
connective gets more suspicious of being faulty in general.

The following example should give an intuition of these assumptions:

Example 4.5 Imagine the situation where the author of formula ax := ∀X pet(X) ↔ animal(X) ∧
(∃Y hasOwner(X,Y) ∧ person(Y)) is known to have only vague knowledge about the predicate pet

19http://kaon2.semanticweb.org/

4.6. DIAGNOSIS PROBABILITY SPACE 69

and to frequently interchange ∧ and ∨ when formulating logical formulas. This could be reflected by
the assignment of higher fault probability to the predicate pet than to the predicates animal, hasChild
and person and by raising the fault probability of ∧ as well as ∨ compared to other logical connectives
available in the used logic L. Then, formula ax should intuitively have a higher probability of being
faulty than, e.g., formula ax ′ = ∀X animal(X) → ¬person(X) since ax ′ does not include any of the
“suspicious” terms or connectives as ax does.

A probability of 0.25 of some predicate (term) a occurring inK could then account for the observation
made in the logs that, in past debugging sessions (not necessarily related to the current KB K), every
fourth formula formulated by user u which includes the term a was modified at least once. Similarly,
another term b could be assigned fault probability 0.5 which could reflect that formulas formulated by u
including b have been altered twice as often as formulas formulated by u comprising a. Given additionally
that a occurred in two formulas formulated by u of past diagnoses whereas b did not occur in any, the
probability of a could be increased by some addend or factor to take account of this.

Concerning some logical connective, say ∃, the observation that all past diagnosis formulas contained
∃ and in 80% of formulas formulated by this user including ∃ the ∃ connective has been modified at least
once, the fault probability of ∃ might be assigned rather high. In comparison, the probability of some
other connective, say ¬, occurring in no diagnosis and having been altered only in 10% of the formulas
comprising ¬, the probability of the ¬ connective might be estimated rather low.

A shortcoming of this approach is again a cold-start problem. If a user is new to conceptualizing
knowledge in a structured logical manner or at least in the given logical language L, then no such (per-
sonalized) past diagnoses or change logs will be available. So, this issue especially concerns beginners
who are usually anyhow more prone to errors than expert-users. On the positive side, utilization of
such empirical data can yield to fault information that is very well tailored for the user and that can
imply a significant reduction of computation time and user effort necessary for debugging of the KB at
hand [SFFR12].

No Empirical Data is Available. If no data of the kinds (a) and (b) discussed above is available to a
debugging system, then we have the following possibilities:

(c) Common fault patterns

(d) Subjective self-assessment of a user

(e) Examination of structural complexity of logical formulas

(f) Using no probabilities

Ad (c): A common fault pattern [RDH+04, CRV+09, KPSCG06], also called anti-pattern, refers to a
set of formulas that either leads to an inconsistency (logical anti-pattern) or corresponds to a potential
modeling error that – alone – does not lead to a inconsistency or incoherency (non-logical anti-pattern),
but still might become a source of inconsistency if merged with other formulas (cf. Section 3.2). Although
most of these patterns incorporate more than one formula which makes the individual consideration of
a formula in terms of fault probability calculation difficult, an idea to incorporate knowledge about anti-
patterns to probability estimation of formulas could be to count for each ax ∈ K in how many different
(logical or non-logical) anti-patterns it occurs. The higher this count, the more likely a formula might be
involved in a conflict set and thus in the true diagnosis.

A drawback of this method could be that most of the formulas involved in a KB might not correspond
to any formula occurring in an anti-pattern. Thus, one might end up with no probability estimate for most
of the formulas in a KB K. Besides that, the information provided by these anti-patterns is not person-
alized at all and therefore might significantly diverge from the true fault probabilities for a user and lead

70 CHAPTER 4. DIAGNOSIS COMPUTATION

to a false bias in the used fault data. This justifies to basically rely on another approach to get a first
estimate of a formula’s likeliness of being faulty and use this method only to make adaptations to already
established probabilities.

Ad (d): The method of a user’s self-assessment of own fault probabilities supposes a user to be able to
specify fault probabilities of predicates (terms), logical connectives or complete formulas by themselves.
Since users not always have a clear picture of own strengths and weaknesses, this variant must be re-
garded with suspicion. Furthermore, in settings where several persons are involved in the engineering
of the KB, a reasonable rating of fault probabilities of terms, connectives or formulas authored by other
persons might be difficult or impossible for a user.

Ad (e): Here the idea is to examine “grammatical” (i.e. syntactical) aspects of formulas such as the “nest-
ing depth” of subordinate clauses or the mere “length” of a formula. The underlying assumption can
be that higher length and/or deeper nesting means higher complexity and cognitive difficulty in under-
standing of the formula’s semantics – as it does in natural language. For instance, it is reasonable to
expect formulas like ax 1 := ∀X a(X) → (∃Y r1(X,Y) ∧ (∀Z r2(Y, Z) → b(Z))) to tend to be more
error-prone and more likely to be faulty than ax 2 := ∀X g(X) → b(X). This intuition is modeled by
the maximum nesting depth as well as by the length of ax 1 in comparison to ax 2. Using the analogy
to natural language, the maximum nesting depth of a formula could roughly be defined as the maximum
number of encapsulated subordinate clauses that cannot be “flattened” occurring in the natural language
translation of the formula. For formula ax 1, this would imply a maximum nesting depth of two; for ax 2

it would amount to zero. The reason is that ax 1 stated in natural language would sound “if somebody
X is a, then there is somebody Y , who satisfies property r1 with X and for whom anybody, who sat-
isfies property r2 with Y is b”. In this natural language formulation, there are two subordinate clauses,
i.e. the clauses beginning with the word “who”; the first is at nesting depth one and the second at depth
two. These subordinate clauses cannot be flattened, i.e. be brought to some lower depth, because the Z
is related to the Y which in turn is related to the X . The length of formulas could be defined similarly
as in [HPS08] which provides such a definition for DL languages. In this case the length of ax 1 and ax 2

would be four (roughly: four predicates in ax 1) and two (two predicates in ax 2), respectively.
A disadvantage of such a “grammatical” approach gets evident when most of the formulas in a KB

are rather “simple”, i.e. have a low nesting depth and a short length. In such case this method will give
little differentiation between different formulas and should thus be combined with another method of
probability estimation in general.

Ad (f): In a situation where all the aforementioned ways of gauging probabilities do not apply or are
believed to have a too high risk of introducing a false bias into the debugging system, the solution is
to define all formulas to be equally probably faulty. The obvious pro of this is that the system cannot
get misled by unreasonable fault probabilities whereas the con is that possibly well-suited probabilistic
information cannot be exploited. Moreover, experiments in our previous work [SFFR12] have manifested
that fault information of only “average” quality most often leads to a better performance than no fault
information. Apart from that, we have suggested a reinforcement learning “plug-in” to a debugger which
could successfully mitigate the negative effect of low-quality fault information and in many cases, in spite
of the low-quality fault information, even led to lower resource consumption (user, time) than a debugger
without this plug-in using good fault information [RSFF13].

Collaborative KB Development. In a collaborative development scenario involving several authors,
provenance information could be additionally leveraged to refine probability estimates (cf. [KPSCG06]).
At this point, user skills could come into play; that is, formulas authored by more experienced authors
get a lower overall fault probability as opposed to beginners concerning KB engineering or logic skills or

4.6. DIAGNOSIS PROBABILITY SPACE 71

expertise in the modeled domain. This probability adaptation can also affect syntactical elements in that
one and the same predicate (term) or logical connective can get a different probability depending on in
which formula it occurs and who authored that formula.

Remark 4.4 Of course, these assumptions and methods of obtaining fault probabilities of syntactical
elements and formulas are only some possible ways of doing so. For example, one might argue that the
“authorship” of a formula is somewhat not clearly defined. What if user u1 has originally written formula
ax and then user u2 alters the formula to become ax ′? Who is the author of ax ′? u1, u2 or both? For
whose fault probability computation should the renewed modification of ax ′ to ax ′′ count? Questions
like this one need to be discussed and maybe evaluations using real data need to be accomplished in
order to find a practical answer; or perhaps to find out that completely different approaches turn out to be
reasonable. This is a topic of our future work.

Remark 4.5 By the definition of a DPI (Definition 3.1) stating that the KB K must be disjoint with
the background knowledge B and the role B has within a DPI, namely to comprise all formulas that are
definitely correct, we postulate that no formula ax ∈ K must have a probability of zero. In a situation
when this is not the case, a modified DPI must be used where such formulas have been moved from K to
B.

Computation of Diagnosis Probabilities. In the following, we denote by ax (K) the set of logical
connectives and quantifiers occurring in a formula ax (in the KB K) and by ãx (K̃) the signature of ax
(of K).

Example 4.6 Considering the DL formula ax := Pet ≡ Animal u ∃hasOwner.Person, we have
that ax = {≡,u,∃} and ãx = {Pet,Animal, hasOwner, Person}.

We now suppose that either a fault probability p(e) := p(“e is faulty”) of each element e ∈ K ∪ K̃ or
the fault probability p(ax) := p(“ax is faulty”) of each formula ax ∈ K is given. For estimation of these
probabilities any (combination) of the methods mentioned above might be employed. In case formula
probabilities are given, diagnosis probabilities can be directly computed by Formula 4.3. Otherwise, the
following pre-computations must be performed.

The fault probability p(ax) of ax can be calculated as the probability that at least one (occurrence
of a) syntactical element in ax is faulty. So, p(ax) is equal to 1 minus the probability that none of the
syntactical elements occurring in ax is faulty. Hence, under the assumption of mutual independence of
syntactical faults concerning elements e ∈ ax ∪ ãx ,

p(ax) = 1−
∏

e∈ax∪ãx

(1− p(e))n(e) (4.2)

where n(e) is the number of occurrences of syntactical element e in ax .
If p(ax) for all ax ∈ K is known, the fault probability p(D) of any diagnosisD ∈ Ω ⊆ aD〈K,B,P,N 〉R

can be determined as the probability that each formula in D is faulty whereas each formula in K \ D is
correct, i.e. not faulty. Thence,

p(D) =
∏

axr∈D
p(ax r)

∏
axs∈K\D

(1− p(ax s)) (4.3)

Recall that probabilities of all atomic events in a well-defined probability space must sum up to 1. As
not every subset of K is a diagnosis, this is in general not the case. Therefore, diagnosis probabilities

72 CHAPTER 4. DIAGNOSIS COMPUTATION

need to be normalized, i.e. each diagnosis probability p(D) must be divided by the sum of all diagnosis
probabilities for diagnoses in Ω. That is, the following adjustment is necessary:

p(D) ← p(D)∑
Dk∈Ω p(Dk)

(4.4)

We want to emphasize that the probability measures p(e) of syntactical elements e and p(ax) of for-
mulas ax are not required to satisfy any conditions except for p(e) ∈ (0, 1] and p(ax) ∈ (0, 1] for all
e ∈ ax ∪ ãx and all ax ∈ K (see Remark 4.5 why the intervals (0, 1] are open). In particular, no
normalization is needed. The reason for this is that “e is faulty” and “ax is faulty” are assumptions
about a single logical connective and a single logical formula, respectively. “D is the true diagnosis”,
to the contrary, is an assumption about each formula in the KB K. So, the probabilities of two differ-
ent syntactical elements ei 6= ej are computed on the basis of two different probability spaces, namely
Ωei = {“ei is faulty”, “ei is not faulty”} and Ωej = {“ej is faulty”, “ej is not faulty”} which clearly do
not depend on each other at all. The same argumentation holds for probabilities of formulas.

More Reliable Probabilities through Observations. As we argued before, the basic fault information
from which diagnosis probabilities are deduced might be rather vague. A usual way of dealing with
scenarios of that kind, is to regard the initial probabilities as a first (a-priori) estimation and to gather
additional information, e.g. by making measurements or observations, and exploit this information to
adapt the a-priori estimation in order to obtain a more reliable a-posteriori estimation. The more additional
information has been accumulated and incorporated, the more realistic is the resulting updated estimation
of probabilities.

A well-known technique enabling computation of a-posteriori probabilities from a-priori probabilities
is Bayes’ Theorem. Let p(D) be the a-priori probability of some D ∈ Ω ⊆ aD〈K,B,P,N 〉R and Obs
be a new observation. Then, the a-posteriori probability p(D |Obs) of D, i.e. the probability that the
true diagnosis Dt = D taking into account the new information Obs, is computed according to Bayes’
Theorem as

p(D |Obs) =
p(Obs | D) p(D)

p(Obs)
(4.5)

where p(Obs) is the (a-priori) probability that observation Obs is made and p(Obs | D) is the (a-priori)
probability that the observation Obs is made under the assumption that D is the true diagnosis, i.e.
Dt = D. That is, the a-priori probability p(D), i.e. the probability that Dt = D without any addi-
tional knowledge, must be multiplied by p(Obs | D)/p(Obs) which is often referred to as the support
Obs provides for D. If the support is greater than 1, then the a-posteriori probability of D is greater
than its a-priori probability, otherwise the a-posteriori probability gets smaller after incorporating the
new information Obs. Note that Bayes’ Theorem is only applicable to KB debugging if a suitable class
of observations can be defined such that p(Obs) and p(Obs | D) can be computed for observations Obs
of this class. As we shall see in Chapter 7, the assignment of test cases to either P or N is one such
class of observations. For instance, ti ∈ P and tj ∈ N for sets of formulas ti, tj over L are two such
observations.

4.6.2 Using Probabilities for Diagnosis Computation

If available, formula fault probabilities can be exploited during construction of the pHS-tree (Algorithm 2,
Chapter 4) in that most probable instead of minimum cardinality diagnoses are calculated first. To achieve
that, breadth-first construction of the tree must be replaced by uniform-cost order of node expansion

4.6. DIAGNOSIS PROBABILITY SPACE 73

by means of the function p() that assigns a fault probability to each formula ax ∈ K. Thereby, the
“probability” p(nd) of a node nd = {ax s, . . . , ax t} in Algorithm 2 is defined through p(ax), ax ∈ K as

p(nd) =
∏

ax i∈nd

p(ax i)
∏

axj∈K\nd

(1− p(ax j)) (4.6)

Notice that this formula extends the definition of Formula 4.3 to arbitrary subsets ofK, not only diagnoses.
Thus, Formula 4.3 is a special case of Formula 4.6.

First, note that we put “probability” of a node in quotation marks as, to be concise, each node (path)
which is not yet a diagnosis, i.e. needs to be further expanded to become one, has probability zero (of
being the true diagnosis Dt). For, a probability space is defined on a set of diagnoses and not on a set
of arbitrary subsets nd of the KB. However, we misuse the diagnosis probability space in this case to
determine the probability of “pseudo-diagnoses” in order to impose an order on the queue of open nodes
in the tree. This will guarantee the finding of the most probable diagnoses first, as we shall see below
(Proposition 4.17).

Second, note that no normalization, i.e. application of Formula (4.4), is necessary within the scope
of the non-interactive Algorithm 2 since the aim here is only the expansion of nodes nd in the order of
p(nd) and the return of the most probable identified diagnoses at a certain point in time. For this, the
comparison of the probability of one node nd with the probability of another node nd′ suffices. Thus,
no other calculations using the properties of a probability space are performed by Algorithm 2. We shall
recognize in Chapter 9 that this will not hold for the interactive Algorithm 5 where Formula (4.4) is
essential.

So, nodes nd are inserted into Q in a way descending order of node probabilities in Q is always
maintained. Consequently, nodes with highest fault probability are processed first. This is practical since
a user will usually be most interested in seeing those possible faults first that have the highest (estimated)
probability to be the actual fault they seek.

However, one needs to be careful when using probabilities as weights in order not to lose the property
of Algorithm 2 to compute minimal diagnoses only. To this end, the formula probabilities p(ax) for all
ax ∈ K must be adapted as

p(ax) ← c p(ax) (4.7)

where the factor c is an arbitrary positive real number smaller than 0.5, e.g. c := 0.49/max{ax∈K}(p(ax)).
This transformation effects that all probabilities p(ax) become smaller than 50%. In other words, each
formula must be more likely to be correct than faulty which in turn means that a minimal diagnosis is
more likely than any of its supersets.

Definition 4.9. Let p : K → [0, 1] be some function that assigns to each ax ∈ K some p(ax) ∈
[0, 1]. Then, we denote by pnodes : 2K → [0, 1] the function that assigns to each node nd ⊆ K some
pnodes(nd) ∈ [0, 1] which is obtained by means of Formula 4.6 and p().

Lemma 4.14. Let nd, nd′ ⊆ K where nd ⊂ nd′ and p : K → (0, 0.5) a function which assigns to each
ax ∈ K some probability p(ax) ∈ (0, 0.5). Then pnodes(nd) > pnodes(nd

′) holds.

Proof. According to Formula 4.6 and Definition 4.9 we have that

pnodes(nd) =
∏

ax i∈nd

p(ax i)
∏

axj∈K\nd

(1− p(ax j))

Then the probability pnodes(nd′) can be computed from pnodes(nd) in that, for each formula ax in nd′ \
nd ⊆ K \ nd, we multiply pnodes(nd) by a factor fax := p(ax)/(1 − p(ax)) because ax “moves” from
K \ nd to nd. However, fax < 1 holds due to p(ax) < 0.5 and thus 1− p(ax) > 0.5.

74 CHAPTER 4. DIAGNOSIS COMPUTATION

This result will be a key to proving the completeness, soundness and correctness of Algorithm 2 in
the next Section.

The next definition characterizes a (partial) weighted pHS-tree, the type of hitting set tree constructed
by Algorithm 2 given any function p(ax) ∈ (0, 0.5) for all ax ∈ K as input which is not necessarily
specified in a way a breadth-first tree construction is forced.

Definition 4.10 (Weighted Pruned HS-Tree). Let 〈K,B,P ,N 〉R be an admissible DPI and let w : K →
[0, 1] be a weight function which assigns a weight to each node n ⊆ K with the property that w(n1) >
w(n2) if n1 ⊂ n2. An edge-labeled and node-labeled tree T is called a weighted pruned HS-tree (wpHS-
tree) w.r.t. 〈K,B,P ,N 〉R and w() iff T is the result of constructing an HS-tree w.r.t. 〈K,B,P ,N 〉R with
due regard to the following rule

1. Label open nodes in the HS-tree in order of descending w(),

and the rules 2 to 6 as per Definition 4.8.
T is called a partial weighted pruned HS-tree w.r.t. 〈K,B,P ,N 〉R and w() iff T is a weighted pruned

HS-tree w.r.t. 〈K,B,P ,N 〉R and w() where not all nodes in T have been labeled yet and non-labeled
nodes have no successors.

Then, we have the following relationship between a (partial) pHS-tree and a (partial) wpHS-tree. An
explanation why this holds will be given in Section 4.6.4.

Proposition 4.14. A (partial) pHS-tree w.r.t. 〈K,B,P ,N 〉R is a (partial) wpHS-tree w.r.t. 〈K,B,P ,N 〉R
and w() where w() is a weight function which, additionally to the property postulated in Definition 4.10,
satisfies w(n1) = w(n2) if |n1| = |n2|.

In general, a (partial) wpHS-tree w.r.t. 〈K,B,P ,N 〉R and w() is not a (partial) pHS-tree w.r.t.
〈K,B,P ,N 〉R.

Lemma 4.15. Algorithm 2 is a procedure for producing a wpHS-tree T w.r.t. 〈K,B,P ,N 〉R and pnodes().

Proof. First, the property pnodes(n1) > pnodes(n2) if n1 ⊂ n2 postulated by Definition 4.10 holds by
Lemma 4.14 and the fact that the function p given as input to Algorithm 2 satisfies p(ax) ∈ (0, 0.5) for
all ax ∈ K. Moreover, the DPI 〈K,B,P ,N 〉R provided as an input to Algorithm 2 is admissible, as
postulated by Definition 4.10.

The compliance with rule 1 of Definition 4.7 as well as with rules 2 to 6 of Definition 4.8 is a simple
consequence of Lemma 4.13. In the following we prove that rule 2 of Definition 4.7 and rule 1 of
Definition 4.10 are satisfied.

• Definition 4.7, rule 2: Suppose a node nd is labeled by valid. Then it is added to Dcalc in line 11.
Since nd can only get a label different from closed if it is the only exemplar of this node in Q due
to the duplicate criterion (lines 22-24), it must be the case that nd /∈ Q (line 7) after nd has been
labeled by valid. Only nodes that get labeled by a conflict set can have successor nodes added to Q
in line 15. Only nodes in Q can get a label (cf. lines 6 and 8). For nd to be added to Q at some later
point in time there must be a proper subset of nd that is still in Q as each node newly added to Q is
a proper superset of some node in Q (cf. line 15 which is the only position in the algorithm where
nodes are added to Q). This is impossible since Q is ordered descending by pnodes(). Hence,
each proper subset of nd must have been ranked before nd in Q and thus must have already been
labeled because nd is already labeled by assumption. Hence, if nd is labeled by valid, then it has
no successors.

• Definition 4.10, rule 1: That nodes are processed and labeled in order of descending pnodes()
follows from the fact that new nodes are inserted into Q only in a way that the order of Q by
descending pnodes() is maintained (INSERTSORTED in line 15) and by the fact that always the first
element of Q is selected to be labeled next (GETFIRST in line 6).

4.6. DIAGNOSIS PROBABILITY SPACE 75

This completes the proof.

Let the relevant data of a wpHS-tree be defined as for a pHS-tree (cf. Remark 4.2). By the correctness
of Lemma 4.15, we have:

Corollary 4.6. Algorithm 2 stores by 〈Dcalc,Q,Ccalc〉 the relevant data of

• a wpHS-tree w.r.t. 〈K,B,P ,N 〉R and pnodes() if Algorithm 2 stops due to Q = [], and

• a partial wpHS-tree w.r.t. 〈K,B,P ,N 〉R and pnodes() otherwise.

4.6.3 Correctness of Weighted Diagnosis Computation
First, we show the completeness of Algorithm 2 regarding minimal diagnoses, i.e. that it computes all
minimal diagnoses w.r.t. the DPI it is given as input.

Lemma 4.16. Only diagnoses w.r.t. 〈K,B,P ,N 〉R can be added to Dcalc by Algorithm 2.

Proof. A node nd can be added to Dcalc only in line 11. To reach this line, LABEL must have returned
valid for nd. For this to hold, QX(〈K \ nd,B,P ,N 〉R) must have returned ’no conflict’ which implies
that nd is a diagnosis w.r.t. 〈K,B,P ,N 〉R by Propositions 4.9 and 3.2.

Lemma 4.17. Let T denote a (partial) wpHS-tree produced by Algorithm 2. Further, let Q be the queue
of open nodes in T maintained by Algorithm 2 and let nd be some node which occurs only once in Q and
which is a proper subset of some minimal diagnosis w.r.t. 〈K,B,P ,N 〉R. Then:

(1) The nodes ∅ = nd1, . . . , ndk along any path from the root node ∅ to ndk in T satisfy ndi ⊂ ndi+1

and |ndi|+ 1 = |ndi+1| and ndi ⊆ K for 1 ≤ i ≤ k.

(2) If the LABEL function is called for nd, then it yields some minimal conflict set C w.r.t. 〈K,B,P ,N 〉R
with nd ∩ C = ∅.

Proof. (1): In the representation used by Algorithm 2, a node nd in the (partial) wpHS-tree T produced by
Algorithm 2 is defined as the set of all edge labels on the path from the root node to nd (see Remark 4.2)
and the successor of a node is defined as a node added to Q after nd has been labeled by a minimal
conflict set.After the LABEL function for node nd has returned some minimal conflict set L as a label for
nd, Algorithm 2 goes to line 15 since L 6= closed and L 6= valid and adds an element nd ∪ {e} to Q for
each e ∈ L. Therefore, it holds that |nd∪ {e} | = |nd|+ 1 for each successor of nd. Hence, ndi ⊂ ndi+1

and |ndi|+ 1 = |ndi+1| holds for any path of nodes ∅ = nd1, . . . , ndk in T starting from the root node.
The argumentation why each node must be a subset of K is as follows: Suppose node ∪ {e} is added

to Q in line 15 which is the only place in Algorithm 2 where nodes are added to Q. So, LABEL must have
returned neither valid nor closed for node. Hence, node cannot be a diagnosis w.r.t. 〈K,B,P ,N 〉R as
otherwise LABEL with argument node must have returned valid in line 30. Due to the fact that node = K
is definitely a diagnosis w.r.t. 〈K,B,P ,N 〉R as it must hit all minimal conflict sets w.r.t. 〈K,B,P ,N 〉R
which must all be subsets of K (Definition 4.1), node ⊂ K must hold.

(2): Suppose the LABEL function is called for a node nd ∈ Q where nd ⊂ D for some minimal
diagnosis D.

First, there cannot be any nd′ ∈ Dcalc with nd′ ⊆ nd since Dcalc includes only diagnoses w.r.t.
〈K,B,P ,N 〉R and nd ⊂ D wherefore there would be a diagnosis nd′ ⊂ D, contradiction. Due to the fact
that nd is present only once in Q, there cannot be some nd′ = nd in Q. Thus, closed cannot be returned
for nd by LABEL.

By the facts that a diagnosis must hit all minimal conflict sets (Proposition 4.6) and that nd is a proper
subset of a diagnosis, either the criterion checked in line 26 must be true or QX(〈K \ nd,B,P ,N 〉R)

76 CHAPTER 4. DIAGNOSIS COMPUTATION

must return a minimal conflict set L, i.e. L 6= ’no conflict’. In both cases, a minimal conflict set is
returned by LABEL.

There are no other labels that can be returned by LABEL.

Lemma 4.18. Each minimal diagnosis w.r.t. 〈K,B,P ,N 〉R occurs as a node in Q during the execution
of Algorithm 2, if the execution stops due to Q = [].

Proof. For Algorithm 2 it holds that

(i) if nd is the last exemplar of some node in Q which is a proper subset of some minimal diagnosis
w.r.t. 〈K,B,P ,N 〉R and the LABEL function is called for nd, then it yields some minimal conflict
set C w.r.t. 〈K,B,P ,N 〉R with nd ∩ C = ∅ by Lemma 4.17 and

(ii) each node nd that has been labeled by some minimal conflict set C is deleted from Q (line 7) where-
upon one successor node ndax = nd∪{ax} for each element ax ∈ C is added to Q (INSERTSORTED
in line 23) and

(iii) each minimal diagnosis w.r.t. 〈K,B,P ,N 〉R is a superset of ∅ and a subset of K (Definition 3.5)
which includes one element of each minimal conflict set w.r.t. 〈K,B,P ,N 〉R and includes only
elements of minimal conflict sets (Proposition 4.6).

Let D be some minimal diagnosis w.r.t. 〈K,B,P ,N 〉R. Then, there is a path of nodes from the root
node ∅ to D in the pHS-tree produced by Algorithm 2, if the execution stops due to Q = [].

This holds by the following argumentation: If D = ∅, then the path is 〈∅〉. Now, suppose D ⊃ ∅.
Since D is a minimal diagnosis wherefore no other diagnosis can be equal to ∅, the root node n0 := ∅
of the constructed tree must be labeled by some minimal conflict set C1. Then, by (iii), there must be
some ax 1 ∈ C1 that is an element of D. So, we define n1 := {ax 1}. If n1 = D, then the path is 〈∅, n1〉.
Otherwise, due to D ⊃ n1 and (i), node n1 in the pHS-tree must be labeled by some minimal conflict set
C2. Then, by (iii), there must be some ax 2 ∈ C2 that is an element of D. So, we define n2 := n1 ∪{ax 2}.
If n2 = D, then the path is 〈∅, n1, n2〉. Otherwise, due to D ⊃ n2 and (i), node n2 in the pHS-tree must
be labeled by some minimal conflict set C3. This reasoning can be continued until nk = D for some k.
By (iii), D ⊆ K holds wherefore such k must exist.

Algorithm 2 cannot stop executing before nk has been in Q since each node ni labeled by a minimal
conflict set Ci+1 involves the addition of |Ci+1| successor nodes to Q by (ii). In particular, the successor
node ni ∪{ax i+1}must be added to Q. As the execution stops due to Q = [], all nodes ni for i ≤ k must
be labeled before termination. Thus, D must be in Q sometime.

Proposition 4.15 (Completeness of Algorithm 2). If Algorithm 2 terminates due to Q = [], then the
algorithm returns a set D including all minimal diagnoses w.r.t. 〈K,B,P ,N 〉R.

Proof. Assume some minimal diagnosis D w.r.t. 〈K,B,P ,N 〉R where D /∈ D after Algorithm 2 has
returned due to Q = []. First, each minimal diagnosis will occur in Q throughout the execution of
Algorithm 2 because it executes until Q = [] wherefore Lemma 4.18 applies. Any node nd in Q can only
be deleted from Q if LABEL is called with the argument node nd (lines 7 and 8). There is no other point
in Algorithm 2 where elements are removed from Q. Since at the end Q = [], each minimal diagnosis,
in particular D, must be labeled.

Suppose D is the last exemplar of possibly multiple duplicates of it in Q. Then, the LABEL function
cannot return closed for D. This holds, on the one hand, because the duplicate criterion (lines 22-24)
only removes possible duplicate nodes from Q, but never the last exemplar of a node in Q. On the other
hand, D can never be closed due to the non-minimality criterion (lines 19-21) as Dcalc can only include
diagnoses w.r.t. 〈K,B,P ,N 〉R by Proposition 4.16. Thus, due to the minimality of D, Dcalc cannot

4.6. DIAGNOSIS PROBABILITY SPACE 77

comprise any diagnosis D′ with D′ ⊆ D, except for some D′ which is equal to D. This would however
be a contradiction to the assumption that D /∈ D.

The reuse criterion (lines 25-27) cannot apply forD either since a minimal diagnosis is a hitting set of
all minimal conflict sets (Proposition 4.6) wherefore there cannot be a minimal conflict set in Ccalc which
has an empty intersection with D. So, the algorithm will come to line 28 where QX(〈K \ D,B,P ,N 〉R)
will return ’no conflict’ (Propositions 4.9 and 3.2). Therefore, D will be labeled by valid and will be
added to Dcalc in line 11.

Next, we show the soundness of Algorithm 2 w.r.t. minimal diagnoses, i.e. that it computes only
minimal diagnoses w.r.t. the DPI it is given as input.

Proposition 4.16 (Soundness of Algorithm 2). If an element D is added to the set Dcalc during the
execution of Algorithm 2, D is a minimal diagnosis w.r.t. 〈K,B,P ,N 〉R.

Proof. Assume that some element nd is added to Dcalc which is not a diagnosis w.r.t. 〈K,B,P ,N 〉R.
This immediately yields a contradiction due to Lemma 4.16.

Assume now that some element nd is added to Dcalc which is a diagnosis w.r.t. 〈K,B,P ,N 〉R, but
not a minimal one. Now, since nd is a non-minimal diagnosis, there is some D ⊂ nd which is a minimal
diagnosis w.r.t. 〈K,B,P ,N 〉R.

Then, there are three cases to distinguish: (a) D is in Q and (b) D is in Dcalc and (c) D is neither in
Q nor in Dcalc, i.e. the node D has not yet been generated.

Note that these are all possible cases as D is a minimal diagnosis by assumption. So, D cannot have
been ruled out, i.e. labeled by closed, by the non-minimality criterion (lines 19-21) before since only
diagnoses can be added to Dcalc as argued in the first paragraph of this proof and there cannot be a
diagnosis D′ ∈ Dcalc such that D′ ⊂ D. The case D′ = D is already considered by case (b). The
duplicate criterion (lines 22-24) does not need to be taken into account since it deletes duplicate nodes
only.

(a): To be added to Dcalc, nd must have been the first element of the queue Q by GETFIRST in
line 6. Since D ∈ Q by assumption and since Q is sorted in descending order of node probability
(INSERTSORTED in line 15), we conclude that pnodes(D) ≤ pnodes(nd). However, as pnodes(X) for a
node X ⊆ K is defined by means of p(ax) where p(ax) ∈ (0, 0.5) for all ax ∈ K as per Formula 4.6
(Definition 4.9), Lemma 4.14 applies and establishes the truth of pnodes(S1) > pnodes(S2) if S1 ⊂ S2

for S1, S2 ⊆ K. By D ⊂ nd, this implies pnodes(D) > pnodes(nd), contradiction.
(b): Assuming case (b), we can derive a contradiction as follows. By the fact that nd is added to

Dcalc, it must hold that the LABEL procedure called for nd in line 8 returned valid as part of its output in
line 30. However, as D ⊂ nd is already an element of Dcalc by assumption, the LABEL procedure must
have already returned in line 21 wherefore it cannot have reached line 30, contradiction.

(c): Suppose that D has not yet been generated as a node in Q. By Lemma 4.17, the nodes ∅ =
nd1, . . . , ndk along a path from the root node in the pHS-Tree produced by Algorithm 2 satisfy ndi ⊂
ndi+1 and |ndi| + 1 = |ndi+1|. So, by Lemma 4.14, the node probabilities along any path from the root
node are strictly monotonically decreasing. Since pnodes(D) > pnodes(nd) holds by the same argumen-
tation as in (a), we have that all nodes on the path from the root node to D have a higher probability
than nd. As Q is sorted in descending order of node probability and in each iteration the first element in
Q is processed as explained in (a), we infer that D must have already been generated at the time nd is
processed, contradiction.

Next, we argue that Algorithm 2 computes minimal diagnoses in descending order of diagnosis prob-
ability according to the parameter p() given as input to the algorithm.

Corollary 4.7. Let the probability p(D) of a diagnosis D in Algorithm 2 be computed from the given
function p(ax), ax ∈ K as per Formula 4.3.

78 CHAPTER 4. DIAGNOSIS COMPUTATION

1. At any point in time during the execution of Algorithm 2, Dcalc comprises the |Dcalc|most probable
minimal diagnoses w.r.t. 〈K,B,P ,N 〉R.

2. If Algorithm 2 returns a set D of cardinality n, then D is the set of the n most-probable minimal
diagnoses w.r.t. 〈K,B,P ,N 〉R.

Proof. (1): By Propositions 4.15 and 4.16, it is a fact that Algorithm 2 computes all and only minimal
diagnoses w.r.t. 〈K,B,P ,N 〉R. What must still be shown is that minimal diagnoses are added to Dcalc

in descending order of their probability p() as per Formula 4.3. The probability p(D) of some diagnosis
D is equal to pnodes(D) since a each diagnosis is a node and Formula 4.3 is a special case of Formula 4.6
by which the probability pnodes(nd) of a node nd is calculated.

Let us denote by Dpmax the minimal diagnosis with maximum probability that has not yet been
added to Dcalc and by D¬pmax an arbitrary minimal diagnosis with non-maximal probability, that is
pnodes(D¬pmax) < pnodes(Dpmax). So, we need to demonstrate that each node nd ⊂ Dpmax on a path
from the root node to nodeDpmax is processed beforeD¬pmax is treated. By Lemma 4.17, a path from the
root node in the pHS-Tree produced by Algorithm 2 is a set of nodes ∅ = nd1, . . . , ndk where ndi ⊂ ndi+1

and |ndi| + 1 = |ndi+1|. Further recall that the probability pnodes(X) of a node X ⊆ K in Algorithm 2
is defined as per Formula 4.6. So, by Lemma 4.14, the node probabilities along any path from the root
node are strictly monotonically decreasing. Hence, each node nd on a path from the root node to Dpmax

has a probability pnodes(nd) > pnodes(Dpmax) > pnodes(D¬pmax). By the insertion of new nodes into
Q (INSERTSORTED in line 15) in a way descending order of Q as per pnodes() is always maintained, and
by the selection of the first element of Q (GETFIRST in line 6) as next node to be processed, each node
nd on a path toDpmax must be processed beforeD¬pmax is processed. Consequently, minimal diagnoses
are added to Dcalc in descending order of their probability p() as per Formula 4.3.

(2): This proposition follows directly from (1).

Proposition 4.17. Algorithm 2 always terminates and returns a set D of minimal diagnoses w.r.t. 〈K,
B,P , N 〉R which is

• the set of the |D|most probable (w.r.t. p() and Formula 4.3) minimal diagnoses w.r.t. 〈K,B,P ,N 〉R
such that nmin ≤ |D| ≤ nmax, if at least nmin minimal diagnoses exist w.r.t. 〈K,B,P ,N 〉R, or

• the set of all minimal diagnoses w.r.t. 〈K,B,P ,N 〉R, otherwise.

Proof. The proposition is a direct consequence of Propositions 4.12, 4.15 and 4.16 and Corollary 4.7.

4.6.4 Using Probabilities to Compute Minimum Cardinality Diagnoses
The function p : K → (0, 0.5) can be defined in a way that minimum cardinality instead of maximum
probability diagnoses are identified first. To this end, p() is specified as a fixpoint function that maps each
formula ax ∈ K to one and the same constant value p(ax) := c where c is an arbitrary real number such
that 0 < c < 0.5, e.g. c := 0.3. That in this setting diagnoses are found in order of ascending cardinality
is a simple consequence of Corollary 4.7.

Example 4.7 Let us now study how such formula and diagnosis probabilities would be constructed for
the example DPI depicted by Table 15.3. Let us suppose that the KB K in the DPI was formulated by a
single user u for whom the personal fault probabilities of syntactical elements K̃ ∪ K given by the first
row of Table 4.4 have been extracted from log data of the KB editing software applied by u. Then, the
resulting probabilities of formulas ax ∈ K as per Formula 4.2 are as presented in the rightmost column
of Table 4.4. The entries in the table from the second to the last but two column display the number
of occurrences of the syntactical element given by the column label in the formula given by the row
label. These values are required to compute the formula probabilities listed in the last but one column

4.7. NON-INTERACTIVE KB DEBUGGING ALGORITHM 79

fault prob. 0.25 0.01 0.03 0.05 0.4 0.1 0.6 0.6 0.01 0.25 0.05 0.05

terms K̃ logical conn. K after Eq. 4.2 after Eq. 4.7

ax ∈ K A B E F G X Y Z → ¬ ∧ ∨ p(ax) p(ax)

ax1 1 1 1 0.28 0.14

ax2 1 1 1 1 1 1 2 1 0.89 0.43

ax3 1 1 1 0.07 0.03

ax4 1 1 1 0.12 0.06

ax5 1 1 1 1 0.78 0.38

ax6 1 1 1 0.61 0.30

ax7 1 1 1 0.76 0.37

Table 4.4: Computing fault probabilities of formulas in K given fault probabilities of syntactical elements
e ∈ K̃ ∪ K for the DPI given by Table 15.3.

as per Formula 4.2. The final probabilities that can “safely” be incorporated into Algorithm 2 under a
guarantee that only minimal diagnoses will be output are shown in the last column. These result from
an application of Formula 4.7 to the probabilities given in the last but one column with an adaptation
parameter c := 0.49.

Notice that, for example, p(ax 5) is rather high since the predicates A and Y as well as the connective
¬ occurring in ax 5 have a comparably high fault probability in relation to syntactical elements appearing
in other formulas. Formula ax 3, on the other hand, comprises only two predicates which should be well-
understood by u and no connectives except for → which is not problematic for u either. Therefore, its
fault probability is rather low.

4.7 Non-Interactive Knowledge Base Debugging Algorithm
Algorithm 3 describes the procedure for non-interactive debugging of KBs. The algorithm requires as in-
put all the parameters that are required by Algorithm 2 and an additional parameter auto ∈ {true, false}
indicating either automatic (true) or manual (false) mode. If auto = false , Algorithm 3 calls HS (Al-
gorithm 2) with the parameters as provided. The set of minimal diagnoses D returned by HS is then pre-
sented to the user who can select a diagnosis manually after inspecting the diagnoses in D. Alternatively,
in case of auto = true , the system calls HS with the parameters as provided, but with nmin = nmax = 1.
Hence, only the most probable minimal diagnosis is computed by HS and returned as an output of Algo-
rithm 3 to the user.

If a user wants the algorithm to output the set of all minimal diagnoses w.r.t. 〈K,B,P ,N 〉R, then the
parameter setting auto = false and nmin = ∞ must be chosen. If, on the other hand, a fixed number n
of leading diagnoses should be computed (as long as there are at least n minimal diagnoses for the DPI),
then nmin := n =: nmax are the correct parameter settings. Note that in both cases the specification of t
has no effect.

Of course, the user can also apply Algorithm 3 several times with varying parameters t, nmin, nmax

and p(). Or they can specify a test case, i.e. add a set of formulas X either to P (if each ax ∈ X should
be entailed by the correct KB) or to N (if the conjunction of all formulas in X must not be implied by
the correct KB), and rerun the algorithm with this modified DPI.

80 CHAPTER 4. DIAGNOSIS COMPUTATION

Algorithm 3 Non-Interactive KB Debugging

Input: a tuple 〈〈K,B,P ,N 〉R, t, nmin, nmax, p(), auto〉 consisting of

• an admissible DPI 〈K,B,P ,N 〉R,

• some computation timeout t,

• a desired minimal (nmin) and maximal (nmax) number of diagnoses to be returned,

• a function p : K → (0, 0.5) and

• a boolean parameter auto ∈ {true, false}.
Output: a set D which is

(a) the set of the |D| most probable minimal diagnoses w.r.t. 〈K,B,P ,N 〉R such that nmin ≤ |D| ≤ nmax,
if at least nmin minimal diagnoses exist w.r.t. 〈K,B,P ,N 〉R, or

(b) the set of all minimal diagnoses w.r.t. 〈K,B,P ,N 〉R otherwise

where “most-probable” refers to the probability measure pnodes() (cf. Definition 4.9) obtained from the given
function p().

1: if auto = true then
2: D← HS(〈K,B,P ,N 〉R, t, 1, 1, p()) . see Algorithm 2
3: else
4: D← HS(〈K,B,P ,N 〉R, t, nmin, nmax, p()) . see Algorithm 2
5: return D

Anyway, the user must either find the correct diagnosis (if it is an element of the output set D at
all) by hand or be convinced that the returned minimum cardinality or respectively maximum probability
diagnosis is indeed the one that yields a solution KB with the intended semantics. Moreover, when
formulating test cases by hand, a user can be assumed to be as likely to specify something contradictory
or faulty as during creation of the KB itself.

Unsurprisingly, application of Algorithm 3 will often lead to unsatisfying solution ontologies. Rem-
edy for this is provided by Interactive KB Debugging which on the one hand requires higher effort of one
(or several) user(s), but on the other hand ensures a high quality solution in terms of its semantics to the
problem of Parsimonious KB Debugging (Problem Definition 3.2).

Example 4.8 Assume a user wants to find a maximal solution KB for the example DPI 〈K,B,P ,N 〉R
provided by Table 15.3 and that no data giving information about fault probabilities of syntactical con-
structs or formulas in K is available. Therefore, let p(ax) := c for some fixed c ∈ (0, 0.5) (see Sec-
tion 4.6.2 for an explanation of this choice of c). The non-interactive KB debugging algorithm presented
by Algorithm 3 called with 〈K,B,P ,N 〉R, the function p(), nmin = ∞ and auto = false as inputs re-
sults in the hitting set tree given by the upper picture in Figure 4.2. By nmin =∞ and auto = false , the
user signalizes that inspection of all minimal diagnoses w.r.t. the input DPI is desired. Hence, the (com-
plete) breadth-first pHS-tree as per Algorithm 2 is constructed. So, the output is the set of all minimal
diagnoses mD〈K,B,P,N 〉R = {[1], [2], [5, 7]}.

In the shown hitting set tree, minimal diagnoses are indicated by nodes labeled by X(D) where D is a
name given to this diagnosis. A node closed due to non-minimality is denoted by×(⊃D) whereD is some
minimal diagnosis that is a subset of the set of edge labels along the path leading from the root node to
this node. The label CC means that the minimal conflict set C has been freshly computed by a call to QX.
The label CR, on the other hand, means that the minimal conflict set C has been reused from the set of
already computed minimal conflict sets. In this example, both minimal conflict sets are computed by QX
and no conflict sets are reused. The order of node labeling is indicated by the numbers i© starting from
1. Open nodes, i.e. generated nodes that have not yet been labeled, are indicated by a question mark.

4.7. NON-INTERACTIVE KB DEBUGGING ALGORITHM 81

1© 〈1, 2, 5〉C

2©X(D1) 3©X(D2) 4© 〈1, 2, 7〉C

5©×(⊃D1) 6©×(⊃D2) 7©X(D3)

1

uu
2

��

5

))

1

uu
2

��

7

##

auto = false

auto = true

1© 〈1, 2, 5〉C

2©X(D1) ? ?

1

uu
2

��

5

))

Figure 4.2: Non-interactive KB debugging process without any given fault information applied to the DPI
given by Table 15.3 with settings auto = false and nmin =∞ (above) and auto = true (below).

In case auto = true was given as an input to the algorithm instead, the partial pHS-tree depicted
by the lower picture in Figure 4.2 would be constructed and the output would be D = {D1} = {[1]}
containing just the first found and thus most probable minimal diagnosis w.r.t. the input DPI. Note that
D1 = [1] and D2 = [2] (which is not computed) have equal probability and whether the one or the other
is computed first depends only on the ordering of equally probable (in this case: equal cardinality) nodes
in Q. As already mentioned in Section 4.6.2, in this example the most probable diagnosis is equivalent to
a minimum cardinality diagnosis since all formula probabilities are equal.

Please notice that the internal “flat” representation used by Algorithm 2 which does not store a tree but
only the set of open and closed nodes differs from the standard tree representation [Kal06, FS05, SQJH08,
Rei87] we use to depict the hitting set tree graphically in Figure 4.2. Whereas within Algorithm 2 a node
node stores the set of all the edge labels on the path leading from the root node to node, in the figure we
label each node in the tree by the respective label that is computed for this node by the LABEL function,
i.e. either by a minimal conflict set, by X or by ×.

Example 4.9 Recall Example 4.7 which demonstrated how formula fault probabilities are constructed
from fault probabilities of syntactical elements for the example DPI depicted by Table 15.3. Now we
want to show how the non-interactive KB debugging algorithm given by Algorithm 3 works when these
formula probabilities are incorporated.

Suppose the inputs to the algorithm are the DPI 〈K,B,P ,N 〉R, the function p(ax) for ax ∈ K dis-
played by the rightmost column of Table 4.4 and auto = false . Further on, let the user of the debugging
algorithm be willing to wait a maximum of one second for an output and let them postulate a minimum
of two most probable minimal diagnoses to be returned, e.g. to have at least a second choice if the em-
ployed formula probabilities are not perfectly suitable and the most probable diagnosis is not the desired
solution. These postulations are expressed by specifying the parameters nmin = 2 and t = 1 (second).
Additionally, assume the user expects the provided probabilities to be sufficiently reasonable such that the

82 CHAPTER 4. DIAGNOSIS COMPUTATION

1© 〈1, 2, 5〉C

? 2©X(D1) 3© 〈1, 2, 7〉C

? 4©×(⊃D1) 5©X(D2)

1
0.02
uu

2

0.09 ��

5

0.07))

1
0.01
uu

2

0.06 ��
7 0.04

##

Figure 4.3: Non-interactive KB debugging process with given fault information applied to the DPI given by
Table 15.3 with settings auto = false , nmin = 2, nmax = 4 and t = 1.

desired diagnosis will be among the best four diagnoses wherefore nmax = 4 is chosen. Moreover, let us
imagine that the time for each fresh computation of a minimal conflict plus generation of the (unlabeled)
successor nodes of this node is 0.4 seconds and the cost of computing any other label of a node is 0.1
seconds.

Then the partial wpHS-tree produced by Algorithm 3 initialized in this way is illustrated by Figure 4.3.
The used notation is as described in Example 4.8 with one additional attribute. Namely, each edge is not
only labeled by one element of the conflict set from which it goes out, but also by a label p ∈ (0, 1) that
is placed near the arrow head of the arrow that expresses the edge. This label p gives the probability as
per pnodes() (cf. Definition 4.9) of the (partial) diagnosis that corresponds to the union of the edge labels
along the path from the root to and including the edge that is labeled by p. For example, the label 0.06
of the edge directed at the node number 4© means that the probability of {2, 5} is 0.06. Further on, open,
i.e. generated, but not yet labeled nodes, are designated by a question mark.

As outlined by the circled numbers i©, as a first action the root node is labeled by the newly computed
minimal conflict set 〈1, 2, 5〉, the computation time of which amounts to 0.4. Then, the tree construction
proceeds according to the (partial) diagnosis probabilities according to pnodes() computed from the for-
mula probabilities p(ax), ax ∈ K provided by the last column of Table 4.4. Therefore, the most probable
edge leading away from the root node is labeled next. This already leads to the finding of the first minimal
diagnosis D1 = [2] after overall computation time of 0.5 seconds. Since nmin = 2 diagnoses have not
yet been computed and there are still unlabeled open nodes, namely those corresponding to paths {1}
and {5}, the algorithm continues the execution by labeling the next best node {5} with a probability of
0.07 – as opposed to 0.02 for the other open node {1}. Since {5} is neither a superset of an already
computed minimal diagnosis nor a duplicate of another open node nor a diagnosis itself, it must be la-
beled by some minimal conflict set. Because the already established minimal conflict set 〈1, 2, 5〉 is not
disjoint with {5}, no reuse is possible and QX is called to determine a new minimal conflict set 〈1, 2, 7〉
w.r.t. 〈K,B,P ,N 〉R. All successor nodes of the newly labeled node 3©, i.e. the nodes corresponding to
the paths {1, 5} , {2, 5} and {5, 7}, are added to the list Q of open nodes such that descending order of
probabilities is maintained. The resulting queue is then Q = [{2, 5} , {5, 7} , {1} , {1, 5}]. As a next step,
again the first and thus best open node {2, 5} is chosen from Q and labeled by ×(⊃D1) which means
that the corresponding path is closed since it is a superset of an already found minimal diagnosis, namely
D1 = [2]. At this point, the overall computation time amounts to 1 second which corresponds to the
time limit t. For that reason, the algorithm will go ahead searching for minimal diagnoses only until a
minimal number nmin thereof is detected. The node processed next, corresponding to the path {5, 7}, is
then determined to be a minimal diagnosis by the LABEL procedure.

Thus, the output of the algorithm after 1.1 seconds execution time is the set of minimal diagnoses
D = {[2], [5, 7]} which is a proper subset of all minimal diagnoses D〈K,B,P,N 〉R = {[1], [2], [5, 7]}.

4.7. NON-INTERACTIVE KB DEBUGGING ALGORITHM 83

However, if we assume that the user’s intended KB should entail E → G, for instance, then none of the
returned diagnoses can be used to compute a solution KB featuring this entailment when integrated with
the background knowledge B. Hence, the true diagnosis Dt would be missed in this case.

Also, when computing all minimal diagnoses w.r.t. a DPI – if this is even possible in a concrete case
due to the computational complexity – and showing them to the user, a user might review just the most
probable ones and make a decision on which one to choose only based on these. For instance, [SF10]
reported on one DPI where computation of all minimal diagnoses, 1782 in number, is feasible. In such
a case it is hard to expect that a user will be willing or will have the time to inspect more than a small
fraction of these 1782 diagnoses. The consequence will be a wrong choice of diagnosis in many cases,
also because a simple view on a diagnosis will often not lead to the certainty of a user that this one is or
is not the desired one. The reason for this is that usually it is too complex for a human brain to perform
the necessary mental reasoning to make oneself a picture of the implications of choosing one diagnosis
as opposed to another one.

For our example DPI, a user getting the output D = mD〈K,B,P,N 〉R = {[1], [2], [5, 7]} with the
computed probabilities p([1]) = 12%, p([2]) = 60% and p([5, 7]) = 28% might decide to just inspect the
diagnoses that make the most probable 80% fraction of diagnoses. In this case, either [2] or [5, 7] would
be selected, which corresponds to a wrong choice in case E → G should be entailed be the resulting
solution KB after integration with the background KB B.

Chapter 5

Summary

In this part, we profoundly introduced the topic of knowledge base debugging. We stated necessary
properties of knowledge representation languages to be compatible with our approaches, namely that the
entailment relation must be monotonic, idempotent and extensive. We gave precise definitions of the
problems of KB debugging and parsimonious KB debugging. Both problems assume a given instance of
a diagnosis problem (DPI). The former seeks any solution in line with the given requirements whereas
the latter seeks a solution that preserves as much formulas as possible of the given faulty KB, i.e. aims
at minimal changes. With the validity of a KB, a solution KB, a diagnosis and a conflict set, we have
characterized central notions that will be extensively used throughout this work. We have studied the
relationship between all these notions and proved that solving the problem of parsimonious KB debugging
is equivalent to finding a minimal diagnosis w.r.t. a given DPI.

We established the relationship between conflict sets and justifications, a similar notion that is used
concurrently to conflict sets in (prevalently DL, OWL or Semantic Web) literature, and provided evidence
that conflict sets are the better choice for the debugging problems addressed here. In particular, conflict
sets serve the purpose of reducing the search space for minimal diagnoses – minimal hitting sets of all
minimal conflict sets – and help a debugging software to focus on the relevant and problematic parts of
the faulty KB. A method for the efficient, polynomial time computation of a conflict set was detailed and
its correctness was formally proven. Based on this method, we were able to depict a way of computing
minimal diagnoses which is based on using a hitting set tree. Such a tree constitutes a systematic way of
generating all minimal conflict sets and, in the course of this, also all minimal diagnoses. Depending on
the particular situation, the presented algorithm can be configured to compute diagnoses in a predefined
order, e.g. most probable diagnoses first or those diagnoses first that are minimally invasive in terms of
the changes made to the faulty KB.

Different ways of obtaining and incorporating meta (fault) information into the debugging process
were elucidated. Such information, if reasonable, can facilitate and accelerate the debugging process
significantly. However, even in the case of the availability of high-quality fault information, we discovered
substantial drawbacks of the debugging system presented so far. That is, such a system either chooses
automatically a solution (diagnosis) based on the given fault information in a solution space of (generally)
exponential size or refers a subset of all solutions, e.g. the most probable solutions, to the user for manual
inspection. In the former case, the probability of being presented a solution KB with undesired semantics
is very high implying unwanted changes to the faulty KB and unexpected entailments and non-entailments
as well as future errors. Such unexpected semantics can be critical or even fatal; one should imagine
intelligent medical applications relying on such KBs, for instance. In the latter case, the burden is placed
on the user(s) who must mentally anticipate the implications of applying different repairs (using the
different submitted diagnoses) to the KB which is practically impossible for human beings both from the

85

86 CHAPTER 5. SUMMARY

time/effort as well as from the mental perspective. Moreover, it is basically intractable to generate all
possible solutions. Hence, it is not even sure that the manually investigated solutions include to correct
one (with the postulated semantics).

This leads us to the next part which deals with exactly these issues and proposes a solution.

Part II

Interactive Knowledge Base Debugging

87

89

This part is organized as follows:

In Chapter 6, we first discuss how disadvantages of non-interactive KB debugging procedures can
be overcome by allowing a user to take part in the debugging process. Next, we define the problem
of interactive static KB debugging as well as the problem of interactive dynamic KB debugging which
“naturally” arise from the fact that the DPI in interactive KB debugging is always renewed after a new test
case has been specified (a new query has been answered). The former problem searches for a solution KB
w.r.t. the DPI given as input such that this solution KB satisfies all test cases added during the debugging
session and there is no other such solution KB. The latter problem searches for a solution KB w.r.t. the
current DPI (i.e. the input DPI including all new test cases added throughout the debugging session so
far) such that there is no other solution KB w.r.t. the current DPI.

Next, in Chapter 7, the central term of a query is specified which constitutes the medium for user
interaction. Queries are generated from a set of leading diagnoses which is characterized thereafter. The
set of leading diagnoses is uniquely partitioned into three subsets by each query. The tuple including these
subsets is called q-partition. Subsequently, the reader is given some explanations how the q-partition can
be interpreted, and how it relates to a query. In fact, we will prove that the notion of a q-partition can
serve as a criterion for checking whether a set of logical formulas is a query or not. After that, we will
learn that a query exists for any set of (at least two) leading diagnoses which grants that the presented
algorithms will definitely be able to come up with a query without the need to impose any restrictions on
which (minimal) diagnoses are computed by the diagnosis engine in each iteration.

Chapter 8 shows a method for the generation of (a pool of) set-minimal queries (Algorithm 4) aiming
at stressing the interacting user as sparsely as possible, features in-depth discussions of this method’s
properties, proves its correctness, provides complexity results and gives some illustrating examples. Fur-
ther on, drawbacks of this method are pointed out and possible solutions are discussed.

Subsequently, Chapter 9 deals with the presentation of the central algorithm of this work which im-
plements an interactive KB debugging system (Algorithm 5). First, an overview of the workflow of
interactive KB debugging is given, followed by a more comprehensive detailed specification of the al-
gorithm. Some query selection measures are discussed [RSFF13, SFFR12] and optimization versions
of the problems of interactive dynamic and static KB debugging are defined where the goal is to obtain
the solution to these problems by asking the user a minimal number of queries. Finally, we prove the
correctness of the interactive KB debugging algorithm and provide a discussion of its complexity.

Non-theoretically-oriented readers might well skip Sections 8.2, 8.4, 8.5, 8.7 and 9.4 in this part.
Moreover, for the superficially interested reader, it may suffice to concentrate only on Chapter 6 and
Sections 7.1, 7.2 and 9.1 in this part.20

20Parts of Part II already appeared in [Rod15].

Chapter 6

Motivation and Problem Definitions

So far, we have learned that the problem of (parsimonious) KB debugging as defined in Problem Def-
initions 3.1 and 3.2 in Chapter 3 can be solved by investigating minimal diagnoses w.r.t. a given DPI
〈K,B,P ,N 〉R. We have seen how minimal diagnoses can be computed, we have introduced a probabil-
ity space over diagnoses and we have discussed how a-priori probability estimates for diagnoses can be
established. Now, assume the situation where a DPI with say 100 minimal diagnoses is given, among
which there is one diagnosis D with highest estimated probability p(D) = 10%. By the definitions of a
diagnosis and a solution KB (Definitions 3.2 and 3.5), each of the 100 diagnoses can be used to formulate
a solution KB w.r.t. the DPI 〈K,B,P ,N 〉R. So, should the system output the solution KB (K \D) ∪UP

obtained fromD as the optimal solution? Will a user be satisfied with a likeliness of 90% of being offered
a suboptimal solution? What if the diagnoses probabilities are bad estimates and another diagnosis D′
should actually have a probability of 20%?

Why not simply apply Algorithm 3 to show all 100 minimal diagnoses to the user and let them se-
lect the preferred one by hand? First, due to the complexity of diagnosis calculation algorithms (cf.
Chapter 1), pre-computation of 100 (or, generally, all) minimal diagnoses is usually not tractable within
reasonable time. This makes such an approach quite unattractive in an interactive setting. Second, going
through large sets of diagnoses can be time-consuming, tedious and error-prone. Third, human beings are
normally not capable of (fully) realizing the semantic consequences of deleting a diagnosis from a KB,
especially if the KB is large, complex and/or has been created by multiple engineers or automatic sys-
tems. Thus, applying a suboptimal diagnosis can result in unexpected entailments or unwanted changes,
and thus an incorrect solution KB (incorrect in the sense of the semantics, not in the sense of violating
given requirements or test cases), which might cause unexpected new faults and contradictions when aug-
mented by new formulas. Consequently, a solution diagnosis is only acceptable if the user has sufficiently
scrutinized and approved its semantic effect to the KB.

This leads to the definition of two types of Interactive KB Debugging problems. First, there is the
problem of Interactive Dynamic KB Debugging which, given an input DPI, aims at the extension of this
DPI by new test cases confirmed by a user such that there is only one minimal diagnosis left w.r.t. the
extended DPI. Second, we specify the problem of Interactive Static KB Debugging which, given an input
DPI, aims at the formulation of new test cases confirmed by a user such that these new test cases rule out
all but one minimal diagnosis w.r.t. the input DPI.

91

92 CHAPTER 6. MOTIVATION AND PROBLEM DEFINITIONS

Problem Definition 6.1 (Interactive Dynamic KB Debugging). Given a DPI 〈K,B,P ,N 〉R, the task
is to find a maximal solution KB (K \ D) ∪ UP∪P ′ w.r.t. a DPI 〈K,B,P ∪ P ′,N ∪N ′〉R such that

• D is the only minimal diagnosis w.r.t. 〈K,B,P ∪ P ′,N ∪N ′〉R and

• a user has confirmed that each p′ ∈ P ′ is a positive test case and that each n ′ ∈ N ′ is a negative
test case.

Remark 6.1 The solution of an Interactive Dynamic KB Debugging problem given the DPI 〈K,B,P ,N 〉R
solves the problem of KB Debugging (Problem Defnition 3.1) as well as the problem of Parsimonious
KB Debugging (Problem Defnition 3.2) for the DPI 〈K,B,P ∪ P ′,N ∪ N ′〉R, but in general not for the
original DPI 〈K,B,P ,N 〉R. This is the reason why we term it “dynamic”, since a solution is found for a
version of the initial DPI that has been extended by test cases.

Problem Definition 6.2 (Interactive Static KB Debugging). Given a DPI 〈K,B,P ,N 〉R, the task is
to find a maximal solution KB (K \ D) ∪ UP w.r.t. 〈K,B,P ,N 〉R such that

• there are sets of positive test cases P ′ and negative test cases N ′ where a user has confirmed
that each p′ ∈ P ′ is a positive test case and that each n ′ ∈ N ′ is a negative test case, and

• D is the only minimal diagnosis w.r.t. 〈K,B,P ,N 〉R that satisfies all positive and negative test
cases P ′ and N ′, respectively.

Remark 6.2 The solution of an Interactive Static KB Debugging problem given the DPI 〈K,B,P ,N 〉R
constitutes a solution to the problem of KB Debugging (Problem Defnition 3.1) as well as to the problem
of Parsimonious KB Debugging (Problem Defnition 3.2) for the original DPI 〈K,B,P ,N 〉R, therefore
the term “static”.

Now, we give a more formal definition of a true diagnosis (an informal characterization of which was
given in Section 4.6). If sufficiently many new test cases are specified and added to a given DPI such that
there is only one remaining minimal diagnosis w.r.t. the input DPI (the input DPI extended by the new
test cases) left, then this diagnosis is referred to as the true diagnosis w.r.t. Interactive Static (Dynamic)
KB Debugging.

Definition 6.1 (True Diagnosis). Let Dt be equal to D in Problem Definition 9.2 (9.1). Then Dt is called
the true diagnosis w.r.t. Interactive Static KB Debugging (Interactive Dynamic KB Debugging).

Chapter 7

User Interaction

The idea in interactive KB debugging is to iteratively consult a user asking them to give additional infor-
mation as regards desired and undesired entailments of the correct KB. Thus, the principle of interactive
KB debugging is based on that of Sequential Diagnosis which has been suggested by [dKW87] as an
iterative way to localize the faulty components (among an initially large set of possibilities) in malfunc-
tioning digital circuits by performing repeated (most informative) measurements. We have shown in our
previous works [SF10, SFFR12] how sequential diagnosis can be applied to KBs (ontologies).

In our approach, for the selection of which question (of a pool of possible ones) to ask a user next, an
active learning [Set12] approach is applied.21 Active Learning is an iterative supervised machine learning
technique in which a learning algorithm is able to interactively query the user to obtain a label for a
desired unlabeled instance. In the case of a KB debugging system, an unlabeled instance is a set of logical
formulas and the label is whether the conjunction of these formulas should or should not be entailed by
the correct KB. Since the learner can choose the instances to be labeled, the number of consultations of
an interacting user required to learn a concept (in this case the one solution KB with the desired semantics
w.r.t. a given DPI) can often be much lower than the number required in a standard supervised learning
setting since the risk that the algorithm must deal with lots of uninformative examples is reduced.

We suppose the user of an interactive KB debugger to be a single person or multiple persons, usually
experts of the particular domain the faulty KB is dealing with or authors of the faulty KB. Moreover, we
assume the interacting user to be able to answer concrete queries about the intended domain that should
be modeled. Otherwise put, we suppose that a user can classify a given logical formula (or a conjunction
of logical formulas) as a wanted or unwanted proposition in the intended domain, i.e. as an entailment or
non-entailment of the correct domain model. We have already argued in Chapter 1 why this assumption
is plausible.

7.1 Queries

In interactive KB debugging, a set of logical formulas Q is presented to the user who should decide
whether to assign Q to the set of positive (P) or negative (N) test cases w.r.t. a given DPI 〈K,B,P ,N 〉R.
In other words, the system asks the user “should the KB you intend to model entail all formulas in Q?”.
In that, Q is generated by the debugging algorithm in a way that any decision of the user

1. invalidates at least one minimal diagnosis (search space restriction) and

21Note that the minimal a-posteriori expected entropy of solution candidate probabilities as a means to select the best next
measurement as used in [dKW87] is only one of many possible active learning strategies [Set12].

93

94 CHAPTER 7. USER INTERACTION

2. preserves validity of at least one minimal diagnosis (solution preservation).

We call a set of logical formulas Q with these properties a query. Successive classification of queries as
entailments (all formulas in Q must be entailed) or non-entailments (at least one formula in Q must not
be entailed) of the correct KB enables gradual restriction of the search space for (minimal) diagnoses.
Further on, classification of sufficiently many queries guarantees the detection of a single correct solution
diagnosis which can be used to determine a solution KB with the correct semantics w.r.t. a given DPI.22

Definition 7.1 (Query). Let 〈K,B,P ,N 〉R over L and D ⊆ mD〈K,B,P,N 〉R . Then a set of logical
formulas Q 6= ∅ over L is called a query w.r.t. D iff there are diagnoses D,D′ ∈ D such that D /∈
mD〈K,B,P∪{Q},N 〉R and D′ /∈mD〈K,B,P,N∪{Q}〉R . The set of all queries w.r.t. D and 〈K,B,P ,N 〉R is
denoted by QD,〈K,B,P,N 〉R .

Remark 7.1 Although Definition 7.1 only postulates that at least one diagnosis in D is invalidated
for whatever answer is given to the query, this implies that, for each answer to the query, there is also
a diagnosis that remains valid after adding the corresponding test case to the DPI, as will be shown by
Proposition 7.4.

So, w.r.t. a set of minimal diagnoses D ⊆ mD〈K,B,P,N 〉R , a query Q is a set of logical formulas
that rules out at least one diagnosis in D (and therefore in mD〈K,B,P,N 〉R) as a candidate to formulate a
solution KB, regardless of whether Q is classified as a positive or negative test case.

7.2 Leading Diagnoses
Query generation requires a precalculated set of minimal diagnoses D ⊆ mD〈K,B,P,N 〉R that serves as
a representative for all minimal diagnoses mD〈K,B,P,N 〉R . As already mentioned, computation of the
entire set mD〈K,B,P,N 〉R is generally not tractable within reasonable time. Usually, D is defined as a
set of most probable or minimum cardinality diagnoses (cf. Chapter 4). Therefore, D is called the set of
leading diagnoses w.r.t. 〈K,B,P ,N 〉R [SFFR12].

The leading diagnoses D are then exploited to determine a query Q the answering of which enables
a discrimination between the diagnoses in mD〈K,B,P,N 〉R . That is, a subset of mD〈K,B,P,N 〉R which is
not “compatible” with the new information obtained by adding the test case Q to P or N is ruled out
(see Proposition 7.3 below). For the computation of the subsequent query only a leading diagnoses set
Dnew w.r.t. the minimal diagnoses still compliant with the new sets of test cases P ′ and N ′ is taken into
consideration, i.e. Dnew ⊆ D〈K,B,P ′,N ′〉R .

The number of precomputed leading diagnoses D affects the quality of the obtained query. The
higher |D|, the more representative is D w.r.t. mD〈K,B,P,N 〉R , the more options there are to specify a
query in a way that a user can easily comprehend and answer it, and the higher is the chance that a query
that eliminates a high rate of diagnoses w.r.t. D will also eliminate a high rate of all minimal diagnoses
mD〈K,B,P,N 〉R . The selection of a lower |D| on the other hand means better timeliness regarding the
interaction with a user, first because fewer leading diagnoses might be computed much faster and second
because the search space for an “optimal” query is smaller.23 So, the optimal number of leading diagnoses

22Correctness of the diagnosis must not be understood as a guarantee that all formulas in the KB which are not in the diagnosis
are definitely correct. Instead, correctness must be seen with regard to other diagnoses and with the “Principle of Parsimony” in
mind (cf. Section 3.1). That is, all other possible diagnoses are ruled out by a present set of test cases wherefore the single remaining
diagnosis is the one that is correct (in comparison with all other incorrect ones). And, there is no evidence (at the time the correct
diagnosis is found) that any other formulas in the KB might be faulty. This might change however after new formulas are added to
the KB.

23Roughly, a query Q is “optimal” if the number of queries that still need to be answered to identify the desired solution KB after
Q is added to the (positive or negative) test cases is minimal. “Optimality” of a query can be captured by quantitative information
theoretic measures studied in the field of active learning [Set12] that can be used to estimate the quality of a query beforehand, i.e.
before an answer to it is known. See Section 9.3 and [RSFF13, SF10, SFFR12] for details.

7.3. Q-PARTITIONS 95

depends on the complexity of the particular DPI considered. One way to determine a suitable |D| can be
to first define an interval [nmin, nmax] that must comprise |D| where the upper bound defines the desired
number of leading diagnoses and the lower bound the minimally postulated number. Second, the search
for minimal diagnoses is run at least as long as it takes to compute nmin diagnoses and at the longest until
nmax diagnoses have been found or a timeout t expires that is specified in a manner it enables frequent
user interaction. Note that such parameters have already been taken into account in the non-interactive
KB debugging Algorithm 2 (see Section 4.7).

7.3 Q-Partitions
Now we introduce the notion of a q-partition, a partition of the leading diagnoses set D induced by a
query w.r.t. D. A q-partition will be a helpful instrument in deciding whether a set of logical formulas is
a query or not. It will facilitate an estimation of the impact a query answer has in terms of invalidation of
minimal diagnoses. And, given fault probabilities, it will enable us to gauge the probability of getting a
positive or negative answer to a query.

From now on, given a DPI 〈K,B,P ,N 〉R and some minimal diagnosis Di w.r.t. 〈K,B,P ,N 〉R, we
will use the following abbreviation for the solution KB obtained by deletion of Di along with the given
background knowledge B:

K∗i := (K \ Di) ∪ B ∪ UP (7.1)

Definition 7.2 (q-Partition24). Let 〈K,B,P ,N 〉R be a DPI over L, D ⊆ mD〈K,B,P,N 〉R . Further, let Q
be a set of logical formulas over L and

• D+(Q) := {Di ∈ D | K∗i |= Q},

• D−(Q) := {Di ∈ D | ∃x ∈ R ∪N : K∗i ∪Q violates x},

• D0(Q) := D \ (D+
j ∪D−j).

Then 〈D+(Q),D−(Q),D0(Q)〉 is called a q-partition iff Q is a query w.r.t. D and 〈K,B,P ,N 〉R.

Remark 7.2 The set D−(Q) contains exactly those diagnoses Di ∈ D where K \ Di is invalid w.r.t.
〈·,B,P ∪ {Q} ,N 〉 (cf. Definition 3.3).

Proposition 7.1. For each query Q w.r.t. some D ⊆ mD〈K,B,P,N 〉R it holds that 〈D+(Q), D−(Q),
D0(Q)〉 is a partition of D.

Proof. First, by definition of D0(Q), we have that D+(Q)∪D−(Q)∪D0(Q) = D, D+(Q)∩D0(Q) = ∅
and D−(Q) ∩ D0(Q) = ∅. Second, D+(Q) ∩ D−(Q) = ∅ since K∗i |= Qj and ∃x ∈ R ∪ N :
(K∗i ∪Qj violates x) imply by idempotency ofL thatK∗i violates some x ∈ R∪N which is a contradiction
to Di being a diagnosis w.r.t. 〈K,B,P ,N 〉R. Thus, each diagnosis in D is an element of exactly one set
of D+(Q),D−(Q),D0(Q) which is equivalent to the statement of the proposition.

Remark 7.3 In fact, Proposition 7.1 holds for any set D ⊆ aD〈K,B,P,N 〉R , i.e. for any subset of all
diagnoses w.r.t. 〈K,B,P ,N 〉R. This can be easily seen from the proof of Proposition 7.1 which does not
require minimality of diagnoses. That is, any set of diagnoses w.r.t. a DPI is partitioned into the three sets
D+(Q), D−(Q) and D0(Q) as per Definition 7.2 by a query Q w.r.t. this DPI.

24In existing literature, e.g. [SFFR12, RSFF13, SF10], a q-partition is often simply referred to as partition. We call it q-partition
to emphasize that not each partition of D into three sets is necessarily a q-partition.

96 CHAPTER 7. USER INTERACTION

Proposition 7.2. For each query Q w.r.t. some D ⊆ mD〈K,B,P,N 〉R there is one and only one partition
〈D+(Q),D−(Q),D0(Q)〉.

Proof. The existence of a partition D+(Q),D−(Q),D0(Q) follows directly from Proposition 7.1. As-
sume there are two different partitions 〈D+

1 (Q),D−1 (Q),D0
1(Q)〉 and 〈D+

2 (Q),D−2 (Q),D0
2(Q)〉. Then,

(a) D+
1 (Q) 6= D+

2 (Q) or (b) D−1 (Q) 6= D−2 (Q) or (c) D0
1(Q) 6= D0

2(Q) must hold. If (a) is true, then
there is one diagnosis Di ∈ D such that K∗i |= Q and K∗i 6|= Q – a contradiction. If (b) is true, then
there is one diagnosis Di ∈ D such that K∗i ∪Q violates some x ∈ R ∪ N and K∗i ∪Q does not violate
any y ∈ R ∪ N – a contradiction. If (c) is true, then (D+

1 (Q) ∪D−1 (Q)) 6= (D+
2 (Q) ∪D−2 (Q)) which

implies that either (a) or (b) must be true.

Due to the uniqueness of a q-partition 〈D+(Q),D−(Q),D0(Q)〉 for a query Q, we denote this q-
partition by P(Q). As a consequence of Definition 7.2 and Proposition 7.2, a query Q is a set of common
entailments of KBsK∗i , each resulting from the deletion of a single minimal diagnosisDi ∈ D+(Q) from
K.

Corollary 7.1. For each query Q ∈ QD,〈K,B,P,N 〉R there is a set of minimal diagnoses D+(Q) ⊆
mD〈K,B,P,N 〉R as defined by Definition 7.2 such that Q ⊆ {e | ∀Di ∈ D+(Q) : K∗i |= e}.

7.4 Interpretation of Q-Partitions

Since K∗i corresponds to the solution KB (along with B) obtained under the assumption that Dt = Di,
i.e. the true diagnosis (cf. Definition 6.1) corresponds to Di, the sets D+(Q) and D−(Q) can be in-
terpreted as those leading diagnoses that predict the classification of Q as a positive and negative test
case, respectively. In other words, if the true diagnosis Dt is in D+(Q), then the true solution KB
K∗t entails Q by Definition 7.2. Therefore the user will answer Q positively (cf. Definition 6.1). If, con-
versely,Dt is in D−(Q), then the true solution KBK∗t would be invalidated ifQwas answered positively,
since K∗t ∪ Q = (K \ Dt) ∪ B ∪ UP∪{Q} violates some x ∈ R ∪ N and thus K \ Dt is invalid w.r.t.
〈·,B,P ∪ {Q} ,N 〉R, which implies that Dt is not a diagnosis w.r.t. 〈K,B,P ∪ {Q} ,N 〉R according to
Proposition 3.2. Hence, the user will answer Q negatively (cf. Definition 6.1). Diagnoses in D0(Q) on
the other hand neither predict Q ∈ P nor Q ∈ N . This means that we do not know how the user will
answer a query Q for which the true diagnosis Dt is in D0(Q). In this case, for any answer to Q, the true
diagnosis Dt is in the set of minimal diagnoses w.r.t. the new DPI including Q as a test case. To sum-
marize: If the true diagnosis Dt is an element of D+(Q) (D−(Q)), then Q will be answered positively
(negatively).

Conversely, this means that a q-partition P(Q) gives a prior indication which leading diagnoses would
be invalidated by a user’s answer. Diagnoses in D+(Q) are invalidated by the classification Q ∈ N , and
diagnoses in D−(Q) in case of Q ∈ P . Diagnoses in D0(Q) can never be invalidated by an answer
to Q. Thus, intuitively, queries with D0(Q) = ∅ are preferable over other queries (as per the informa-
tion provided by the set of leading diagnoses D) as the number of (definitely) eliminated diagnoses in
mD〈K,B,P,N 〉R should be maximized.

The following proposition is a direct consequence of Corollary 3.3 and explicates the impact of the
addition of a test case to a DPI regarding the set of minimal diagnoses for this DPI.

Proposition 7.3. Let Q be a query w.r.t. D ⊆ mD〈K,B,P,N 〉R and let the answer of a user to Q be
u(Q) ∈ {true, false}.

If u(Q) = true , then Di ∈ mD〈K,B,P,N 〉R is a diagnosis w.r.t. 〈K,B,P ∪ {Q} ,N 〉R iff K \ Di is
valid w.r.t. 〈·,B,P ∪ {Q} ,N 〉R.

7.5. RELATION BETWEEN QUERY AND Q-PARTITION 97

In other words, both of the following conditions must hold:

∀r ∈ R : K∗i ∪Q does not violate r
∀n ∈ N : K∗i ∪Q 6|= n

If u(Q) = false , then Di ∈ mD〈K,B,P,N 〉R is a diagnosis w.r.t. 〈K,B,P ,N ∪ {Q}〉R iff K \ Di is
valid w.r.t. 〈·,B,P ,N ∪ {Q}〉R.

In other words, both of the following conditions must hold:

∀r ∈ R : K∗i does not violate r
∀n ∈ (N ∪ {Q}) : K∗i 6|= n

Remark 7.4 From Proposition 7.3 and Definition 7.2 it is easy to see that at least Di ∈ D−(Q) ⊂
mD〈K,B,P,N 〉R are eliminated by a positive answer to Q. Namely, D−(Q) comprises exactly those
diagnoses Di that imply the violation of some r ∈ R or the entailment of some n ∈ N if Q is added to
K∗i . On the other hand, at least Di ∈ D+(Q) ⊂ mD〈K,B,P,N 〉R are discarded if u(Q) = false as all
diagnoses in D+(Q) entail Q which must not be entailed.

Note that, in general, the addition of a query to the test cases of a DPI causes not only an invalidation
of some leading minimal diagnoses in D, but also the elimination of minimal diagnoses that have not even
been computed yet. On the other hand, an added test case might also introduce new minimal diagnoses,
i.e. ones that were no minimal diagnoses before this test case was added. However, the newly obtained
DPI after the addition of any new test case can only exhibit a reduced set of all (i.e. minimal and non-
minimal) diagnoses compared with the DPI before the test case was added (we will prove this result by
Proposition 12.3).

7.5 The Relation between a Query and Its Q-Partition
The following proposition shows the relationship between a query and its q-partition and provides a
criterion that enables to check whether a set of logical formulas is a query w.r.t. some set of leading
diagnoses or not.

Proposition 7.4. Let 〈K,B,P ,N 〉R be a DPI over L and D ⊆ mD〈K,B,P,N 〉R . Then a set of logical
formulas Q 6= ∅ over L is a query w.r.t. D iff D+(Q) 6= ∅ and D−(Q) 6= ∅.

Proof. “⇐”: If D+(Q) 6= ∅ and D−(Q) 6= ∅ holds, then a non-empty set of diagnoses D−(Q) (D+(Q))
becomes invalid for positive (negative) answer to Q. So, Q is a query.

“⇒”: If Q is a query, then there are diagnoses D,D′ ∈ D such that D /∈ mD〈K,B,P∪{Q},N 〉R and
D′ /∈mD〈K,B,P,N∪{Q}〉R . Consequently,D ∈ D\mD〈K,B,P∪{Q},N 〉R andD′ ∈ D\mD〈K,B,P,N∪{Q}〉R
holds. But, as the diagnoses in D \mD〈K,B,P∪{Q},N 〉R are exactly the diagnoses in D that become in-
valid by the positive answer to Q, we obtain D ∈ D−(Q). The argumentation for D′ ∈ D+(Q) is
analogous. Hence, D+(Q) 6= ∅ and D−(Q) 6= ∅.

Corollary 7.2. Let D ⊆mD〈K,B,P,N 〉R . Then, for each q-partition P(Q) = 〈D+(Q),D−(Q),D0(Q)〉
w.r.t. D it holds that D+(Q) 6= ∅ and D−(Q) 6= ∅.

Proof. Follows from Definition 7.2 which grants the existence of a query for any q-partition and Propo-
sition 7.4 which states that neither D+(Q) nor D−(Q) must be empty sets for any query.

So, by Proposition 7.4, a query not only eliminates at least one leading diagnosis, but also leaves at
least one leading diagnosis valid. Therefore, an admissible DPI can never get non-admissible by adding
a query to the positive or negative test cases.

98 CHAPTER 7. USER INTERACTION

Corollary 7.3. Let 〈K,B,P ,N 〉R be an admissible DPI, D ⊆mD〈K,B,P,N 〉R andQ ∈ QD,〈K,B,P,N 〉R .
Then 〈K,B,P ∪ {Q} ,N 〉R as well as 〈K,B,P ,N ∪ {Q}〉R are admissible DPIs.

Proof. Assume that 〈K,B,P ∪ {Q} ,N 〉R is non-admissible. Then there is no valid diagnosis for this
DPI. Since 〈K,B,P ,N 〉R is an admissible DPI, this means that Q invalidates each diagnosis D ∈
aD〈K,B,P,N 〉R ⊇ mD〈K,B,P,N 〉R ⊃ D. By Proposition 7.4, this is a contradiction to the fact that Q
is a query. The argumentation for 〈K,B,P ,N ∪ {Q}〉R is analogue.

This means in particular that a query can never contain a conflict set or result in a violation of some
requirement r ∈ R when added to B ∪ UP (cf. Proposition 3.4).

7.6 Existence of Queries
For any set of at least two leading minimal diagnoses the existence of a query is guaranteed, as the next
proposition and corollary show. In particular, this implies that for arbitrary two minimal diagnoses D,D′
w.r.t. a DPI there is a query Q that enables to differentiate between D and D′, i.e. exactly one of these
diagnoses is invalidated by each answer to Q.

Proposition 7.5. Let D ⊆ mD〈K,B,P,N 〉R with |D| ≥ 2 and UD be the union of all diagnoses in D.
Then

(I) Q := (UD \ Di) is a query w.r.t. D for arbitrary Di ∈ D and

(II) P(Q) = 〈{Di} ,D \ {Di} , ∅〉.

Proof. Ad (I): Assume thatQ is not a query. Then either (1)Q = ∅ or (2) D+(Q) = ∅ or (3) D−(Q) = ∅.
In the following we prove that neither (1) nor (2) nor (3) can hold.

(1): Q = ∅ means that Di ⊇ UD. Since any diagnosis D in D is a subset of UD, this implies that for
each D ∈ D, D ⊆ Di holds. As |D| ≥ 2 is assumed, there is a Dk 6= Di ∈ D for which this property
holds. This, however, is a contradiction to the minimality of diagnosis Di.

(2): D+(Q) = ∅ cannot hold, since (K \ Di) ⊇ (UD \ Di) and UD \ Di |= Q by monotonicity of
description logics imply that K∗i = (K \ Di) ∪ B ∪ UP |= Q. Hence, there is at least one diagnosis,
namely Di, in D+(Q).

(3): To prove that D−(Q) 6= ∅, we must show that there is a diagnosis D ∈ D such that Y := (K \
D)∪B∪UP∪Q = (K\D)∪B∪UP∪(UD\Di) is incoherent. However, (K\D)∪(UD\Di) = K\(D∩Di)
by distributive and De Morgan laws which yields Y = K \ (D ∩ Di) ∪ B ∪ UP . But, D ∩ Di ⊂ D must
hold as D 6⊆ Di by the subset-minimality of Di whereby D must comprise a formula ax /∈ Di. Hence,
Y ⊃ (K \ D) ∪ B ∪ UP is incoherent by subset-minimality of D.

Ad (II): We already know that Di ∈ D+(Q) by (2). Since D ∈ D in (3) can be chosen arbitrarily,
we obtain that D ∈ D−(Q) for all diagnoses D ∈ D \ {Di}.

We immediately obtain a lower bound for the number of queries by Proposition 7.5:

Corollary 7.4. Let D ⊆ mD〈K,B,P,N 〉R with |D| > 1. Then a lower bound for the number of queries
w.r.t. D is |D|.

Remark 7.5 Notice that the preceding proposition and corollary require a set of minimal diagnoses.
This means that subset-minimality of diagnoses is a necessary prerequisite for guaranteeing the possibility
of discrimination between diagnoses. In other words, interactive debugging by means of (some or only)
non-minimal diagnoses cannot be proven to work correctly (without making any further assumptions).

Chapter 8

Query Generation

In this chapter we want to describe, discuss and prove the correctness of methods for the generation of
queries which takes place in each iteration of an interactive KB debugging algorithm after a set of leading
diagnoses has been determined. With Algorithm 4, similar versions of which can be found in [SFFR12,
RSFF13], we present a way to compute a pool QP of queries and associated q-partitions w.r.t. a set of
leading diagnoses D and a DPI 〈K,B,P ,N 〉R. The generation of this pool QP is the first stage of the
query computation function used in the interactive debugging algorithm (Algorithm 5) presented below.
In a second stage, one particular query that meets certain criteria such as maximum expected information
gain is selected from QP (see Section 9.3).

Before we give a description of Algorithm 4, let us have a look at some example by which we want to
demonstrate the principle how a query w.r.t. some set of leading diagnoses for a DPI can be constructed.
This should give the reader a first idea and an intuition of how the presented algorithm works.

Example 8.1 Consider the example FOL DPI given by Table 15.2. The set of minimal conflict sets
mC〈K,B,P,N 〉R = {C1, C2} = {〈1, 3, 4〉 , 〈1, 2, 3, 5〉} (like in previous examples, formulas ax i in Ta-
ble 15.2 are sometimes referred to just by their number i if it is clear from the context what is meant).
Let the set of leading diagnoses be the set of all minimal diagnoses, i.e. D = mD〈K,B,P,N 〉R =
{D1,D2,D3,D4} = {[1], [3], [4, 5], [2, 4]}. To enable a better understanding of this example, we first
analyze why C1 and C2 are minimal conflict sets w.r.t. 〈K,B,P ,N 〉R.

Why is C1 a conflict set w.r.t. 〈K,B,P ,N 〉R? In the following we underline the formulas ax i and
relevant parts of these formulas used in the derivation of the conflict set. First, there is the background
KB B including a1(w) and a1(u). Due to ax 1, by substitution of X by w (written as X/w), we obtain
a2(w),m1(w) and m2(w) from a1(w). Likewise, we can derive a2(u),m1(u) and m2(u) from a1(u)
by X/u. Substituting X by w in ax 3 yields m1(w)→ ¬a(w) ∧ b(w). Thus, we obtain ¬a(w). A
substitution of X by u in ax 4 results in m2(u) → (∀Y s(u, Y) → a(Y)) ∧ d(u). By Y/w, we have
m2(u)→ (s(u,w)→ a(w)) ∧ d(u). Since m2(u) has already been deduced from the background for-
mula a1(u) and s(u,w) is a background formula as well, we can conclude a(w) from ax 4. All in all, we
have derived ¬a(w) and a(w), i.e. an inconsistency, by means of B and C1 (and UP which is the empty
set) wherefore C1 is a conflict set w.r.t. 〈K,B,P ,N 〉R by Definition 4.1. The minimality of C1 can be
easily verified by the way we derived that it is a conflict set; namely, leaving out any of the formulas ax 1,
ax 3 or ax 4 does not allow to derive an inconsistency or incoherency (note that the set of negative test
cases N is empty).

Why is C2 a conflict set w.r.t. 〈K,B,P ,N 〉R? We argue as follows to deduce the inconsistency

99

100 CHAPTER 8. QUERY GENERATION

i ax i K B

1 ∀Xa1(X) → a2(X) ∧m1(X) ∧m2(X) •
2 ∀Xa2(X) → ¬(∃Y s(X,Y) ∧m3(Y)) ∧ ∃Zs(X,Z) ∧m2(Z) •
3 ∀Xm1(X) → ¬a(X) ∧ b(X) •
4 ∀Xm2(X) → (∀Y s(X,Y)→ a(Y)) ∧ d(X) •
5 ∀Xm3(X) ↔ b(X) ∨ c(X) •
6 a1(w) •
7 a1(u) •
8 s(u,w) •

i pi ∈ P

× ×

i ni ∈ N

× ×

i ri ∈ R

1 consistency

2 coherency

Table 8.1: First-Order Logic Example DPI

responsible for C2 to be a conflict set (the relevant implications and used formulas are again underlined):

(1) : a1(w) ∈ B : a1(w)

(2) : X/w in ax 1 : a1(w) → a2(w) ∧m1(w) ∧m2(w)

(3) : X/w in ax 3 : m1(w) → ¬a(w) ∧ b(w)

(4) : ax 5 and X/w : b(w) → m3(w)

(5) : (1)− (4) : m3(w)

(6) : a1(u) ∈ B : a1(u)

(7) : X/u in ax 1 : a1(u) → a2(u) ∧m1(u) ∧m2(u)

(8) : X/u in ax 2 : a2(u) → ¬(∃Y s(u, Y) ∧m3(Y))

∧ (∃Zs(u, Z) ∧m2(Z))

(9) : (6)− (8) : ¬(∃Y s(u, Y) ∧m3(Y))

(10) : s(u,w) ∈ B : s(u,w)

(11) : (5) and (10) : ∃Y s(u, Y) ∧m3(Y)

(9) and (11) : E

Minimality of C2 can again be verified by observing that, given any formula of C2 is left out, no inconsis-
tency or incoherency can be derived.

Now we show how to construct a query manually. As suggested by Definition 7.2 and Proposition 7.4
and discussed in Section 7.5, an obvious way of generating a query w.r.t. D and 〈K,B,P ,N 〉R is via
the notion of a q-partition. Definition 7.2 states that Q is a set of common entailments of KBs K∗i
(Formula 7.1) where Di ∈ D+(Q), a subset of D. Hence, a first step towards query computation is
to choose some non-empty subset S of the leading diagnoses D which we will call the seed for query
generation. For our manual construction, let S = {D3,D4} = {[4, 5], [2, 4]}. For each of the diagnoses

101

Di in S, we assemble the KB K∗i and use a reasoning engine to obtain a set of entailments EDi of K∗i .
ForD3 we obtainK∗3 := {1, 2, 3, 4, 5}\{4, 5}∪{6, 7, 8}∪{} = {1, 2, 3, 6, 7, 8}. Similarly, we compute
K∗4 = {1, 3, 5, 6, 7, 8}.

Suppose that the reasoner invoked by the used GETENTAILMENTS function produces only entailments
of the type ∀Xp1(X) → p2(X) for predicate names p1, p2 and of the type p(a) where p is a predicate
name and a is a constant (cf. Remark 2.3). For this purpose, DL and OWL reasoners, respectively,
such as Pellet [SPG+07], HermiT [SMH08], FaCT++ [TH06] or KAON225 could be used with their
classification and realization reasoning services. The reason why this is possible can be realized after
a short analysis of the DPI 〈K,B,P ,N 〉R given by Table 15.2. For, this DPI can be translated to DL
similarly as demonstrated in Example 2.1. All the mentioned reasoners can deal with the expressivity of
the resulting DL language.

Then, we obtain the sets ED3 and ED4 , i.e. the sets of entailments of K∗3 and K∗4 , respectively, as
depicted by Table 8.2. The set of common entailments Q, i.e. Q = ED3 ∩ ED4 is then the set containing
all elements in the rows of Table 8.2 that are above the dashed line.

Notice at this point that the set {a1(w), a1(u), s(u,w)} = B does not need to be computed or,
respectively, included in Q since none of these formulas can serve to discriminate between diagnoses
(which is the only aim of a query). The simple reason for this is thatK∗i for eachDi ∈ D comprises these
formulas and thus each K∗i entails these formulas by the extensiveness of FOL (cf. Chapter 2). Since
entailed by each potential solution KBK∗i , these formulas cannot yield a violation of any requirements or
test cases since none of the KBs K∗i violates any requirements or test cases (follows from Definitions 3.5
and 3.2).

Continuing with our query construction, we know by Proposition 7.4 that Q is a query w.r.t. D and
〈K,B,P ,N 〉R iff D+(Q) 6= ∅ and D−(Q) 6= ∅. Whereas it is trivial that the former condition is
met since D+(Q) contains (at least) the two diagnoses D3 and D4 that we used to compute Q (cf.
Definition 7.2), we still need to verify whether the latter condition is actually satisfied for Q. To this
end, as per Definition 7.2, we must simply find some diagnosis Dj in D \ S = {D1,D2,D3,D4} \
{D3,D4} = {D1,D2} such that K∗j ∪ Q violates some x ∈ N ∪ R, i.e. whether some negative test
case is entailed or whether this KB is incoherent or inconsistent. So, we start with D1, i.e. we examine
(K \ D1) ∪ B ∪ P ∪Q = {1, 2, 3, 4, 5} \ {1} ∪ {6, 7, 8} ∪ {} ∪Q = {2, 3, 4, 5, 6, 7, 8} ∪Q.

And, indeed, we are able to prove an inconsistency for this KB. To see that, verify that by X/w in
e2 ∈ Q (see Table 8.2) and a1(w) = ax 6 ∈ K∗1 we can derive m1(w) which lets us conclude ¬a(w)
by the substitution of X by w in ax 3 ∈ K∗1 . On the other hand, we obtain a(w) by X/u in e3 ∈ Q,
{X/u, Y/w} in ax 4 ∈ K∗1 and s(u,w) = ax 8 ∈ K∗1 as shown in the explanation for conflict set C1
above. Thus, D1 ∈ D−(Q).

That is, we have just proven thatQ is de facto a query w.r.t. D and 〈K,B,P ,N 〉R. And this, although
we have not yet assigned each leading diagnosis to the respective set of the q-partition ofQ. In a situation
where just any query shall be asked to the user, this would suffice, and the query could be presented to
the interacting user.

However, in case a “best” query according to some criterion shall be determined from a set of different
competing queries, usually the computation of the full q-partition of each competing query is required.
This is due to the fact that the q-partition provides information about several properties of queries that
are considered by common query selection techniques (for details see Section 9.3). So, let us complete
the q-partition for our query Q by investigating K∗2 ∪ Q = {1, 2, 4, 5, 6, 7, 8} ∪ Q. Also in this case we
can derive an inconsistency which can be easily realized by reconsidering the argumentation why C2 is a
conflict set above and by using e4 ∈ Q instead of ax 3 /∈ K∗2 ∪Q. That means, the final q-partition P(Q)
for Q is given by 〈{D3,D4} , {D1,D2} , ∅〉.

The next question that arises directly from the proofs that D3,D4 ∈ D−(Q) is whether there is a
(set-minimal) subset Qmin of Q such that Qmin preserves the discrimination properties of Q, i.e. the

25http://kaon2.semanticweb.org/

102 CHAPTER 8. QUERY GENERATION

q-partition P(Qmin) = P(Q). In fact, the answer is yes for the query Q we computed, but also for
the majority of other cases. This is a simple consequence of using the reasoning engine as a black-box
which suggests a strategy we pursued in our query construction which relies on a precomputation of
entailments and a final minimization part. Sticking to this black-box concept however does not allow to
use some customized reasoning procedure that pointedly returns a set of common entailments Q for a
set of diagnoses S ⊂ D where all formulas in Q are necessary for a requirement or test case violation,
respectively, of KBs K∗j for diagnoses in D \ S.

What militates for such a black-box approach is the generality and independence of a particular logic
(for which an adequate glass-box reasoner exists), the easier implementation of the debugging system and
potential performance issues with a glass-box approach [KPSH05]. For a black-box algorithm to work,
only a reasoner implementing a sound and complete inference procedure for the used logic L must be
available.

In general, there is more than one minimized version of a query that preserves the q-partition. Theo-
retically, the number of such minimal queries w.r.t. one q-partition can be exponential in the size of the
initially computed query that is provided as an input to the minimization procedure. For our query Q, for
instance,

Qmin,1 = {a2(u), b(w)} = {e7, e12},
Qmin,2 = {∀Xa1(X)→ a2(X), b(w)} = {e1, e12} ,
Qmin,3 = {∀Xa1(X)→ a2(X),

∀Xa1(X)→ m1(X),

∀Xm1(X)→ b(X)} = {e1, e2, e4} and
Qmin,4 = {∀Xa1(X)→ m1(X),

∀Xa1(X)→ m2(X),

∀Xm1(X)→ b(X)} = {e2, e3, e4}

are set-minimal, q-partition preserving subqueries. Namely, each of the sets Qmin,1, Qmin,2 and Qmin,3

together with {2, 5, 6, 7, 8} implies an inconsistency since m3(w) and ¬m3(w) can be derived and
{2, 5, 6, 7, 8} ⊆ K∗1 and {2, 5, 6, 7, 8} ⊆ K∗2 . {e2, e3} ⊂ Qmin,4 yields an inconsistency when added
to K∗1 , i.e. a(w) and ¬a(w) are entailed, and {e4} ⊂ Qmin,4 merged with K∗2 yields an inconsistency, i.e.
the derivation of m3(w) and ¬m3(w). In order not to overwhelm the user we would of course ask them
such a minimized version of a query rather than the full query that contains plenty of irrelevant formulas.

An example of a seed S that does not lead to the discovery of a query is S = {D1,D2,D3} since
the set of common entailments ED1

∩ ED2
∩ ED3

= ∅. Note that this holds when all EDi
contain only

entailments of the types we specified above. For other types of entailments, i.e. a different specification
of the GETENTAILMENTS function, this might no longer hold.

8.1 Generation of a Pool of Queries

The main function GETPOOLOFQUERIES of Algorithm 4 gets as inputs an admissible DPI 〈K,B,P ,N 〉R
over L, a set of leading (minimal) diagnoses D ⊆ mD〈K,B,P,N 〉R such that |D| ≥ 2 and a parameter
q ∈ N ∪ {∞} , q ≥ 1 that indicates the number of queries in QD,〈K,B,P,N 〉R the algorithm is supposed
to return (where q := ∞ signalizes that a maximum number of queries should be output). The way of
generating a pool of queries is guided by Proposition 7.4 which says that a non-empty set Q of formulas
over L is a query w.r.t. D and 〈K,B,P ,N 〉R if and only if D+(Q) as well as D−(Q) are non-empty sets
of diagnoses. That is, the necessary and sufficient criteria for Q to be a query are

8.1. QUERY POOL GENERATION 103

Algorithm 4 Generation of Queries and Q-Partitions

Input: an admissible DPI 〈K,B,P ,N 〉R, a set of minimal diagnoses D ⊆ mD〈K,B,P,N〉R such that |D| ≥ 2, a
desired number q ∈ N ∪ {∞} , q ≥ 1 of queries w.r.t. 〈K,B,P ,N 〉R to be returned

Output: a set QP including tuples
〈
Q,
〈
D+(Q),D−(Q),D0(Q)

〉〉
such that: If q ≥ |QPmax|, then

1. there are no two tuples 〈Q,P(Q)〉 , 〈Q′,P(Q′)〉 in QP such that Q = Q′ or P(Q) = P(Q′), and

2. QP includes a tuple
〈
Q,
〈
D+(Q),D−(Q),D0(Q)

〉〉
only if Q ∈ QD,〈K,B,P,N〉R , and

3. QP includes at most one tuple where D+(Q) = Y for each Y ⊂ D, and

4. for each Y ⊂ D for which a query Q w.r.t. D and 〈K,B,P ,N 〉R exists such that (a) Q includes only
entailments computed by the used GETENTAILMENTS function and (b) P(Q) is such that D+(Q) = Y ,
QP includes a tuple 〈Q′,P(Q′)〉 such that D+(Q′) = Y , and

5. QP 6= ∅.
If q < |QPmax|, then QP includes q tuples satisfying (1), (2) and (3). (|QPmax| ≥ 0 is the maximum number
of tuples 〈Q,P(Q)〉 that can be computed by GETPOOLOFQUERIES by the used GETENTAILMENTS function)

1: procedure GETPOOLOFQUERIES(〈K,B,P ,N 〉R,D, q)
2: ED ← ∅
3: for D ∈ D do
4: ED ← GETENTAILMENTS(D,K,B,P) . EDr is the set of entailments of K∗r
5: ED ← ED ∪ {〈D, ED〉}
6: for ∅ ⊂ S ⊂ D do
7: isQuery ← false
8: Q← GETCOMMONENTAILMENTS(S, ED)
9: if Q 6= ∅ then

10: for Dr ∈ D \ S do
11: if Q ⊆ EDr then . Does K∗r |= Q ?
12: D+ ← D+ ∪ {Dr}
13: else if ¬ISKBVALID(K∗r ∪Q, 〈·, ∅, ∅,N 〉R) then . ISKBVALID (see Algorithm 1)
14: D− ← D− ∪ {Dr}
15: isQuery ← true
16: else
17: D0 ← D0 ∪ {Dr}
18: if isQuery ∧ ¬INCLQPART(QP,

〈
D+,D−,D0

〉
) then

19: Q′ ← MINQ(∅, Q, ∅,
〈
D+,D−,D0

〉
, 〈K,B,P ,N 〉R)

20: QP← QP ∪
{〈
Q′,
〈
D+,D−,D0

〉〉}
21: if |QP| = q then
22: return QP

23: if |QP| = 0 then
24: QP← ADDTRIVIALQUERIES(D,QP)

25: return QP

26: procedure MINQ(X,Q,QB,
〈
D+,D−,D0

〉
, 〈K,B,P ,N 〉R)

27: if X 6= ∅ ∧ ISQPARTCONST(QB,
〈
D+,D−,D0

〉
, 〈K,B,P ,N 〉R) then

28: return ∅
29: if |Q| = 1 then
30: return Q
31: k ← SPLIT(|Q|)
32: Q1 ← GET(Q, 1, k)
33: Q2 ← GET(Q, k + 1, |Q|)
34: Qmin

2 ← MINQ(Q1, Q2, QB ∪Q1,
〈
D+,D−,D0

〉
, 〈K,B,P ,N 〉R)

35: Qmin
1 ← MINQ(Qmin

2 , Q1, QB ∪Qmin
2 ,

〈
D+,D−,D0

〉
, 〈K,B,P ,N 〉R)

36: return Qmin
1 ∪Qmin

2

37: procedure ISQPARTCONST(Q,
〈
D+,D−,D0

〉
, 〈K,B,P ,N 〉R)

38: for Dr ∈ D− do
39: if ISKBVALID(K∗r ∪Q, 〈·, ∅, ∅,N 〉R) then . ISKBVALID (see Algorithm 1)
40: return false

41: for Dr ∈ D0 do
42: if K∗r |= Q then
43: return false

44: return true

104 CHAPTER 8. QUERY GENERATION

ED3 ED4

e1 ∀Xa1(X)→ a2(X) ∀Xa1(X)→ a2(X)

e2 ∀Xa1(X)→ m1(X) ∀Xa1(X)→ m1(X)

e3 ∀Xa1(X)→ m2(X) ∀Xa1(X)→ m2(X)

e4 ∀Xm1(X)→ b(X) ∀Xm1(X)→ b(X)

e5 ∀Xa1(X)→ b(X) ∀Xa1(X)→ b(X)

e6 a2(w) a2(w)

e7 a2(u) a2(u)

e8 m1(w) m1(w)

e9 m1(u) m1(u)

e10 m2(w) m2(w)

e11 m2(u) m2(u)

e12 b(w) b(w)

e13 b(u) b(u)

e14 ∀Xb(X)→ m3(X)

e15 ∀Xc(X)→ m3(X)

e16 ∀Xm1(X)→ m3(X)

e17 ∀Xa1(X)→ m3(X)

e18 m3(w)

e19 m3(u)

Table 8.2: (Example 8.1) Entailments computed for KBs K∗3 and K∗4 .

(CQ1) Q 6= ∅ and

(CQ2) D+(Q) 6= ∅ and

(CQ3) D−(Q) 6= ∅.

Note, since the disjoint sets of diagnoses D+(Q) ⊆ D and D−(Q) ⊆ D must not be empty, |D| ≥ 2
must be postulated in order for any queries to exist w.r.t. D and 〈K,B,P ,N 〉R (cf. Corollary 7.4).

As a first action (lines 3-5), the algorithm computes a set of entailments EDi
for each K∗i (cf. For-

mula 7.1) where Di ∈ D and stores these entailments along with the respective diagnosis as a tuple
〈Di, EDi〉 in a set ED. This is accomplished by the function GETENTAILMENTS which gets a tuple
〈X,Y, Z,W 〉 of arguments where X,Y, Z are sets of formulas over some logic L and W is a set in-
cluding sets of formulas over L. Then, GETENTAILMENTS computes a finite (cf. Remark 2.3) set of
entailments of certain types (cf. Examples 8.1 and 8.6) of the KB (Y \X) ∪ Z ∪ UW .

Then, the algorithm runs through all proper non-empty subsets S of the leading diagnoses D and,
for each S, it computes the set of common entailments Q of all KBs K∗i where Di ∈ S (function GET-
COMMONENTAILMENTS) by means of the precomputed set ED. That is, Q :=

⋂
D∈SED. If Q is

non-empty, then CQ1 and CQ2 are fulfilled for Q. CQ2 is met since S 6= ∅ and thus there is a diagno-
sis Di ∈ D such that K∗i |= Q which implies that D+(Q) 6= ∅. So, the algorithm proceeds to verify
CQ3 (lines 10-17) in that it assigns the remaining diagnoses in D that are not in S to the according sets
D+(Q), D−(Q) or D0(Q) as per Definition 7.2. Note that the function ISKBVALID has been speci-

8.2. DISCUSSION OF QUERY POOL GENERATION 105

fied in Algorithm 1 on page 48. With the parameters given when called in line 13, ISKBVALID checks
whether K∗r ∪ Q = (K \ Dr) ∪ B ∪ UP∪{Q} does not violate any requirement in R and does not entail
any test case in N . Once the call to this function returns false for one diagnosis Dr ∈ D \S, it holds that
Dr ∈ D−(Q) thus CQ3 is definitely met. Therefore, isQuery is set to true in line 15. If, on the other
hand, isQuery is not set to true for any diagnosis in D \ S, then the set D−(Q) = ∅ and thus Q is not
in QD,〈K,B,P,N 〉R .

So far, we have proven the following proposition.

Proposition 8.1. Let a DPI 〈K,B,P ,N 〉R, a set of diagnoses D ⊆mD〈K,B,P,N 〉R and a natural number
q ≥ 1 be the input to the function GETPOOLOFQUERIES. Then, a value stored in variable Q at the time
GETPOOLOFQUERIES executes line 18 is a query w.r.t. D and 〈K,B,P ,N 〉R iff the variable isQuery
stores the value true .

If the purpose was only to find queries (and not q-partitions), the algorithm could stop processing for
the current Q and go to the next set S, given that isQuery is set to true for some diagnosis. However, as
the q-partition provides meaningful information to assess a query, e.g. it gives the number of diagnoses
invalidated for each answer or the estimated probability of each answer (cf. Chapter 7), the q-partition is
a necessary input to the subsequently called function SELECTBESTQUERY (line 48 in Algorithm 6, see
later in Sections 9.2.4 and 9.3) that selects a query from the pool of queries QP. For this reason, the
algorithm continues until the computation of the q-partition for Q is complete.

In a last step (lines 18-20), given that isQuery is true and there is not yet a query with the same
q-partition in QP, the algorithm computes a set-minimal subset Qmin of Q such that the q-partition of
Qmin is the same as the one of Q (function MINQ). Finally, the tuple

〈
Qmin,

〈
D+,D−,D0

〉〉
including

the minimized query Qmin along with its q-partition
〈
D+,D−,D0

〉
is added to QP. If |QP| = q, then

QP is returned; otherwise, a further iteration for another S is executed. If |QP| = q is not met until
all seeds S have been processed, the set QP is checked for emptiness in line 23. If QP = ∅, then the
function ADDTRIVIALQUERIES (line 24) adds |D| ≥ 2 queries as defined byQ in Proposition 7.5 to QP
(cf. Corollary 7.4) and then returns QP; otherwise, QP is directly returned.

Remark 8.1 Notice that lines 23 and 24 in Algorithm 4 aim at ensuring the non-emptiness of the pool of
queries QP returned by GETPOOLOFQUERIES for any GETENTAILMENTS function (see Example 8.6 for
different specifications of the GETENTAILMENTS function). This is a necessary criterion for the interac-
tive KB debugging system (Algorithm 5) to work in a sound way since it guarantees that the CALCQUERY
function (line 16 in Algorithm 5) always returns a query w.r.t. the current set of leading diagnoses D and
the given DPI. Note that the |D| queries generated and added to QP by ADDTRIVIALQUERIES can be
trivially obtained without the consultation of a reasoning service by extraction of the respective formulas
from the KB K, as prescribed by Proposition 7.5.

8.2 Discussion of Query Pool Generation

Multiple Equal Q-Partitions. In the general case there is more than one query w.r.t. one and the same
q-partition. For that reason alone that a minimized query is a set-minimal subset of an initially computed
one where multiple such subsets may exist.

Example 8.2 An example for such a query resulting in multiple minimized subqueries with identical
q-partition can be found in Example 8.1.

However, note that GETPOOLOFQUERIES is designed to compute a pool QP that includes at most
one query with one and the same q-partition. The idea behind this is (1) to minimize the calls to the

106 CHAPTER 8. QUERY GENERATION

expensive function MINQ and (2) that two queries with the same q-partition have exactly the same prop-
erties w.r.t. common query selection criteria such as maximum expected information gain or maximum
worst case invalidation rate of diagnoses after the query answer is known. Such criteria have been shown
to often lead to a reduction of debugging effort for the interacting user (cf. [SFFR12, RSFF13]). As the
purpose of the computation of the pool of queries QP is to constitute an input to the query selection
function that uses exactly such selection measures, the inclusion of only one query with a particular q-
partition is reasonable, also (3) to minimize computation time of the query selection function which needs
to go through all elements of QP in order to pick the “best” one in the worst case.

On the other hand, regarding the comprehensibility of the query, i.e. the cognitive load on the user
when it comes to understanding the meaning of the query, two queries with the same q-partition may well
be significantly different. This however is beyond the scope of this work and considered a topic for future
research.

The following proposition gives evidence that the set QP returned by GETPOOLOFQUERIES is in-
deed duplicate-free w.r.t. the q-partitions in QP.

Proposition 8.2. Let a DPI 〈K,B,P ,N 〉R, a set of diagnoses D ⊆ mD〈K,B,P,N 〉R and q ∈ N ∪
{∞} , q ≥ 1 be the input to the function GETPOOLOFQUERIES. Then, the function GETPOOLOF-
QUERIES returns a set QP including tuples of the form 〈Q,P(Q)〉 where Q ∈ QD,〈K,B,P,N 〉R is a
query and P(Q) =

〈
D+(Q),D−(Q),D0(Q)

〉
is the q-partition of Q such that QP does not include

any two equal queries and does not include any two equal q-partitions.

Proof. The test of the criterion ¬INCLQPART tested before the call to MINQ will always return false for
the q-partition

〈
D+,D−,D0

〉
if
〈
D+,D−,D0

〉
is already included in a tuple in QP. Since MINQ is

q-partition-preserving, no q-partition that does not occur in a tuple in QP can become equal to some
q-partition in QP by a call to MINQ. Therefore, QP cannot include any two equal q-partitions. Since
two equal queries have equal q-partitions, any two different q-partitions cannot be q-partitions of equal
queries. Thus, QP cannot include any two equal queries either.

Note that, on account of the q-partition preserving property of MINQ, only such q-partitions are ruled
out by the criterion in line 18 that would lead to duplicates at the time they should be added to QP in
line 20.

Computation of Entailments. Generally, the (theoretical) number of entailments of a set of formulas
is not finite. However, the entailments (of a certain type) returned by a reasoner are finite. For instance,
asked for entailments of {A v B u C}, a reasoner performing the classification reasoning service would
give back A v B and A v C, but not entailments like A v B t C or A v C u C u C. That is, when
we speak of entailments, then we mean entailments in the practical sense (cf. Remark 2.3), i.e. w.r.t. a
reasoning service such as classification for DL KBs which computes all and only subsumptions X v Y
such that Y is the most specific concept that subsumes X , or forward-chaining for Datalog KBs which
computes all and only atoms that are entailed by the KB.

Example 8.3 If we recall Example 8.1, we see that the number of computed entailments of K∗4 and
K∗3 was 19 and 13 respectively, which are rather high numbers in the light of the small KBs, but impor-
tantly these numbers are necessarily finite. For, there cannot be more than |Pred|2 entailments of the
∀Xp1(X)→ p2(X) type and not more than |Pred| |Const| entailments of the p(a) type for a KB whose
signature includes the unary predicate symbols Pred and constant symbols Const and does not include
any function symbols. In case of KB K∗3 , for example, the set Pred = {a1, a2,m1,m2,m3, a, b} and
Const = {u,w} which means that upper bounds for the number of entailments of the first and second
type are 49 and 14, respectively.

8.2. DISCUSSION OF QUERY POOL GENERATION 107

Further, note that the number of existing different q-partitions and which q-partitions there are at all
w.r.t. some set of leading diagnoses D and a DPI depends on the function GETENTAILMENTS, i.e. on the
set of entailments calculated by it.

Example 8.4 Recall Example 8.1 where we constructed a queryQw.r.t. the set of all minimal diagnoses
for the DPI given by Table 15.2. Assume now that only entailments of the first type, i.e. those of the
form ∀Xp1(X) → p2(X), and none of the second type p(a) are computed by GETENTAILMENTS and
denote the set of entailments of this form of K∗i by E′Di

. Then, Q′ = E′D3
∪ E′D4

= {e1, . . . , e5} (cf.
Table 8.2), i.e. a subset of the queryQ computed for a GETENTAILMENTS function producing entailments
of both types. The q-partition ofQ′ is the same as the q-partition ofQ, namely 〈{D3,D4} , {D1,D2} , ∅〉.
However, the queries Qmin,1 and Qmin,2 are no longer obtained as minimized versions of Q′, unlike
Qmin,3 and Qmin,4 which are subqueries of Q′, too.

Minimizing the Set D0 in Q-Partitions. Recall that D0 = ∅ is a desirable property of a q-partition
since a query with such q-partition may invalidate any leading diagnosis, depending on the answer to the
query (cf. Chapter 7). In other words, no leading diagnosis is guaranteed to be still valid for any answer
after the query is added as a test case to the DPI.

In general, GETPOOLOFQUERIES computes q-partitions where D0 may be a non-empty set. How-
ever, if the GETENTAILMENTS function is specified to compute certain explicit entailments of K, then
D0 = ∅ can be guaranteed.

Definition 8.1 (Explicit Entailment). Let K be a KB. Then, α is an explicit entailment of K iff α ∈ K.

Now, if each set of entailments ED computed by GETENTAILMENTS includes all the formulas that
occur in some diagnosis in D, but do not occur in D, then GETPOOLOFQUERIES definitely returns a set
QP of queries and associated q-partitions where D0(Q) = ∅ holds for each tuple in QP.

Proposition 8.3. Let 〈K,B,P ,N 〉R be a DPI and D ⊆ mD〈K,B,P,N 〉R . If the set ED computed by
GETENTAILMENTS meets ED ⊇ UD \ D for all D ∈ D, then GETPOOLOFQUERIES computes only
queries Q with D0(Q) = ∅.

Proof. Assume that Q is some query computed by GETPOOLOFQUERIES. As MINQ is a q-partition
preserving transformation of Q, we can assume w.l.o.g. that Q is a query computed by GETPOOLOF-
QUERIES before MINQ is called for Q. We have to show that for an arbitrary diagnosis Di ∈ D either Di

is assigned to D+(Q) or to D−(Q).
So, let us assume that there is a diagnosis Dk which is assigned to D0(Q) = D \ (D+(Q)∪D−(Q))

in line 17. Then, Q 6⊆ EDk
and K∗k ∪ Q does not violate any x ∈ R ∪ N must hold, otherwise Dk

would have already been assigned to D+(Q) in line 12 or to D−(Q) in line 14. But Q 6⊆ EDk
implies

Q 6⊆ UD \ Dk since EDk
⊇ UD \ Dk by precondition. This in turn means that there is some formula ax

in Q which is not in UD \ Dk. Then ax ∈ Dk must hold, as otherwise for all formulas ax ′ ∈ Q it would
hold that ax ′ is an entailment ofK∗k = (K\Dk)∪B∪UP , i.e. an entailment of all formulas inK∪B∪UP

except for those in Dk. However, all entailments of K∗k are stored in EDk
by the implementation of the

function GETENTAILMENTS. Thus Q ⊆ EDk
would hold which cannot be the case as shown before.

Consequently, we have derived that Q ∩ Dk 6= ∅ which means by set-minimality of diagnoses in D, in
particular of Dk, that K∗k ∪ Q must violate some x ∈ R ∪ N which is a contradiction to the assumption
that Dk ∈ D0(Q).

Example 8.5 Let us come back to the example DPI given by Table 15.2. The possibility of a query Q
constructed by Algorithm 4 with D0(Q) 6= ∅ is witnessed by the selection of seed S = {D1} and the
assumption that entailments of the two types given in Example 8.1 are produced by GETENTAILMENTS.

108 CHAPTER 8. QUERY GENERATION

The set of entailmentsQ = ED1 = {e4, e14, e15,∀Xm2(X)→ d(X)} (for ei cf. Table 8.2). Then,D2 as
well asD3 are assigned to D−(Q) as both KBsK∗3∪Q,K∗4∪Q entailm3(w) and ¬m3(w) wherefore they
are both inconsistent and thus violate r1 ∈ R. However, D4 ∈ D0(Q) since K∗i 6|= ∀Xm2(X) → d(X)
and hence does not entail Q and since K∗i ∪Q does not violate consistency or coherency (recall that the
set of negative test cases is empty in the DPI and thus must not be considered), i.e. does not contain a
conflict set.

Applying Proposition 8.3, we could use a modified GETENTAILMENTS function that returns a min-
imal set of entailments just that the precondition of the proposition is met, i.e. E′D = UD \ D for all
D ∈ D. With this function, for the seed S = {D1} we would get Q′ = E′D1

= {2, 3, 4, 5} (again, formu-
las in Table 15.2 are referred to just by their number). Let us now check whether D0(Q′) is indeed empty.
As explicit entailments are stronger than non-explicit ones, we must still have that D2,D3 ∈ D−(Q′).
For D4, we have K∗4 ∪ Q′ = {1, 3, 5, 6, 7, 8} ∪ {2, 3, 4, 5} = {1, 2, 3, 4, 5, 6, 7, 8} which corresponds
to the entire KB plus background knowledge of the given DPI and includes conflict sets C1 = {1, 3, 4}
and C2 = {1, 2, 3, 5} wherefore it is inconsistent. Therefore, diagnosis D4 must also be an element of
D−(Q′).

Please note that making the entailments Q = ED1
computed by the unmodified GETENTAILMENTS

function only slightly stronger would already suffice to force inclusion ofD4 in D0(Q). In fact, including
ax 4 := ∀Xm2(X) → (∀Y s(X,Y) → a(Y)) ∧ d(X) in Q instead of ∀Xm2(X) → d(X) would make
Q non-disjoint with D4 as both comprise ax 4. Consequently, in line with the proof of Proposition 8.3,
K∗4 ∪Q must include a conflict set ({1, 3, 4}) wherefore D4 ∈ D−(Q).

Another point we want to mention is that empty D0 could also be achieved by making the query
slightly weaker. For our concrete query Q = ED1 , this means that leaving out ∀Xm2(X) → d(X)
would lead to empty D0(Q). However, the difference to the scenario above where we made Q sightly
stronger is that D4 would be an element of D+(Q) instead of D−(Q) in this case, i.e. the q-partition
would be 〈{D1,D4} , {D2,D3} , ∅〉.

A shortcoming of the strategy of making the query weaker is that it can be computationally expensive
as perhaps a large number of subsets of Q might need to be considered and tested for fulfillment of
D0(Q) = ∅. Each such test would involve calls to the reasoner which are usually expensive. A second
drawback is that no guarantee is given to finally end up with an empty set D0(Q) since weakening of Q
might also involve the “shift” of some diagnosis from D−(Q) to D0(Q). On the other hand, the strategy
of computing stronger entailments is computationally more resource-saving as (trivially obtained) explicit
entailments can be added to make the query stronger. Furthermore, making the query stronger – in a
controlled way, by adding formulas from UD \UD+(Q) to Q as suggested by Proposition 8.3 – can never
lead to non-empty D0(Q) as Proposition 8.3 substantiates.

(Non-)Completeness of Query Pool QP. Note that specifying q :=∞ causes GETPOOLOFQUERIES
to run through all S ⊂ D and to compute a maximum number of queries. However, in general, not all
theoretically possible queries are computed by GETPOOLOFQUERIES. One trivial reason for this is that
only minimized, i.e. set-minimal, queries are contained in the returned set QP.

But, also queries Q′ with D+(Q′) = Y ⊂ D will not be included in QP if there is some query Q
with D+(Q) = Y such that |D−(Q)| > |D−(Q′)| (and, equivalently, |D0(Q)| < |D0(Q′)|). As we will
learn in a moment, both mentioned reasons for the incompleteness of the output of GETPOOLOFQUERIES
will even be desirable for reasons of efficiency. That is, the mentioned types of queries that are not taken
into account in QP are “non-preferred” as non-set-minimal queries demand a non-necessary amount
of user interaction and the answering of queries Q with a non-necessarily large set D0(Q) involves a
worse discrimination between leading minimal diagnoses (and, if these are “good” representatives of all
minimal diagnoses, then of all minimal diagnoses) than other queries Q′ with |D0(Q′)| < |D0(Q)| and
D+(Q) = D+(Q′).

8.2. DISCUSSION OF QUERY POOL GENERATION 109

Still, GETPOOLOFQUERIES meets a completeness criterion for a subset of all queries QD,〈K,B,P,N 〉R ,
elements of which cannot be trivially detected to be “non-preferred”. That is, GETPOOLOFQUERIES is
complete w.r.t. the set D+, as the following proposition states. In other words, for each subset X ⊂ D it
detects a q-partition with D+ = X , if one exists.

Proposition 8.4. Let a DPI 〈K,B,P ,N 〉R, D ⊆ mD〈K,B,P,N 〉R such that |D| ≥ 2 and some q ∈
N ∪ {∞} , q ≥ 1 be the inputs to GETPOOLOFQUERIES and let |QPmax| ≥ 0 be the maximum number
of tuples 〈Q,P(Q)〉 that can be computed by GETPOOLOFQUERIES by means of the used GETENTAIL-
MENTS function. Further, let Y be an arbitrary subset of D. If there is some query Q ∈ QD,〈K,B,P,N 〉R
that (1) includes only entailments that are computed by GETENTAILMENTS and (2) has a q-partition such
that D+(Q) = Y , then GETPOOLOFQUERIES with parameter q ≥ |QPmax| returns a set QP including
a query Q′ with D+(Q′) = Y . Moreover, this query Q′ is found in the iteration where the seed S = Y .

Proof. Since q ≥ |QPmax|, GETPOOLOFQUERIES will arrive at a step where it selects the seed S = Y
in line 6. Now, let us assume that in this iteration no query Q with D+(Q) = Y is found. Then, either
(a) no query is found at all, i.e. CQ1 or CQ2 or CQ3 are violated, or (b) a query Q with D+(Q) 6= Y is
found.

(a): Assume first that CQ1 is violated, i.e. GETCOMMONENTAILMENTS called with argument S
returns ∅. This implies that the KBs K∗r for Dr ∈ Y have no common entailments, if entailments are
computed by GETENTAILMENTS. This however means that there cannot be a q-partition with D+ ⊇ Y
which is a contradiction to the precondition that there is some query Q ∈ QD,〈K,B,P,N 〉R that includes
only entailments computed by GETENTAILMENTS and has a q-partition such that D+(Q) = Y .

Second, assume that CQ2 is violated, i.e. D+(Q) = ∅. If GETCOMMONENTAILMENTS with argu-
ment S returned Q 6= ∅, then D+(Q) ⊇ S ⊃ ∅ would hold. Thus, Q = ∅, i.e. CQ1 is violated. So, as
shown before, this leads to a contradiction.

In case any of CQ1 or CQ2 is violated, we already derived a contradiction. So, we make the assump-
tion that CQ1 and CQ2 are met. So, finally, let us assume that CQ3 is violated, i.e. that D−(Q) = ∅.
That is, if Q (which must be a non-empty set by CQ1) denotes all common entailments (computable with
GETENTAILMENTS) ofK∗r forDr ∈ Y , thenK∗i ∪Q does not violate any x ∈ R∪N for anyDi ∈ D\S.
Consequently, for all diagnoses Di in D we have that K∗i ∪ Q does not violate any x ∈ R ∪ N . But,
as there is, by precondition, a query with D+ = Y , this query must be a subset of all possible common
entailments (computable with GETENTAILMENTS) of KBs K∗i for diagnoses in Y , i.e. this query must be
a subset of Q. But, by monotonicity of L, no K∗i ∪Q′ for a subset Q′ of Q can violate x ∈ R ∪ N if Q
does not. Again, we have a contradiction to the precondition as above.

(b): Here, a query Q is found with D+(Q) 6= Y and D−(Q) 6= ∅. Since Q is a query, Q 6= ∅ must
hold. Since the seed S = Y , this means that Q is the set of all common entailments (computable with
GETENTAILMENTS) of K∗i for Di ∈ Y , i.e. D+(Q) ⊇ Y . By D+(Q) 6= Y , we conclude that D+(Q) ⊃
Y must be true. The only way of achieving a smaller set D+(Q), namely D+(Q) = Y , is to add some
formulas toQ as makingQ smaller can only increase D+(Q). This holds because postulating that, instead
of Q, only a subset Q′ of Q must be entailed by K∗i , can cause a new KB K∗j for diagnosis Dj /∈ D+(Q)
to entail Q′. However, as Q is the set of all entailments computable with GETENTAILMENTS of KBs
K∗i for Di ∈ Y , a superset Q′′ of Q computed by GETENTAILMENTS with D+(Q′′) = Y can never be
obtained. Therefore, we have a contradiction to the precondition.

We have now proven the following: If there exists a q-partition as described in the proposition, then
this q-partition is found in the iteration where the seed S = Y .

Remark 8.2 Regarding Proposition 8.4, note the following:

(a) In fact, as one and the same q-partition must occur at most once in QP, GETPOOLOFQUERIES must
only keep assigning diagnoses in D \ S to the respective sets of the q-partition as long as D+ = S.
Because for D+ = Z ⊃ S, we know to find a query (if one exists) for the seed S = Z.

110 CHAPTER 8. QUERY GENERATION

(b) A statement equivalent to the proposition is: If there is no query (including only entailments com-
puted by the GETENTAILMENTS function) with D+ = Y found for seed S = Y , then such a query
and q-partition, respectively, does not exist.

The following proposition states that if a q-partition with one and the same set D+ is found twice
during the execution of GETPOOLOFQUERIES, then the queries for both q-partitions and thus both q-
partitions must be equal. That is, for one set D+, there is at most one tuple in QP.

Proposition 8.5. Let Qi be a query with D+(Qi) = Y in the set QP returned by GETPOOLOFQUERIES
and found for seed Si = Y and let Qj be a query with D+(Qj) = Y in the set QP returned by
GETPOOLOFQUERIES and found for some seed Sj ⊂ Y . Then Qi = Qj .

Proof. Let Q′i, Q
′
j be the queries stored in the variable Q in line 18 for seeds Si and Sj , respectively; i.e.

the supersets of the queries Qi, Qj before the minimization function MINQ is called for each of them.
Q′j ⊆ Q′i holds by the fact that Q′i is the set of all common entailments computable with GETENTAIL-
MENTS of K∗r for Dr ∈ Y and by the fact that Q′j must be a set of common entailments computed by
GETENTAILMENTS of exactly these KBs, because of D+(Q′j) = Y and Definition 7.2. Q′j ⊇ Q′i holds
by the fact thatQ′j is computed as intersection of EDr

whereDr ∈ Sj andQ′i is computed as intersection
of EDs

where Ds ∈ Si ⊃ Sj . Thus, we can conclude that Q′i = Q′j .
As Q′i = Q′j , also P(Q′i) = P(Q′j) must hold for the q-partitions by Proposition 7.2. That the mini-

mized versions Qi, Qj of Q′i, Q
′
j output by MINQ are equal, follows from the determinism of the MINQ

function, wherefore equal inputs, i.e. (∅, Q′i, ∅,P(Q′i), 〈K,B,P ,N 〉R) = (∅, Q′j , ∅,P(Q′j), 〈K,B,P ,
N 〉R), must yield equal outputs.

Remark 8.3 Proposition 8.5 hints at a possible improvement of Algorithm 4, namely to check in line 6
whether the seed S already occurs as a set D+ in some tuple in QP and only continue the execution for
S if this does not hold (not shown in Algorithm 4). In this vein, time and reasoning costs (line 14) can be
saved.

Another improvement regarding line 6 is to delete all remaining seeds S′ with the property S′ ⊃ S if
Q in line 8 is the empty set (not shown in Algorithm 4). Namely, all seeds S′ must also lead to Q = ∅
since the intersection of ED for D ∈ S already returned ∅ wherefore the intersection of ED for D ∈ S′

must also return ∅.

By now, we know from Proposition 8.5 that, given a query with D+ exists, one and only one q-
partition with D+ will be added to QP, but which one?

W.r.t. one and the same set D+, queries with a set D− with higher cardinality are preferable over
others as the cardinality of D0 should be minimized (cf. Chapter 7). So, preferable queries among those
with equal set D+ are those for which D− is a set-maximal set. Exactly such a query is added to QP for
each D+ for which a query exists, as the following proposition shows.

Proposition 8.6. If the set QP returned by GETPOOLOFQUERIES comprises a query Q with D+(Q) =
Y , then Q is a query with minimal |D0(Q)| among all queries Q′ with D+(Q′) = Y computable with
the function GETENTAILMENTS.

Proof. Assume that GETPOOLOFQUERIES finds a query Q with D+(Q) = Y and |D0(Q)| = k and
assume there is a query Q′ (consisting only of entailments computed by function GETENTAILMENTS)
with D+(Q′) = Y and with |D0(Q′)| < k. This means that |D−(Q)| < |D−(Q′)|. However, as Q is
computed for seed S = Y , Q is a maximal set of entailments computable with GETENTAILMENTS of K∗i
for Di ∈ Y . Because Q′ is also a common entailment of K∗i for Di ∈ Y , we have that Q′ ⊆ Q must
be true. Since the fact that K∗i ∪ Q does not violate any x ∈ R ∪ N , i.e. the fact that Di /∈ D−(Q),
implies by monotonicity of L that K∗i ∪Q′ for the subset Q′ of Q cannot violate any x ∈ R ∪ N either,
i.e. Di /∈ D−(Q′), we conclude that |D−(Q′)| ≤ |D−(Q)| must hold. This is a contradiction.

8.3. QUERY MINIMIZATION 111

8.3 Minimization of Queries
MINQ. The minimization of the query Q by MINQ (see Algorithm 4) while preserving the q-partition
aims at simplifying the job of the answering user who only needs to go through a smaller set of logical
formulas Qmin in order to come up with an answer to the query. Since the q-partition reflects the proper-
ties of a query w.r.t. the invalidation of (leading) diagnoses and two queries have equal such properties,
then of course the one that is a subset of the other should be asked.

The concept of the function MINQ is similar to the one of QX (Algorithm 1). Like QX, MINQ carries
out a divide-and-conquer strategy to find a set-minimal set with a monotonic property. In this case, the
monotonic property is not the invalidity of a subset of the KB w.r.t. a DPI (as per Definition 3.3) as it is
for the computation of minimal conflict sets using QX, but the property of some Qmin ⊂ Q having the
same q-partition as Q. So, the crucial difference between QX and MINQ is the function that checks this
monotonic property. For MINQ, this function – that checks a subset of a query for constant q-partition –
is ISQPARTCONST.

MINQ – Input Parameters. MINQ gets five parameters as input. The first three, namelyX,Q andQB,
are relevant for the divide-and-conquer execution, whereas the last two, namely the original q-partition〈
D+,D−,D0

〉
of the query (i.e. the parameter Q) that should be minimized, and the DPI 〈K,B,P ,N 〉R

are both needed as an input to the function ISQPARTCONST. Besides the latter two, another argument
QB is passed to this function where QB is a subset of the original query Q. ISQPARTCONST then
checks whether the q-partition for the (potential) query QB is equal to the q-partition

〈
D+,D−,D0

〉
of the original query given as argument. The DPI is required as the parameters K,B,P ,N and R are
necessary for these checks.

MINQ – Testing Sub-Queries for Constant Q-Partition. In particular, ISQPARTCONST tests for each
Dr ∈ D− whether K∗r ∪QB is valid (w.r.t. 〈·, ∅, ∅, N〉R). If so, this means that Dr /∈ D−(QB) and thus
that the q-partition of QB is different to the one of Q wherefore false is immediately returned. If true
for all Dr ∈ D−, it is tested for Dr ∈ D0 whether K∗r |= QB. If so, this means that Dr /∈ D0(QB) and
thus that the q-partition of QB is different to the one of Q wherefore false is immediately returned. If
false is not returned for any Dr ∈ D− or Dr ∈ D0, then the conclusion is that QB is a query w.r.t. to D
and 〈K,B,P ,N 〉R and has the same q-partition as Q wherefore the function returns true .

Note that, instead of calling a reasoner to answer whether K∗r |= QB, the set of precalculated entail-
ments EDr of K∗r for each Dr ∈ D can be given as an argument to MINQ as well as to ISQPARTCONST
(not shown in Algorithm 4). In this case an equivalent test is QB ⊆ EDr . Such a strategy is particularly
appropriate if reasoning is expensive for the DPI at hand.

Soundness of ISQPARTCONST is proven by the following lemma.

Lemma 8.1. Let 〈K,B,P ,N 〉R be a DPI, D ⊆ mD〈K,B,P,N 〉R , Q ∈ QD,〈K,B,P,N 〉R with q-partition
P(Q) =

〈
D+(Q),D−(Q),D0(Q)

〉
. Then a non-empty set QB ⊂ Q is a query in QD,〈K,B,P,N 〉R with

P(QB) = P(Q) if

1. ∀Dr ∈ D−(Q) : K∗r ∪QB violates some r ∈ R or entails some n ∈ N and

2. ∀Dr ∈ D0(Q) : K∗r 6|= QB.

Proof. Let Q ∈ QD,〈K,B,P,N 〉R and QB be an arbitrary proper subset of Q. If criterion 1) of this lemma
is met, then we know that each diagnosis in D−(Q) is in D−(QB) as well, i.e. (I): D−(QB) ⊇ D−(Q)
holds.

Assume a minimal diagnosis Dr ∈ D0(Q). Then, K∗r ∪ Q does not violate any r ∈ R and does not
entail any n ∈ N andK∗r does not entailQ. This however implies thatK∗r ∪QB cannot violate any r ∈ R

112 CHAPTER 8. QUERY GENERATION

and cannot entail any n ∈ N either by monotonicity of L. But it is possible that K∗r |= QB. So, validity
of criterion 2) of this lemma is sufficient to guarantee that each diagnosis in D0(Q) is in D0(QB) as
well, i.e. (II): D0(QB) ⊇ D0(Q) holds.

As all diagnoses in D+(Q) entail all formulas in Q by Definition 7.2, all diagnoses in D+(Q) must
entailQB as well. Consequently, due to deletion of some formulas fromQ, noDr ∈ D+(Q) can “move”
to any set D−(QB) or D0(QB). That is, (III): D+(QB) ⊇ D+(Q) must hold.

So, the overall conclusion is that, if criterion 1) and 2) are met, then (I), (II) and (III) hold. As-
sume that some ⊇-relation in i ∈ {(I), (II), (III)} is a ⊃-relation. This leads to a violation of some j ∈
{(I), (II), (III)} with j 6= i since

〈
D+(Q),D−(Q),D0(Q)

〉
and

〈
D+(QB),D−(QB),D0(QB)

〉
are

partitions of D. Therefore, all ⊇-relations must be =-relations and we can derive that P(Q) = P(QB).
Moreover, we have that QB must be a query. This is due to the facts that QB is non-empty, Q

is a query and the q-partitions of Q and QB are equal. Therefore, D+(QB) = D+(Q) ≥ 1 and
D−(QB) = D−(Q) ≥ 1 which lets us conclude by Proposition 7.4 that QB is a query.

MINQ – The Divide-and-Conquer Strategy. Intuitively, MINQ partitions the given query Q in two
parts Q1 and Q2 and first analyzes Q2 while Q1 is part of QB (line 34). Note that in each iteration QB
is the subset of Q that is currently assumed to be part of the sought minimized query (i.e. the one query
that will finally be output by MINQ). In other words, analysis of Q2 while Q1 is part of QB means that
all irrelevant formulas in Q2 should be located and removed from Q2 resulting in Qmin

2 ⊆ Q2. That
is, Qmin

2 must include only relevant formulas which means that Qmin
2 along with QB is a query with an

equal q-partition as Q, but the deletion of any further formula from Qmin
2 changes the q-partition.

After the relevant subset Qmin
2 of Q2, i.e. the subset that is part of the minimized query, has been

returned, Q1 is removed from QB, Qmin
2 is added to QB and Q1 is analyzed for a relevant subset that

is part of the minimized query (line 35). This relevant subset, Qmin
1 , together with Qmin

2 , then builds a
set-minimal subset of the input Q that is a query and has a q-partition equal to that of Q. Note that the
argument X of MINQ is the subset of Q that has most recently been added to QB.

For each call in line 34 or line 35, the input Q to MINQ is recursively analyzed until a trivial case
arises, i.e. (a) until Q is identified to be irrelevant for the computed minimized query wherefore ∅ is
returned (lines 27 and 28) or (b) until |Q| = 1 and Q is not irrelevant for the computed minimized query
wherefore Q is returned (lines 29 and 30).

Example 8.6 Let us reconsider the FOL DPI depicted by Table 15.2 on page 270. We recall that sets of
minimal conflict sets and minimal diagnoses w.r.t. this DPI were given by mC〈K,B,P,N 〉R = {C1, C2} =
{〈1, 3, 4〉 , 〈1, 2, 3, 5〉} as well as mD〈K,B,P,N 〉R = {D1,D2,D3,D4} = {[1], [3], [4, 5], [2, 4]}. For this
DPI, a set of minimized queries computed by GETPOOLOFQUERIES is presented by Table 8.3. Note that
these queries have been produced by different GETENTAILMENTS functions (as indicated by the dashed
lines in Table 8.3). That is, Qi for i ∈ {1, . . . , 5} have been produced by the same GETENTAILMENTS
function that is described in Example 8.1. For i ∈ {6, . . . , 9}, Qi has been computed from a GETEN-
TAILMENTS function that outputs only explicit entailments (cf. Definition 8.1) and Q10 from a GETEN-
TAILMENTS function that returns a finite set of entailments where each entailment is some FOL formula.
This could be accomplished, for example, by some resolution-based reasoning procedure [CL73].

It is important to realize that the results regarding Algorithm 4 established so far, most of which
depend on the particular used GETENTAILMENTS function, must only hold within one part of Table 8.3
(where different parts are separated by the dashed lines). For example, for Q2 and Q9 it holds that
D+(Q2) = D+(Q9), but D−(Q2) 6= D−(Q9) and D0(Q2) 6= D0(Q9). By application of one and
the same GETENTAILMENTS function, this case would be prohibited by Proposition 8.5. Furthermore,
by Proposition 8.6, only Q9 would be an element of the query pool QP in this case since D0(Q9) ⊂
D0(Q2).

Moreover, we want to remark that Q7, Q8 and Q9 can be seen as a proof that Q6 is indeed set-

8.4. SOUNDNESS OF QUERY MINIMIZATION 113

minimal. Each Qi, i ∈ {7, 8, 9} is a result of the removal of a single formula from Q6. And, each such
Qi features a q-partition different from the one of Q6. This illustrates quite well the principle of MINQ
which performs tests of exactly this kind to verify minimality of a query or detect formulas that might be
deleted from it under preservation of the q-partition, respectively.

Another essential note is that it is guaranteed that D0(Q6) = ∅. This holds due to the construction
of Q6 as UD \ D4 = {1, 2, 3, 4, 5} \ [2, 4] = {1, 3, 5} (recall that we use squared brackets to denote
diagnoses in spite of the fact that these are sets, cf. Table 2.1). So, Q6 comprises all formulas occurring
in minimal diagnoses except for the ones contained in D4. We have that for any two different minimal
diagnoses Di,Dj w.r.t. one and the same DPI it must be true that Di \ Dj 6= ∅ as well as Dj \ Di 6= ∅ as
otherwise one would be necessarily a subset of the other. From this, we can easily derive that K∗i ∪ Q6

for i ∈ {1, . . . , 3}, i.e. for all minimal diagnoses Di w.r.t. this DPI other than D4 which was used to build
the query Q6, must comprise a conflict set. This must be valid by the minimality of Di and since by Q6

at least one formula of Di is readded to the KB. Note that a similar argumentation was used in the proof
of Proposition 8.3.

i Query Qi D+(Qi) D−(Qi) D0(Qi)

1 {∀Xb(X)→ m3(X)} {D1,D2,D4} {D3} ∅
2 {b(w)} {D3,D4} {D2} {D1}
3 {∀Xm1(X)→ b(X)} {D1,D3,D4} {D2} ∅
4 {m1(w),m2(u)} {D2,D3,D4} {D1} ∅
5 {a(w)} {D2} {D3,D4} {D1}

6 {ax1, ax3, ax5} {D4} {D1,D2,D3} ∅
7 {ax3, ax5} {D1,D4} {D2,D3} ∅
8 {ax1, ax5} {D2,D4} {D1,D3} ∅
9 {ax1, ax3} {D3,D4} {D1,D2} ∅

10
{∀Xm1(X)→ ¬a(X),

{D1} {D2,D3,D4} ∅
∀Xm2(X)→ (∀Y s(X,Y)→ a(Y))}

Table 8.3: Some queries and associated q-partitions for the DPI given by Table 15.2.

8.4 Soundness of Query Minimization
The following lemma shows that the function ISQPARTCONST used by MINQ is indeed a monotonic
function (cf. Definition 4.6), which is a necessary prerequisite for versions of the QX algorithm to work
in a sound way.

Lemma 8.2. Let 〈K,B,P ,N 〉R be a DPI, D ⊆ mD〈K,B,P,N 〉R , Q ∈ QD,〈K,B,P,N 〉R with q-partition
P(Q). Further, let f : 2Q → {0, 1} be a function that maps a subset QB of Q to 1 if QB has q-partition
P(QB) = P(Q), to 0 otherwise. Then, f is a monotonic function (as per Definition 4.6).

Proof. Assume a subset Q′ of Q with f(Q′) = 1, i.e. Q′ has q-partition P(Q′) = P(Q). Let Q′ ⊂
Q′′ ⊆ Q and assume that f(Q′′) = 0, i.e. Q′′ has a q-partition P(Q′′) 6= P(Q).

As shown in the proof of Lemma 8.1, D+(X1) ⊇ D+(X2) holds for any X1 ⊆ X2. Therefore, we
have D+(Q′) ⊇ D+(Q′′) ⊇ D+(Q) and by P(Q′) = P(Q) that D+(Q′) = D+(Q) and thus that all
⊇-relations are =-relations. So, either D−(Q′′) 6= D−(Q) or D0(Q′′) 6= D0(Q) must hold.

First, assume that D−(Q′′) 6= D−(Q). Then, as K∗r ∪ Q′′ ⊂ K∗r ∪ Q and by monotonicity of L,
it can only be the case that for some Dr ∈ D some x ∈ R ∪ N that is violated for K∗r ∪ Q is not

114 CHAPTER 8. QUERY GENERATION

violated for K∗r ∪Q′′. Hence, D−(Q′′) ⊂ D−(Q) must hold. By a similar argumentation – without the
assumption that D−(Q′) 6= D−(Q′′) holds – we have that D−(Q′) ⊆ D−(Q′′) and thus, altogether, that
D−(Q′) ⊂ D−(Q) must be true. Due to P(Q′) = P(Q) we know that D−(Q′) = D−(Q) which is a
contradiction.

Finally, assume that D0(Q′′) 6= D0(Q). Since K∗r ∪ Q does not violate any x ∈ R ∪ N for Dr ∈
D0(Q),K∗r∪Q′′ cannot violate any x ∈ R∪N by monotonicity ofL. As a conclusion, the only possibility
for D0(Q′′) 6= D0(Q) is that K∗r |= Q′′ for some Dr ∈ D0(Q), i.e. that Dr ∈ D+(Q′′) which implies
that D0(Q′′) ⊂ D0(Q). By a similar argumentation – without the assumption that D0(Q′) 6= D0(Q′′)
holds – we have that D0(Q′) ⊆ D0(Q′′) and thus, altogether, that D0(Q′) ⊂ D0(Q) must be true. Due
to P(Q′) = P(Q) we know that D0(Q′) = D0(Q) which is a contradiction.

This completes the proof for monotonicity of the given function f .

Proposition 8.7 (Correctness of MINQ). Given a query Q ∈ QD,〈K,B,P,N 〉R as input, MINQ computes a
subset Qmin ⊆ Q such that P(Qmin) = P(Q) and there is no Q′ ⊂ Qmin such that P(Q′) = P(Q).

Proof. This proposition is a consequence of the correctness of QX shown by Proposition 4.9, of the cor-
rectness of function ISQPARTCONST established by Lemma 8.1 and of the monotonicity of the property
tested by the function ISQPARTCONST guaranteed by Lemma 8.2.

8.5 Complexity of Query Pool Generation
The complexity of query minimization, i.e. one call to MINQ, in terms of calls to the ISQPARTCONST
function is directly obtained from the complexity results for the standard QX algorithm given by Propo-
sition 4.8.

Proposition 8.8 (Complexity of MINQ). Let 〈K,B,P ,N 〉R be a DPI, D ⊆ mD〈K,B,P,N 〉R , Q ∈
QD,〈K,B,P,N 〉R with P(Q) =

〈
D+(Q),D−(Q),D0(Q)

〉
and the function SPLIT (line 31 of Algorithm 4)

be defined as SPLIT(n) = bn2 c where n is a natural number. Then, the worst case number of calls to ISQ-
PARTCONST during one call to MINQ(∅, Q, ∅,P(Q), 〈K,B,P ,N 〉R) is in

O

(
|Qmin| log

|Q|
|Qmin|

)
where Qmin is the output of MINQ(∅, Q, ∅,P(Q), 〈K,B,P ,N 〉R).

For any other definition of the function SPLIT, the worst case number of calls to ISQPARTCONST gets
larger.

The overall complexity of GETPOOLOFQUERIES in terms of calls to functions that call the reasoner,
i.e. functions GETENTAILMENTS, ISKBVALID and ISQPARTCONST, is established by the following
proposition.

Proposition 8.9 (Complexity of GETPOOLOFQUERIES). Let 〈K,B,P ,N 〉R be a DPI, q a natural num-
ber and D ⊆ mD〈K,B,P,N 〉R . Then, the worst case number of calls to functions that call a reasoner
during one call to GETPOOLOFQUERIES(〈K,B,P ,N 〉R,D, q) is in

O

|D|+ ∣∣∣Q(max)
min

∣∣∣ log

∣∣Q(max)
∣∣∣∣∣Q(max)

min

∣∣∣
 2|D|

where

∣∣Q(max)
∣∣ is the maximum size of a query before minimization, i.e. the size of the set of maximum

cardinality that is stored in variable Q in line 19 throughout all iterations, and
∣∣∣Q(max)

min

∣∣∣ is the maximum

8.6. SHORTCOMINGS OF QUERY POOL GENERATION 115

size of a minimized query, i.e. the size of the set of maximum cardinality that is stored in variable Q′ in
line 19 throughout all iterations.

Proof. During the execution of the for-loop over lines 3-5 the function GETENTAILMENTS is called |D|
times. During the execution of the for-loop over lines 6-22 which may be executed at most 2|D|−2 times,
ISKBVALID is called at most |D| − 1 times since |S| ≥ 1 and S ⊂ D and thus |D \ S| ≤ |D| − 1 holds;
furthermore, MINQ may be called once, namely if the condition tested by the if-statement in line 18 is
true. During one execution of MINQ, by Proposition 8.8, at most

|Qmin| log
|Q|
|Qmin|

calls to ISQPARTCONST are made where Qmin is the output of the call to MINQ. So, an upper bound
of the number of calls to ISQPARTCONST performed by one call to MINQ among all calls to MINQ
throughout the execution of GETPOOLOFQUERIES, is∣∣∣Q(max)

min

∣∣∣ log

∣∣Q(max)
∣∣∣∣∣Q(max)

min

∣∣∣
where

∣∣∣Q(max)
min

∣∣∣ is the set of maximum cardinality that is stored in variable Q′ in line 19 throughout all

iterations and
∣∣Q(max)

∣∣ is the set of maximum cardinality that is stored in variableQ in line 19 throughout
all iterations.

So, all in all we know that functions that call a reasoner are invoked at most

|D|+

|D| − 1 +
∣∣∣Q(max)

min

∣∣∣ log

∣∣Q(max)
∣∣∣∣∣Q(max)

min

∣∣∣
 (2|D| − 2)

times during the execution of GETPOOLOFQUERIES. Since|D|+ ∣∣∣Q(max)
min

∣∣∣ log

∣∣Q(max)
∣∣∣∣∣Q(max)

min

∣∣∣
 2|D|

is an upper bound of this number, the proposition holds.

Note that none of the parameters that affect the complexity of the function GETPOOLOFQUERIES
grows with the size of the DPI provided as an input to the interactive KB debugging problem. Merely the
costs for reasoning, where a black-box debugging approach has no influence on, are affected by a higher
complexity or larger size of the input DPI. Moreover, the size of the most relevant parameter influencing
the worst case complexity, namely the exponent |D|, can be specified by the user to any value greater or
equal to 2. In other words, minus reasoning time, the generation of a pool of queries is a fixed parameter
tractable problem [DF95] in the context of interactive KB debugging.

8.6 Shortcomings of Query Pool Generation
First, the exponential time complexity regarding the parameter |D| is a problem arising from the paradigm
of computing an optimal query w.r.t. a certain quantitative measure qsm() such as information gain [SFFR12,
RSFF13] by calculating a (generally exponentially large) pool QP of queries in a first stage, whereupon

116 CHAPTER 8. QUERY GENERATION

qsm(Q) ∈ R is evaluated for Q ∈ QP until the one Q∗ with optimal qsm(Q∗) is found and selected as
the query to be asked to the user.

A key to solving this issue is the use of a different paradigm that does not rely on the computation of
the pool QP. Instead, qualitative measures can be derived from quantitative measures that have been used
in interactive debugging scenarios [SFFR12, RSFF13, SF10]. These qualitative measures provide a way
to estimate the qsm() value of partial q-partitions, i.e. ones where not all leading diagnoses have been
assigned to the respective set in the q-partition yet. That way a direct search for a query with (nearly)
optimal properties is possible. A similar strategy called CKK has been employed in [SFFR12] for the
information gain measure (see Section 9.3). From such a technique we can expect to save a high number
of reasoner calls. Because only a usually small subset of q-partitions included in the pool computed by
GETPOOLOFQUERIES is required to find a query with desirable properties if the search is implemented by
means of a heuristic that involves the exploration of seemingly favorable (potential) queries and (partial)
q-partitions, respectively, first. This is a topic of future work.

Another shortcoming of GETPOOLOFQUERIES is the extensive use of reasoning services which may
be computationally expensive (depending on the given DPI). Instead of computing a set of common
entailments Q of a set of KBs K∗i first and consulting a reasoner to fill up the (q-)partition for Q in order
to test whether Q is a query at all, the idea enabling a significant reduction of reasoner dependence is
to compute some kind of canonical query without a reasoner and use simple set comparisons to decide
whether the associated partition is a q-partition. Guided by qualitative properties mentioned before, a
search for such q-partition with desirable properties can be accomplished without reasoning at all. Also,
a set-minimal version of the optimal canonical query can be computed without reasoning aid. Only for
the optional enrichment of the identified optimal canonical query by additional entailments and for the
subsequent minimization of the enriched query, the reasoner may be employed. This is also a topic of
future work.

Another aspect that can be improved is that only one minimized version of each query is computed
by Algorithm 4. That is, per q-partition P, there might be some set-minimal queries which do not occur
in the output set QP. From the point of view of how well a query might be understood by an interacting
user, of course not all minimized queries can be assumed equally good in general. Hence, in order to
avoid a situation where a potentially best-understood query w.r.t. P is not included in QP, the query
minimization process (see Section 8.3) might be adapted to take into account some information about
faults the interacting user is prone to. This could be exploited to estimate how well this user might be able
to understand and answer a query. For instance, given that the user frequently has problems to apply ∃ in
a correct manner to express what they intend to express, but has never made any mistakes in formulating
implications →, then the query Q1 = {∀X p(X)→ q(X), r(a)} might be better comprehended than
Q2 = {∀X∃Y s(X,Y)}. One way to achieve the finding of a well-understood query for some q-partition
P is to run the query minimization MINQ more than once, each time with a modified input (using a
hitting set tree to accomplish this in a systematic manner – cf. Chapter 4, where an analogue idea is used
to compute different minimal conflict sets w.r.t. a DPI). In this way, different set-minimal queries for P
can be identified and the process can be stopped when a suitable query is found.

8.7 Correctness of Query Pool Generation

The following proposition confirms the correctness of Algorithm 4, i.e. of the function GETPOOLOF-
QUERIES. Roughly, it states that the output of QP of the function is duplicate-free, i.e. no query or
q-partition occurs twice in QP, that QP includes only queries and q-partitions, that tuples in QP are
unique w.r.t. the set D+ of a q-partition and that, given q > |QP|, there is no subset Y of D for which a
q-partition with D+ = Y exists and for which no q-partition with D+ = Y is an element of QP.

8.7. CORRECTNESS OF QUERY POOL GENERATION 117

Proposition 8.10. Let a DPI 〈K,B,P ,N 〉R, D ⊆ mD〈K,B,P,N 〉R such that |D| ≥ 2 and some q ∈
N ∪ {∞} , q ≥ 1 be the inputs to GETPOOLOFQUERIES and let |QPmax| ≥ 0 be the maximum number
of tuples 〈Q,P(Q)〉 that can be computed by GETPOOLOFQUERIES by means of the used GETENTAIL-
MENTS function. If q ≥ |QPmax| (in particular q =∞), then

1. there are no two tuples 〈Q,P(Q)〉 , 〈Q′,P(Q′)〉 in QP such that Q = Q′ or P(Q) = P(Q′), and

2. QP includes a tuple
〈
Q,
〈
D+(Q),D−(Q),D0(Q)

〉〉
only if Q ∈ QD,〈K,B,P,N 〉R , and

3. QP includes at most one tuple where D+(Q) = Y for each Y ⊂ D, and

4. for each Y ⊂ D for which a query Q w.r.t. D and 〈K,B,P ,N 〉R exists such that

(a) Q includes only entailments computed by the used GETENTAILMENTS function and

(b) P(Q) is such that D+(Q) = Y ,

QP includes a tuple 〈Q′,P(Q′)〉 such that D+(Q′) = Y , and

5. QP 6= ∅.

If q < |QPmax|, then QP includes q tuples satisfying (1), (2) and (3).

Proof. Statement (1) is a consequence of Proposition 8.2. Statement (2) is an implication of Proposi-
tion 8.1 and Proposition 8.7. The former says that only sets Q that are actually queries w.r.t. D and
〈K,B,P ,N 〉R can pass line 18. Thus, only queries are passed to MINQ as parameter Q. By the lat-
ter which states that MINQ is correct, i.e. outputs a query if the input is a query, statement (2) follows.
Statement (3) follows from Proposition 8.5. If q ≥ |QPmax|, the truth of statement (4) is witnessed by
Proposition 8.4. Statement (5) is true by lines 23 and 24 and by Proposition 7.5 as well as Corollary 7.4
and the premise that |D| ≥ 2 which guarantee that the function ADDTRIVIALQUERIES always adds at
least |D| ≥ 2 > 0 queries to QP. In case q < |QPmax|, only statements (1), (2) and (3) are satisfied in
general (for the same reasons as given above for the case q ≥ |QPmax|) and QP is returned in line 22
by the definition of |QPmax|. Thence, the condition |QP| = q ≥ 1 tested in line 21 must be valid for
QP.

118 CHAPTER 8. QUERY GENERATION

Algorithm 5 Interactive KB Debugging

Input: a tuple
〈
〈K,B,P ,N 〉R, nmin, nmax, t, pK̃∪K, q, qsm(), σ,mode

〉
consisting of

• an admissible DPI 〈K,B,P ,N 〉R,

• leading diagnoses computation parameters, natural numbers nmin ≥ 2, nmax, t,

• a function pK̃∪K : K̃ ∪ K → (0, 1],

• a parameter q ∈ N ∪ {∞} , q ≥ 1 that determines the size of the computed query pool,

• a function qsm(Q) ∈ R used for query selection that assigns a real number to a query Q to express the
“goodness” of Q,

• a maximum fault tolerance σ ∈ [0, 1] and

• a mode mode ∈ {static, dynamic} that determines the used method for diagnosis computation.

Output: The output depends on mode and σ:

• mode = static: a maximal solution KB w.r.t. the input DPI 〈K,B,P ,N 〉R which is

– an approximation of the solution to Interactive Static KB Debugging (Problem Def. 6.2) if σ > 0.
– the (exact) solution to Interactive Static KB Debugging if σ = 0.

• mode = dynamic: a maximal solution KB w.r.t. the current DPI 〈K,B,P ∪ P ′,N ∪N ′〉R which is

– an approximation of the solution to Interactive Dynamic KB Debugging (Problem Def. 6.1) if σ > 0.
– the (exact) solution to Interactive Dynamic KB Debugging if σ = 0.

(for a more formal and precise characterization of the output see Proposition 9.1 on page 124)

1: P ′,N ′,Ccalc,DX,D×,Dout,D⊃, qData← ∅
2: Qdup, QA← []
3: Q← [∅]
4: answer ← false
5: pK()← GETFORMULAPROBS(K, pK̃∪K()) . application of Formulas 4.2 and 4.7
6: while true do
7: if mode = static then . see Algorithm 7
8: 〈DX,Q,Ccalc,D×〉 ← STATICHS(〈K,B,P ,N 〉R,Q, t, nmin, nmax,

Ccalc,DX,D×, pK(),P ′,N ′)
9: else . see Algorithms 8, 9 and 10

10: 〈DX,Q,Ccalc,D×,D⊃,Qdup〉 ← DYNAMICHS(〈K,B,P ,N 〉R,Q,Qdup, t, nmin, nmax,
Ccalc,DX,D×, pK(),P ′,N ′,D⊃)

11: pD()← GETPROBDIST(DX, pK(), 〈K,B,P ,N 〉R, QA) . see Algorithm 6
12: Dmax ← GETMODE(DX, pD())
13: if pD(Dmax) ≥ 1− σ then . stop criterion
14: return GETSOLKB(Dmax, 〈K,B,P ∪ P ′,N ∪N ′〉R,P ′,mode) . return solution KB
15: else
16: 〈Q,P(Q)〉 ← CALCQUERY(DX, qData, pD(), pK̃∪K(), qsm(),

〈K,B,P ∪ P ′,N ∪N ′〉R, q) . see Algorithm 6
17: answer ← u(Q) . user interaction
18: QA← APPEND(〈Q, answer〉 , QA)
19: Dout ← GETINVALIDDIAGS(P(Q), answer)
20: qData← UPDATEQDATA(Dout,DX, answer)
21: DX ← DX \Dout

22: D× ← D× ∪Dout

23: if answer = true then
24: P ′ ← P ′ ∪ {Q}
25: else
26: N ′ ← N ′ ∪ {Q}

8.7. CORRECTNESS OF QUERY POOL GENERATION 119

Algorithm 6 Interactive KB Debugging (continued)

27: procedure GETPROBDIST(DX, pK(), 〈K,B,P ,N 〉R, QA)
28: P ′′,N ′′ ← ∅
29: pD,prio()← GETPRIODIAGPROBS(DX, pK(), 〈K,B,P ,N 〉R) . application of Formula 4.3
30: for 〈Q, u(Q)〉 ∈ QA do . run through chronologically sorted query-answer pairs
31: if u(Q) = true then
32: for Dr ∈ DX do . function GETENTAILMENTS is defined on page 104
33: EDr ← GETENTAILMENTS(Dr,K,B,P ∪ P ′′) . EDr is a set of entailments of K∗r
34: if Q 6⊆ EDr then . Dr ∈ D0(Q)
35: pD,prio(Dr)← 1

2
pD,prio(Dr)

36: P ′′ ← P ′′ ∪ {Q}
37: else
38: for Dr ∈ DX do . ISKBVALID (see Algorithm 1)
39: if ISKBVALID((K \ Dr) ∪Q, 〈·,B,P ∪ P ′′,N ∪N ′′〉R) then . Dr ∈ D0(Q)
40: pD,prio(Dr)← 1

2
pD,prio(Dr)

41: N ′′ ← N ′′ ∪ {Q}
42: sum←

∑
Dr∈DX

pD,prio(Dr)
43: for Dr ∈ DX do
44: pD,prio(Dr)← 1

sum
pD,prio(Dr) . normalization

45: return pD,prio()

46: procedure CALCQUERY(DX, qData, pD(), pK̃∪K(), qsm(), 〈K,B,P ∪ P ′,N ∪N ′〉R, q)
47: QP← GETPOOLOFQUERIES(〈K,B,P ∪ P ′,N ∪N ′〉R,DX, q) . see Algorithm 4
48: return SELECTBESTQUERY(QP, qData, pD(), pK̃∪K(), qsm()) . see Section 9.3

Chapter 9

An Algorithm for Interactive
Knowledge Base Debugging

In this chapter we will give a description of an algorithm for interactive KB debugging (Algorithm 5)
which implements the entire functionality required by an interactive debugging system. All other algo-
rithms presented so far will be subroutines of Algorithm 5 which are either directly or indirectly called by
it. Before we explain and discuss Algorithm 5 in detail, we give the reader a rough and informal overview
of the algorithm’s input, output and actions in the following section in order to make the details of the
algorithm easier to digest.

Remark 9.1 Note, in the following, when we speak of the input DPI we refer to the DPI 〈K,B,P ,N 〉R
that is provided as an input to Algorithm 5, by the current DPI we mean the DPI 〈K,B,P ∪ P ′,N ∪N ′〉R
where P ′ and N ′, respectively, are all positive and negative test cases added to the input DPI from the start
of the algorithm’s execution until the current point in time. Further on, an intermediate (or previous) DPI
denotes a DPI 〈K,B,P ∪ P ′′,N ∪N ′′〉R which is not the current DPI and where ∅ ⊆ P ′′ ⊆ P ′ and ∅ ⊆
N ′′ ⊆ N ′. Finally, the last-but-one DPI corresponds to an intermediate DPI 〈K,B,P ∪ P ′′,N ∪N ′′〉R
where either |P ′| = |P ′′|+ 1 or |N ′| = |N ′′|+ 1 is true, but not both.

9.1 Interactive Debugging Algorithm: Overview
Input:

An admissible DPI and some meta information where the latter consists of

• fault probabilities of syntactical elements occurring in the KB,

• a minimal and desired number of leading diagnoses,

• a desired maximum reaction time (time between two successive queries presented to the user),

• a maximum fault tolerance (roughly, the probability of being presented a non-desired solution KB
as output),

• a measure for query selection (determines which query is the best query within a given set of
queries),

• a parameter that determines the size of the computed pool of queries in each iteration and

121

122 CHAPTER 9. INTERACTIVE KB DEBUGGING ALGORITHM

• a parameter specifying the way the hitting set tree for computation of leading diagnoses is con-
structed and updated.

Output:
A solution KB such that the diagnosis used to formulate the solution KB has a probability (w.r.t. the
current leading diagnoses) greater than or equal to 1 minus the given maximum fault tolerance.

Procedure:

1. Initialization: Compute the fault probability of each formula in the KB by means of the given fault
probabilities.

2. Leading Diagnoses Computation: Use a hitting set tree constructed and updated in a manner as
specified in the input coupled with QX to calculate a set of leading diagnoses. In that, the cardinal-
ity and computation time of the set of leading diagnoses is determined by the corresponding input
parameters specifying minimal and desired number of leading diagnoses and desired reaction time.

3. Probability Update and Stop Criterion: Use the formula fault probabilities and the new information
obtained by already specified test cases (answered queries) to compute updated (posterior) proba-
bilities of the current leading diagnoses. If one diagnosis probability is greater than or equal to 1
minus the maximum fault tolerance, return the solution KB obtained by deletion of this diagnosis
from the KB and subsequent addition of the union of all positive test cases.

4. Query Generation and Selection: Use the set of leading diagnoses (and possibly their fault prob-
abilities) to generate a pool of queries, the size of which depends on the respective parameter
provided as input. Given the pool of queries, select the best query according to the given query
selection measure.

5. User Interaction and Incorporation of New Information: Ask the user the selected query and add
it to the positive test cases in case of a positive answer and to the negative test cases otherwise.

6. Hitting Set Tree Update: Update the hitting set tree based on the new information given by the clas-
sification of the test case resulting from the query answer. In particular, this involves the deletion
of all those minimal diagnoses that conflict with the new test case.

7. Repeat from Step 2.

9.2 Interactive Debugging Algorithm: Detailed Description
To describe the detailed process of Algorithm 5, we first characterize the input arguments, the output and
the meaning of the variables used and then provide a step-by-step textual description of the actions taken
by the algorithm.

9.2.1 Input Arguments
The input parameters of Algorithm 5 are the following:

• An admissible DPI 〈K,B,P ,N 〉R (cf. Definition 3.6).

• Natural numbers nmin ≥ 2, nmax, t for leading diagnoses calculation (see description in Chapter 7
on page 95).

Remark: The postulation nmin ≥ 2 is necessary in order for the existence of queries w.r.t. any
computed set of leading minimal diagnoses D and 〈K,B,P ,N 〉R to be guaranteed (see Proposi-
tion 7.5).

9.2. DETAILED ALGORITHM DESCRIPTION 123

• A function pK̃∪K : K̃ ∪ K → (0, 1] that assigns a fault probability pK̃∪K(e) to each e ∈ K̃ ∪ K
reflecting the degree of belief that (one occurrence of) a syntactical element e appearing in K is
faulty (see Section 4.6).

Remarks: Forbidding a probability of zero for syntactical elements assures that no formula in K
can have a probability of zero (cf. Remark 4.5).

Recall from Section 4.6.1 that K̃ refers to the signature of K (cf. Chapter 2) and K denotes the set
of all logical connectives occurring inK. From probabilities of logical connectives and elements of
the signature, probabilities of formulas in K and from those in turn probabilities of diagnoses w.r.t.
the DPI can be derived as shown by Formulas 4.2 and 4.3.

Further note that in the description of the algorithms in this section, unlike in Section 4.6, we
use different denotations for probabilities of syntactical elements (pK̃∪K), formulas (pK()) and
diagnoses (pD()) in order to make a clear distinction between these different functions.

• A natural number q ≥ 1 that denotes the number of queries that should be precomputed, i.e.
the preferred size of the query pool QP (see Chapter 8), before the “best” tuple 〈Q∗,P(Q∗)〉 is
selected from QP.

Remark: In general, higher q implies better quality of the selected query in terms of the query
selection measure qsm() (see next bullet point). The chance of locating a good query in a larger set
of queries is higher. On the other hand, higher q involves a worse reaction time, i.e. time between
two successive queries. The more queries are computed, the more time the function GETPOOLOF-
QUERIES consumes.

• A query selection measure qsm() where qsm : QP → R is a function that assigns a real-valued
number qsm(〈Q,P(Q)〉) to each tuple in QP, often called the score of 〈Q,P(Q)〉.
Remark: qsm() defines what is considered the “best” query in the set QP, namely the query Q∗ in
the tuple 〈Q∗,P(Q∗)〉 with best score among all tuples in the pool QP. Diverse measures that can
be used as a qsm() function in this algorithm have been discussed and evaluated within the scope
of interactive KB debugging in literature [SFFR12, RSFF13] (for details see Section 9.3).

• A maximum fault tolerance σ that defines the stop criterion of the algorithm. That is, for a current
set of leading diagnoses, the stop criterion is satisfied iff the most probable leading diagnosis has an
(updated) probability of at least 1−σ (see below for a precise definition of what “updated” means).

Remark: The smaller σ is chosen, the higher is the chance that a desired diagnosis is found. Se-
lecting σ := 0, i.e. admitting zero fault tolerance, is the safest (but also most time-consuming) way
to run a debugging session with Algorithm 5, as in this case the session will stop only after all but
one diagnosis have been invalidated by test cases.

• A mode mode ∈ {static, dynamic} that determines

(i) which type of leading diagnoses are computed, i.e. only minimal diagnoses w.r.t. the input
DPI (static) or minimal diagnoses w.r.t. the current DPI (dynamic),

(ii) the hitting set tree pruning strategy after a query has been answered, i.e. conservative pruning
(static) or invasive pruning (dynamic),

(iii) the space and time complexity of diagnosis computation, i.e. not much affected by the asked
queries (static) – tree is almost monotonically growing, but cannot get larger in size than
the complete non-interactive hitting set tree (the tree produced by Algorithm 2 with input
nmin = ∞) – or significantly influenced by the asked queries (dynamic) – tree may shrink
significantly if new test cases do not introduce “completely new” minimal conflict sets (that

124 CHAPTER 9. INTERACTIVE KB DEBUGGING ALGORITHM

are in no subset-relation with an existing one), or lead to a tree that is significantly larger than
the complete non-interactive hitting set tree if many “completely new” minimal conflict sets
result from the addition of new test cases. For an in-depth discussion and comparison of both
strategies the reader may consult Part III.

9.2.2 Output
The output of Algorithm 5 can be explained as follows by making a distinction between the two modes
of the algorithm specified by input parameter mode:

Proposition 9.1. If mode = static, then Algorithm 5 returns the (exact) solution of the Interactive Static
KB Debugging problem (Problem Definition 6.2) if σ = 0 and an approximate solution of the problem if
σ > 0 where the likeliness of finding the (exact) solution increases with decreasing σ.

More concretely, a maximal solution KB K∗ = (K \ Dmax) ∪ UP w.r.t. the input DPI 〈K,B,P ,N 〉R
is returned such that

1. Dmax ∈ D (Dmax is an element of the current set of leading diagnoses)

2. Dmax = arg maxD∈D pD(D) (Dmax is the a-posteriori most probable leading diagnosis)

3. pD(Dmax) ≥ 1− σ (the a-posteriori probability of Dmax exceeds the predefined threshold)

4. D ⊆mD〈K,B,P,N 〉R∩mD〈K,B,P∪P ′,N∪N ′〉R comprises the |D|most probable minimal diagnoses
w.r.t. 〈K,B,P ,N 〉R as per the diagnosis probability measure pD,prio()
(the set of leading diagnoses corresponds to the a-priori most probable minimal diagnoses w.r.t.
the input DPI that satisfy all specified test cases),

5. a-priori probability measure pD,prio() is computed from pK̃∪K() as per

(a) Formula 4.2 (computation of formula fault probabilities)

(b) Formula 4.7 (adaptation of formula fault probabilities)

(c) Formula 4.3 (computation of diagnoses probabilities from formula fault probabilities)

6. the a-posteriori probability measure pD() is computed from pD,prio() as per Bayes’ Theorem (For-
mula 4.5, for details see below) taking into account the new information given by the set of all
answered queries so far, i.e. the collected sets of positive (P ′) and negative (N ′) test cases.

If mode = dynamic, then Algorithm 5 returns the (exact) solution of the Interactive Dynamic KB De-
bugging problem (Problem Definition 6.1) if σ = 0 and an approximate solution of the problem if σ > 0
where the likeliness of finding the (exact) solution increases with decreasing σ.

More concretely, a maximal solution KBK∗ = (K\Dmax)∪UP∪P ′ w.r.t. the current DPI 〈K,B,P ∪
P ′,N ∪N ′〉R is returned such that

1. Dmax ∈ D (Dmax is an element of the current set of leading diagnoses)

2. Dmax = arg maxD∈D pD(D) (Dmax is the a-posteriori most probable leading diagnosis)

3. pD(Dmax) ≥ 1− σ (the a-posteriori probability of Dmax exceeds the predefined threshold)

4. D ⊆mD〈K,B,P∪P ′,N∪N ′〉R comprises the |D| most probable minimal diagnoses w.r.t. 〈K,B,P ∪
P ′,N ∪N ′〉R as per the diagnosis probability measure pD,prio()
(the set of leading diagnoses corresponds to the a-priori most probable minimal diagnoses w.r.t.
the current DPI),

9.2. DETAILED ALGORITHM DESCRIPTION 125

5. the a-priori probability measure pD,prio() is computed from pK̃∪K() as per

(a) Formula 4.2 (computation of formula fault probabilities)

(b) Formula 4.7 (adaptation of formula fault probabilities)

(c) Formula 4.3 (computation of diagnoses probabilities from formula fault probabilities)

6. the a-posteriori probability measure pD() is computed from pD,prio() as per Bayes’ Theorem (For-
mula 4.5, for details see below) taking into account the new information given by the set of all
answered queries so far, i.e. the collected sets of positive (P ′) and negative (N ′) test cases.

Remark 9.2 We still need to explain what we mean by “approximate solution” of the Interactive Static
(Dynamic) KB Debugging problem. Roughly, an approximate solution is one constructed from a di-
agnosis which is not the only remaining minimal diagnosis. More precisely, an approximate solution
of

• the Interactive Static KB Debugging problem is a maximal solution KB (K \ D) ∪ UP such that

– D is a minimal diagnosis w.r.t. the input DPI and w.r.t. the current DPI and

– there is some D′ 6= D which is a minimal diagnosis w.r.t. the input DPI and w.r.t. the current
DPI

• the Interactive Dynamic KB Debugging problem is a maximal solution KB (K \D)∪UP∪P ′ such
that

– D is a minimal diagnosis w.r.t. the current DPI and

– there is some D′ 6= D which is a minimal diagnosis w.r.t. the current DPI

where the input DPI is given by 〈K,B,P ,N 〉R and the currect DPI by 〈K,B,P ∪ P ′,N ∪N ′〉R.
So, as long as not all but one diagnosis candidate that enables the formulation of a solution KB has

been ruled out by the classification of test cases, we speak of an approximate solution. Now, the lower a
value for σ is predefined, the longer Algorithm 5 will usually need to iterate and the more test cases will
usually need to be specified until one diagnosis has a probability greater than or equal to 1− σ. Thence,
at the time a diagnosis exceeds the probability 1 − σ there will be usually fewer minimal diagnoses left
than in case of the selection a higher value for σ. Therefore, the likeliness of picking the (exact) solution
will usually be the higher, the lower σ is.

Remark 9.3 Note that granting a maximum absolute fault tolerance σ that is independent of a set
of leading diagnoses is generally computationally infeasible due to the high complexity of diagnosis
computation (see Chapter 1). Since, for an absolute fault tolerance to hold, all minimal diagnoses w.r.t.
the current DPI have to be computed in order to determine their probability and to decide whether the
most probable diagnosis has a probability greater than or equal to 1− σ.

In fact, the fault tolerance used by Algorithm 5 which is relative to the set of leading diagnoses, i.e.
the (a-priori) most probable minimal diagnoses D w.r.t. a DPI can be interpreted as follows. Under the
assumption that the true diagnosis Dt is included in D, the chance that the most probable minimal di-
agnosis Dmax ∈ D which satisfies the stop criterion is not equal to Dt is smaller than the predefined
threshold σ (cf. Section 4.6). Thus, under this assumption, the (a-posteriori) probability of being pre-
sented a non-desired solution KB as output of Algorithm 5 is smaller than σ.

The a-priori diagnoses probability measure pD,prio() refers to the one that is computed directly from
the fault information provided as an input to Algorithm 5 whereas the a-posteriori diagnoses probability
measure pD() is the one obtained from pD,prio() after incorporating the information given by the new

126 CHAPTER 9. INTERACTIVE KB DEBUGGING ALGORITHM

test cases specified so far during the debugging session. So, pD,prio() and pD() might differ in terms
of the probability order of diagnoses. Incorporation of updated probabilities directly into the hitting
set tree algorithms to be used for the determination of leading diagnoses in the order prescribed by an
updated probability measure is only possible if there is an additional update operator (besides Bayes’
Theorem for adapting diagnoses probabilities) that can be applied to formula probabilities. For, the latter
are exploited in the hitting set tree to assign probability weights to paths that are not yet diagnoses (cf.
pnodes() specified by Definition 4.9 and the discussion of Formula 4.6) in order to guide the search
for minimal diagnoses in best-first order. Updated diagnosis probabilities are not helpful at all for this
purpose. Devising a reasonable mechanism of updating formula probabilities seems to be hard mostly
due to the lack of suitable data that might be collected during the debugging session to accomplish that.
What would be imaginable during the debugging session is to try to learn something about the fault
probability of syntactical elements by examining the positive (all formulas are definitely correct) and
singleton negative (the single formula is definitely incorrect) test cases. However, a drawback of such a
strategy comes into effect when only syntactically very simple queries are used which is, for instance, the
case in Example 8.1 (see the definition of the GETENTAILMENTS function there). From such queries not
many useful insights concerning faulty syntactical elements might be gained. On the other hand, such
queries are absolutely desirable from the point of view of how well a user might comprehend the formulas
asked by the system. Hence, these two aspects seem to contradict each other. Still, it is a topic for future
research to attempt to elaborate a solution for that issue.

A way to achieve that pD() coincides with pD,prio(), at least in case mode = static, is to exclude
queries Q with D0(Q) 6= ∅ (see Remark 9.8). How this might be accomplished is stated by Proposi-
tion 8.3. Please notice that ignorance of queries with non-empty D0 does not implicate any disadvan-
tages for interactive debugging. On the contrary, it is even a desirable feature of a debugger and brings
along higher computational efficacy of query generation and stronger test cases from the logical point of
view (cf. Section 8.2). For the scenario mode = dynamic, it is not possible in general to bypass the
probability update by means of such queries (see Remark 9.8).

9.2.3 Variables
The variables used by Algorithm 5 that are not input arguments to the algorithm are the following:

• P ′,N ′ are the sets of positive and negative test cases, respectively, collected during the execution
of Algorithm 5 so far. That is, P ′ stores all positively answered queries, whereas N ′ stores all
negatively answered ones.

• Ccalc is the set of all conflict sets computed by QX during the execution of Algorithm 5 so far.

Remark: In case of static debugging (mode = static), Ccalc includes exclusively minimal conflict
sets w.r.t. the input DPI, whereas, in case of dynamic debugging (mode = dynamic), Ccalc may
comprise minimal conflict sets w.r.t. the current or any intermediate DPI.

• DX is the set of leading diagnoses returned by a call of STATICHS in case of static debugging
(mode = static) and by a call of DYNAMICHS in case of dynamic debugging (mode = dynamic).

Remarks: In case of dynamic debugging, DX ⊆mD〈K,B,P∪P ′,N∪N ′〉R is the set of most probable
minimal diagnoses w.r.t. the current DPI 〈K,B,P ∪P ′,N ∪N ′〉R as per the diagnosis probability
measure pD,prio() computed from pK̃∪K() by Formulas 4.2, 4.7, 4.3 and 4.4 (cf. Sections 4.6 and
9.2.2).

In case of static debugging, DX ⊆mD〈K,B,P,N 〉R ∩mD〈K,B,P∪P ′,N∪N ′〉R , i.e. DX includes only
diagnoses that are minimal diagnoses w.r.t. the input DPI 〈K,B,P ,N 〉R as well as w.r.t. the current
DPI 〈K,B,P∪P ′,N ∪N ′〉R. Moreover, DX comprises the most probable minimal diagnoses w.r.t.

9.2. DETAILED ALGORITHM DESCRIPTION 127

the input DPI according to the diagnosis probability measure pD,prio() computed from pK̃∪K() by
Formulas 4.2, 4.7, 4.3 and 4.4 (cf. Sections 4.6 and 9.2.2).

• D× stores all minimal diagnoses w.r.t. the input DPI that have been invalidated by one of the
collected positive and negative test cases P ′ and N ′, respectively (mode = static). D× stores the
minimal diagnoses w.r.t. the last-but-one DPI that have been invalidated by the most recently added
test case (mode = dynamic).

• Dout is the subset of the set of current leading diagnoses DX that has been invalidated by the most
recently added test case.

• D⊃ stores all diagnoses that are non-minimal w.r.t. the current DPI, i.e. for each diagnosis nd ∈ D⊃
there is some nd′ ∈ DX such that nd ⊃ nd′ (mode = dynamic).

Remark: D⊃ is solely needed for dynamic and not for static debugging as the latter does not need
to store non-minimal diagnoses (cf. rule 4 of Definition 4.8 on page 59). Reason for this is the
fact that only minimal diagnoses w.r.t. the input DPI are searched for. On the other hand, in case
of dynamic debugging, non-minimal diagnoses might become minimal ones after some new test
cases are specified since minimal diagnoses w.r.t. the (changing) current DPI are considered.

• qData is an informal variable that comprehends any kind of data that might be taken into account
by the query selection measure qsm() and that might need to be adapted after a query has been
answered (and diagnoses have been invalidated) in order to take the obtained new information into
account. One can imagine qData as a log specific to the particular function qsm() that is used
which records data of prior (query answering) iterations executed by the algorithm such as certain
performance measures. An example of a qsm() strategy using one such metric, namely the ratio of
leading diagnoses invalidated by a test case, can be found in [RSFF13].

• QA := [〈Q, u(Q)〉]Q∈P ′∪N ′ where u(Q) ∈ {true, false} is the chronologically ordered list of
queries and user answers collected so far during the execution of Algorithm 5.

• Q is the current queue of open nodes in the hitting set tree maintained by Algorithm 5.

• The list Qdup roughly stores all duplicate nodes (that is, nodes for each of which there is a node
in the hitting set tree that corresponds to an equal set of edge labels) computed so far during the
execution of Algorithm 5.

Remark: The list Qdup is only relevant in case mode = dynamic and not needed if mode =
static. The purpose of this set is to enable the “replacement” of pruned nodes which is necessary
to guarantee the completeness of DYNAMICHS in terms of not missing any minimal diagnoses (for
a detailed explanation, see Chapter 12).

9.2.4 Algorithm Walkthrough
Initialization. In the first 4 lines, variable declarations take place. First, all variables that store sets
of conflict sets, diagnoses or test cases, and qData are initialized to the empty set. Further on, Qdup

and QA are initialized to an empty list. Finally, the queue Q of open nodes used for the hitting set tree
construction by STATICHS (mode = static) or DYNAMICHS (mode = dynamic), respectively, is set to
[∅] since it initially includes only a non-labeled root node.

Remark 9.4 The non-labeled root node is denoted by ∅ since nodes in STATICHS are associated with
the set of edge labels along the path in the hitting set tree from the root node to this node (cf. Chapters 4
and 11). Hence, the root node itself corresponds to the empty path which includes no edges.

128 CHAPTER 9. INTERACTIVE KB DEBUGGING ALGORITHM

Notice that in case of DYNAMICHS, nodes will be (ordered) lists instead of (non-ordered) sets like
in STATICHS (cf. Chapter 12). That is, to be precise, the unlabeled root node in this case corresponds to
the empty list []. For the ease of representation of Algorithm 5, only one set Q is initialized to be used
with either STATICHS or DYNAMICHS. Thence, by abuse of notation, we associate ∅ in this case with the
empty list [].

Computing Fault Probabilities of Formulas. Then, GETFORMULAPROBS is called in line 5 with the
KB K and the function pK̃∪K : K̃ ∪ K → (0, 1] as inputs. The function first applies Formula 4.2 to
compute probabilities for each formula in K, then applies Formula 4.7 to these probabilities leading to
the output pK : K → (0, 0.5), a function that assigns a value pK(ax) ∈ (0, 0.5) to each ax ∈ K.

Computing Leading Diagnoses. At this point, all input arguments required by for the hitting set tree
construction are instantiated. So, the algorithm enters the while loop in line 6. As a first step within the
loop, either STATICHS, if mode = static, or DYNAMICHS, otherwise, is called in order to obtain a tuple
including a set of leading diagnoses along with variables that store the “state” of the (partial) hitting set
tree constructed so far and facilitate the reuse of this tree in the next iteration.

In concrete terms, STATICHS accepts the arguments 〈K,B,P ,N 〉R, Q, t, nmin, nmax, Ccalc, DX,
D×, pK(), P ′ and N ′ and returns a tuple 〈D,Q,Ccalc,D×〉 the elements of which are defined as follows:

• D is the current set of leading diagnoses such that

(a) D ⊆mD〈K,B,P,N 〉R ∩mD〈K,B,P∪P ′,N∪N ′〉R is the set of most probable minimal diagnoses
w.r.t. 〈K,B,P ,N 〉R that satisfy all test cases P ′ and N ′ such that

(i) nmin ≤ |D| ≤ nmax and
(ii) D ⊃ DX,

if such a set D exists; or

(b) D is equal to the set of all minimal diagnoses mD〈K,B,P,N 〉R ∩mD〈K,B,P∪P ′,N∪N ′〉R , oth-
erwise;

where “most-probable” refers to the diagnosis probability measure pD,prio() obtained from pK()
by application of Formulas 4.3 and 4.4.

• Q is the current queue of open nodes of the hitting set tree.

• Ccalc ⊆ mC〈K,B,P,N 〉R is the set of all computed minimal conflict sets w.r.t. the input DPI
throughout all calls of STATICHS during the execution of Algorithm 5 so far.

• D× comprises all computed minimal diagnoses throughout all calls of STATICHS during the exe-
cution of Algorithm 5 so far where each D ∈ D× has been invalidated by some test case in P ′ or
N ′.

Similarly, DYNAMICHS accepts the arguments 〈K,B,P ,N 〉R, Q, Qdup, t, nmin, nmax, Ccalc, DX,
D×, pK(), P ′, N ′ and D⊃ and returns a tuple 〈D,Q,Ccalc,D×,D⊃,Qdup〉 the elements of which are
defined as follows:

• D is the current set of leading diagnoses such that

(a) D ⊆ mD〈K,B,P∪P ′,N∪N ′〉R is the set of most probable minimal diagnoses w.r.t. 〈K,B,P ∪
P ′,N ∪N ′〉R such that

(i) nmin ≤ |D| ≤ nmax and

9.2. DETAILED ALGORITHM DESCRIPTION 129

(ii) D \DX 6= ∅,
if such a set D exists, or

(b) D is equal to the set of all minimal diagnoses mD〈K,B,P∪P ′,N∪N ′〉R , otherwise,

where “most-probable” refers to the diagnosis probability measure pD,prio() obtained from pK()
by application of Formulas 4.3 and 4.4.

• Q is the current queue of open (non-labeled) nodes of the hitting set tree,

• Ccalc is a set of conflict sets w.r.t. the current DPI 〈K,B,P ∪ P ′,N ∪N ′〉R,

• D× = ∅,

• D⊃ is the set of all processed nodes so far throughout the execution of Algorithm 5 that are non-
minimal diagnoses w.r.t. the current DPI 〈K,B,P ∪ P ′,N ∪N ′〉R and

• Qdup includes all duplicate nodes found so far throughout the execution of Algorithm 5 (for a
detailed explanation see Chapter 12 and Algorithm 8).

Remark 9.5 It is very important to notice that the function pnodes() for p() := pK() as specified by
Definition 4.9 on page 73 imposes the same order on a set of minimal diagnoses as the a-priori probability
measure pD,prio(). That is pnodes(D) = c · pD,prio(D) for all minimal diagnoses D w.r.t. a DPI where
c is a constant (which is the same for all diagnoses D). The difference between both functions is that
pnodes() is defined for allX ⊆ K whereas pD,prio() is only defined for (leading) minimal diagnosesD ⊆
K. Further on pD,prio() is normalized whereas pnodes() is not which accounts for the (normalization)
constant c. The function pnodes() is essential for the best-first construction of the hitting set tree in
STATICHS and DYNAMICHS since it allows for the assignment of a “probability” to non-diagnoses (cf.
the discussion of Formula 4.6 on page 73). Since the input argument p() (which is the same for all calls) to
STATICHS as well as DYNAMICHS is equal to pK() by lines 8 and 10 in Algorithm 5, the set D returned
by STATICHS (DYNAMICHS) is also the set of most probable minimal diagnoses w.r.t. 〈K,B,P ,N 〉R
(〈K,B,P ∪ P ′,N ∪N ′〉R) as per the function pnodes() (cf. Proposition 11.1 and Corollary 12.8).

Remark 9.6 Notice that the return parameter that is relevant for the main purpose of Algorithm 5,
namely to compute a query and thereby obtain a new test case classified by the user, is solely the set of
leading diagnoses D. The other return parameters serve as a means to store the state of the hitting set
tree that is gradually built up by successive calls of STATICHS (if mode = static) and DYNAMICHS (if
mode = dynamic), respectively. Whereas Q and Ccalc (and D⊃ and Qdup in case of DYNAMICHS) are
never modified until the next call to STATICHS or DYNAMICHS, the sets DX and D× are only changed
once, after the subset of invalidated leading diagnoses Dout is known, in lines 21 and 22.

At this moment, we do not go into detail regarding the way how leading diagnoses are computed by
STATICHS and DYNAMICHS. We simply suppose that both functions act in a manner that the outputs
just specified are returned for the given inputs. An in-depth delineation of both functions will be given in
Chapters 11 and 12 in Part III. Further note that the return parameter D is stored in variable DX from
line 10 on.

Computing a Probability Distribution of Leading Diagnoses. After the set of leading diagnoses DX

has been computed, the variables DX, pK(), 〈K,B,P ,N 〉R andQA are used as arguments to the function
GETPROBDIST (see Algorithm 6) which computes a probability distribution of the leading diagnoses, i.e.
a probability measure pD() for the probability space with sample space Ω = DX (cf. Section 4.6). As
a first action to achieve this, the (a-priori) probabilities pD,prio(D) for D ∈ DX are computed from

130 CHAPTER 9. INTERACTIVE KB DEBUGGING ALGORITHM

the (a-priori) probabilities pK(ax) for formulas ax ∈ K as per Formula 4.3 (GETPRIODIAGPROBS in
line 29). Application of Formula 4.4 is not necessary at this point as probabilities are anyhow normalized
at the end of GETPROBDIST (line 44). Notice that the function pK() remains constant, i.e. unmodified,
throughout the entire execution of Algorithm 5.

Now, since a-priori diagnosis probabilities assigned by pD,prio() directly rely upon pK() which in turn
is computed directly from the initially given fault probabilities pK̃∪K(), the probability measure pD,prio()
is adapted to yield a-posteriori diagnosis probabilities pD() in order to reflect the new evidence provided
by the collected test cases P ′ and N ′.

The a-posteriori probability of a current leading diagnosis D in DX is pD(D |QA) and can be com-
puted by means of Bayes’ Theorem (Formula 4.5) from pD,prio() as follows.

pD(D |QA) =
pD,prio(QA | D) pD,prio(D)

pD,prio(QA)

where QA is the chronologically ordered list of queries and user answers collected so far during the
execution of Algorithm 5 (see page 127). We point out that pD,prio(QA) is only a normalization factor
that is equal for each diagnosis and thus does not need to be explicitly computed. The crucial factor is

pD,prio(QA | D) = pD,prio(∀ 〈Q, u(Q)〉 ∈ QA : Q = u(Q) | D)

which describes the probability of getting exactly the answer u(Q) for each query Q ∈ P ′∪N ′ under the
assumption that D corresponds to the true diagnosis Dt, i.e. Dt = D. In other words, pD,prio(QA | D)
is the probability of QA under the assumption that the user answers in a way that u(Q) = true if
D ∈ D+(Q) and u(Q) = false if D ∈ D−(Q).

For a single query Qi, the probability pD,prio(Qi = u(Qi) | D) is defined as (cf. [dKW87])

pD,prio(Qi = u(Qi) | D) =

1, if D ∈ D+(Qi)

0, if D ∈ D−(Qi)
1
2 , if D ∈ D0(Qi)

(9.1)

for u(Qi) = true and

pD,prio(Qi = u(Qi) | D) =

1, if D ∈ D−(Qi)

0, if D ∈ D+(Qi)
1
2 , if D ∈ D0(Qi)

(9.2)

for u(Qi) = false where D+(Qi), D−(Qi) and D0(Qi) are computed w.r.t. the DPI 〈K, B,P ∪P ′′,N ∪
N ′′〉 where P ′′ and N ′′, respectively, include all test cases collected prior to Qi, i.e. P ′′ ∪ N ′′ =
{Q1, . . . , Qi−1} if queries are numbered chronologically. That is, if D predicted the answer u(Qi) to
Qi given by the user, the probability is 1, zero if D predicted the converse answer ¬u(Qi) and 1

2 if D did
not predict any answer to Qi.

So, aside from the normalization factor (see above), pD,prio(Qi = u(Qi) | D) is the factor by which
the a-priori probability pD,prio(D) must be multiplied to obtain the a-posteriori probability pD(D) of a
diagnosis D after a single query Qi has been answered and added as a test case to the DPI.

The intuitive explanation for the update by this factor is that ifD predicted (at least) one answer u(Q)
conversely as given by the user, then D is a-posteriori impossible since it has already been invalidated by
the addition of test case Q. In case a diagnosis has never predicted the wrong answer, but did not predict
any answer for many queries so far, then it is a-posteriori more unlikely than a diagnosis that did predict
a correct answer more often. That is, our a-posteriori degree of belief that D is the correct diagnosis is

9.2. DETAILED ALGORITHM DESCRIPTION 131

the higher, the more often D had predicted answers to queries that were later actually given by the user
(cf. Section 7.4 for an explanation what we mean by “predict”).

The value of pD,prio(Qi = u(Qi) | D) can be computed by use of QA and the q-partitions P(Q1),
. . . , P(Qi−1) of the current set of leading diagnoses DX (for which a-posteriori probabilities are to
be computed) for all queries Q1, . . . , Qi−1 answered before query Qi. Thereby, each P(Qj) where
j ∈ {1, . . . , i− 1} must be computed for a DPI where only Q1, . . . , Qj−1 are incorporated as test cases.

Taking these thoughts into account, GETPROBDIST (Algorithm 6) updates pD,prio(D) for each diag-
nosis D ∈ DX in that it runs through all query-answer pairs 〈Q, u(Q)〉 in QA chronologically and for
each D ∈ DX it multiplies pD,prio(D) by 1

2 if D ∈ D0(Q) as per Formulas 9.1 and 9.2. For each check
whether a diagnosis is in D0(Q) in lines 34 and 39 a DPI is used that already incorporates all test cases
P ′′ and N ′′ that have been added chronologically before Q was asked. This is achieved by updating P ′′

and N ′′ successively (lines 36 and 41). After all elements of QA have been processed, the updated diag-
nosis probabilities are finally normalized (line 44, cf. Formula 4.4 on page 72) and the resulting function
pD,prio() is returned.

Remark 9.7 Note that the function GETPROBDIST exploits the fact that all diagnoses inDX are leading
diagnoses w.r.t. the current DPI 〈K,B,P ∪P ′,N ∪N ′〉R which guarantees that none of these diagnoses
has been invalidated by any of the test cases in P ′ or in N ′ added throughout the execution of Algorithm 5
(cf. Proposition 12.3 given later). Hence, it is clear that each D ∈ DX must be in D+(Q) ∪D0(Q) if
u(Q) = true and in D−(Q) ∪D0(Q) if u(Q) = false , and it is only tested whether D /∈ D+(Q) in the
prior case (line 34) and whetherD /∈ D−(Q) in the latter (line 39). It must be further noted that, in case of
mode = dynamic, diagnoses in DX are not necessarily minimal diagnoses w.r.t. the intermediate DPIs
〈K, B,P ∪ P ′′,N ∪N ′′〉 that are used for the probability update. However, this is not problematic since
any set of (minimal and/or non-minimal) diagnoses is partitioned into the three sets D+(Q), D−(Q) and
D0(Q) by a query Q (cf. Remark 7.3) wherefore P(Q) exists for any set DX. Thence, the correctness of
GETPROBDIST remains unaffected by the usage of the setting mode = dynamic.

Remark 9.8 We want to emphasize that an adaptation of pD,prio(D) is only necessary in case D ∈
D0(Qj) for some query Qj answered so far during the execution of Algorithm 5 as otherwise a multipli-
cation by 1 is required which does not change pD,prio(D).

For the case of static debugging (mode = static), an immediate implication of this is the follow-
ing: The restriction of asking the user only queries Qj w.r.t. a DPI with the property that no minimal
diagnosis w.r.t. this DPI can be an element of D0(Qj) makes the probability update for each diagnosis
in DX equivalent to a multiplication by 1 and hence obsolete. This must be the case since each diag-
nosis in DX which is a subset of mD〈K,B,P,N 〉R ∩mD〈K,B,P∪P ′,N∪N ′〉R (see Section 9.2.2) must be a
minimal diagnosis w.r.t. each intermediate DPI (which includes a superset of the test cases in the input
DPI 〈K,B,P ,N 〉R and a subset of the test cases in the current DPI 〈K,B,P ∪P ′,N ∪N ′〉R) as will be
substantiated by Proposition 12.5 given later. Consequently, such a scenario implicates that the order of
diagnoses computed by STATICHS corresponds to the best-first order also w.r.t. the a-posteriori diagnosis
probabilities (cf. Remark 9.3).

The approach of only using queries with this property is feasible, e.g. by using a GETENTAILMENTS
function in conformity with Proposition 8.3 for the generation of the query pool (GETPOOLOFQUERIES).
Such a type of queries is also favorable from the discrimination point of view, as we pointed out in
Section 8.2. An improvement of static debugging with this type of queries is to deactivate the probability
update, i.e. replace line 11 in Algorithm 5 by line 29 of Algorithm 6. This improvement is not shown in
Algorithm 5.

In a dynamic debugging session (mode = dynamic), on the contrary, the usage of such queries does
not guarantee the triviality of the probability update. For, also if no minimal diagnosis w.r.t. the DPI
(for which a query Qj is computed) can be an element of D0(Qj), there may be some non-minimal

132 CHAPTER 9. INTERACTIVE KB DEBUGGING ALGORITHM

one which is. For example, for any admissible DPI 〈K,B,P ,N 〉R is holds that D := K is a diagnosis
(cf. Proposition 3.4 and Definition 3.6), albeit in most cases a non-minimal one. In such a case, (K \
D) ∪ B ∪ UP which is equal to B ∪ UP cannot entail Qj . Because, were this the case, then all minimal
diagnoses Di ∈ mD〈K,B,P,N 〉R would be elements of D+(Qj) as each K∗i ⊇ B ∪ UP and thus each
K∗i |= Qj by the monotonicity of L. Hence, this would be a contradiction to the fact that Qj is a query
w.r.t. 〈K,B,P ,N 〉R by Corollary 7.2. On the other hand, (K\D)∪B∪UP ∪Qj = B∪UP ∪Qj cannot
violate any x ∈ N ∪R. Since, if this were the case, then addingQj to the positive test cases would lead to
a non-admissible DPI 〈K,B,P ∪ {Qj} ,N 〉R. By Corollary 7.3, this would be a contradiction to the fact
that Qj is a query w.r.t. 〈K,B,P ,N 〉R. Thence, D ∈ D0(Qj) must hold for the assumed non-minimal
diagnosis D. From that we conclude that the probability update in dynamic debugging cannot be made
obsolete in general by the usage of such a type of queries.

Stop Criterion and Output. The (a-posteriori) probability distribution pD() of leading diagnoses DX

is then used in line 12 of Algorithm 5 to compute the mode of this distribution, i.e. the one diagnosis
Dmax ∈ DX with maximum probability according to pD().

In the sequel, Dmax is used to check the stop criterion (line 13), namely whether Dmax has a prob-
ability greater than or equal to 1 − σ. If this is the case and mode = static, the function GETSOLKB
computes a maximal solution KB w.r.t. the input DPI as (K \ Dmax) ∪ UP by means of the current
DPI 〈K,B,P ∪ P ′,N ∪ N ′〉R, P ′ and Dmax. Given that mode = dynamic, GETSOLKB returns
a maximal solution KB w.r.t. the current DPI as (K \ Dmax) ∪ UP∪P ′ by means of the current DPI
〈K,B,P ∪P ′,N ∪N ′〉R andDmax. This solution KB is then returned as an output of Algorithm 5. If, on
the other hand, the stop criterion is not met, the algorithm continues the execution with the computation
of another query.

Remark 9.9 Notice that the returned maximal solution KB (K \ Dmax) ∪ UP w.r.t. the input DPI in
case mode = static can be easily extended to constitute a maximal solution KB w.r.t. the current DPI,
namely by extending it by UP ′ . Ifmode = dynamic, then the KB output in line 14 is a maximal solution
KB w.r.t. the current DPI, but possibly a non-maximal solution KB w.r.t. the input DPI.

Query Computation and User Interaction. In line 16, the function CALCQUERY is applied to com-
pute a query and the associated q-partition by means of the leading diagnoses DX, (possibly) the collected
data qData, the probability distribution pD() of the leading diagnoses, a query selection function qsm()
(which might exploit the function pK̃∪K()), a parameter q determining the size of the computed query
pool and the current DPI 〈K,B,P ∪ P ′,N ∪N ′〉R.

As a first step within CALCQUERY, the function GETPOOLOFQUERIES computes a query pool QP
as detailed in Chapter 8 from DX, q and 〈K,B,P∪P ′,N ∪N ′〉R. Then, the best tuple 〈Q,P(Q)〉 ∈ QP
according to the function qsm() is searched for and finally returned as the output of CALCQUERY. During
the query selection process, the evaluation of the query selection measure qsm(Q) ∈ R for queries Q
where 〈Q,P(Q)〉 ∈ QP may require qData, the fault probabilities pD() of leading diagnoses as well
as the fault probabilities pK̃∪K() of syntactical elements in K. This depends on which concrete measure
qsm() is employed (see Section 9.3 which presents some possible measures).

As a next step, the query Q of the best tuple 〈Q,P(Q)〉 ∈ QP is presented to the interacting user in
line 17 which is the only place in Algorithm 5 where user interaction takes place. The user is modeled
as a deterministic function u : QD,〈K,B,P∪P ′,N∪N ′〉 → {true, false} that allocates a positive (true)
or negative (false) answer to each query w.r.t. any set of leading diagnoses D for some current DPI
〈K,B,P ∪ P ′,N ∪N ′〉. The answer u(Q) given by the user is stored in the variable answer.

Remark 9.10 We want to point out that the algorithm can be easily adapted to allow a user to reject

9.2. DETAILED ALGORITHM DESCRIPTION 133

queries, e.g. if they are not sure how to answer. That is, the user function might be modeled as u :
QD,〈K,B,P∪P ′,N∪N ′〉 → {true, false, unknown} where u(Q) = unknown signifies the rejection of
query Q. In this case, an accordingly modified version of Algorithm 5 would calculate an alternative
query w.r.t. D and 〈K, B,P ∪ P ′,N ∪ N ′〉, e.g. the second best one according to the query selection
measure qsm() among all tuples in QP (this potential feature is not shown in Algorithm 5). In this vein,
a total of |QP| − 1 queries can be dismissed per set of leading diagnoses D.

We want to accentuate that the presented interactive algorithm might be easily adapted to cope with
queries whose answer is unknown to the user, but a definite assumption for the algorithm to return a
correct solution is a user that does not give wrong answers. In other words, the algorithm does not
provide inherent mechanisms that allow for the detection of wrong answers or for the debugging of the
KB debugging procedure (keyword “garbage in, garbage out”). So, we suppose the function u() to be
deterministic which prohibits the situation that a user might change their mind at a later point in time. Of
course, this is still a possible scenario in practice, but in case it arises, a user has to revise, i.e. delete or
edit, specified test cases they disagree with by hand before a new debugging session using the modified
DPI might be started.

Another remark at this place concerns the way a user might choose to answer the query. A “minimal”
feedback of a user that we regard as an answer to a query Q is to merely say true , i.e. each formula in
Q (or the conjunction of formulas in Q) must be entailed by the correct KB, or false , i.e. at least one
formula in Q (or the conjunction of formulas in Q) must not be entailed by the correct KB. The presented
algorithm (Algorithm 5) is designed to deal with exactly this kind of an answer. However, imagine a user
being presented Q and think of how they might proceed in order to come up with an answer to Q. The
first observation is that, in order to respond by true , a user must definitely scrutinize each single formula
in Q because otherwise they could never decide for sure whether the conjunction of all formulas in Q is
correct. Another observation is that a user might cease to go through the rest of the formulas in case they
have already identified one that must not be an entailment of the desired KB. For, in this situation, the
overall query Q is already false . This however indicates that at least one formula must be known to be
correct or false whatever answer is given to Q. Therefore, we can usually expect a user to be able to give
exactly this information, namely one formula in Q that must be incorrect, additionally to answering by
false . This extra piece of information can be exploited to achieve better space and time efficiency in the
context of diagnosis computation. Proposing more efficient algorithms that exploit this information is a
topic for future work.

Incorporating the New Information. The new information represented by the answer answer to Q is
incorporated (lines 18-26) by updating values of all relevant parameters. First, by means of the function
APPEND, the tuple consisting of the answered query Q and the corresponding answer answer given by
the user is added as a last element to the chronological list of queries and answers QA that is used for the
next probability update (line 11).

Then, the subset Dout of the leading diagnoses DX that gets invalidated after addingQ to the positive
or negative test cases of the DPI, respectively, is computed by the function GETINVALIDDIAGS that gets
the q-partition P(Q) =

〈
D+(Q),D−(Q),D0(Q)

〉
of Q and answer as input arguments. Dout then

corresponds to the set D−(Q) given that answer is true and to D+(Q) otherwise (cf. Section 7.4). Note
that ∅ ⊂ Dout ⊂ DX holds by Proposition 7.4 and since Q is a query w.r.t. DX (since DX is given as an
input to CALCQUERY).

As a next step, the data qData is updated. As already pointed out in Section 9.2.3, the form of the
variable qData depends on the employed query selection measure qsm() and so do the actions that are
performed by UPDATEQDATA.

In order to communicate the impact of the answered query to the hitting set tree algorithm (either
STATICHS or DYNAMICHS), the set of invalidated leading diagnoses Dout is deleted from the leading

134 CHAPTER 9. INTERACTIVE KB DEBUGGING ALGORITHM

diagnoses DX and added to D×. After this update, DX includes all diagnoses that have been computed
by the hitting set tree algorithm so far that are minimal diagnoses w.r.t. the current DPI.

Finally, the new test case Q is added to the new positive test cases P ′ if answer is true and to the
new negative test cases N ′ in case of answer = false .

9.3 Query Selection Measures
In this section, we give a brief introduction to some query selection measures qsm() that have been
suggested and evaluated in literature within the scope of KB or ontology debugging [SFFR12, RSFF13].
Such query selection measures, when used as a parameter in an interactive KB debugging algorithm such
as the one described by Algorithm 5, aim at solving the following optimization problems. In Interactive
Dynamic KB Debugging, the problem is defined as follows:

Problem Definition 9.1. The task is to solve the problem specified by Problem Definition 6.1 in a way
that |P ′|+ |N ′| is minimal.

In Interactive Static KB Debugging, the problem is defined as follows:

Problem Definition 9.2. The task is to solve the problem specified by Problem Definition 6.2 in a way
that |P ′|+ |N ′| is minimal.

That is, these optimization problems aim at the minimization of user effort during interactive KB
debugging. In other words, the goal is the minimization of the number of queries required to be asked to
a user in order to solve the Interactive Static KB Debugging or the Interactive Dynamic KB Debugging
Problem, respectively.

In our previous work [SFFR12], we have discussed entropy-based (ENT()) and split-in-half (SPL())
query selection measures.

Entropy-Based Query Selection. A best query QENT according to ENT() has a maximal information
gain among all queriesQwhere 〈Q,P(Q)〉 ∈ QP. In other words,QENT minimizes the expected entropy
of the probability distribution of the leading diagnoses DX after QENT has been added as a test case to
the DPI based on the user’s answer u(QENT). As shown in [dKW87], this leads to the definition

ENT(Q) :=
∑

a∈{true,false}

p(Q = a) log p(Q = a) + p(D0(Q))

where p() in the case of our algorithm corresponds to the leading diagnoses probability measure pD()
computed in line 11 in Algorithm 5 and

p(Q = true) = p(D+(Q)) +
1

2
p(D0(Q))

p(Q = false) = p(D−(Q)) +
1

2
p(D0(Q))

(cf. Section 7.4) where

p(D+(Q)) =
∑

D∈D+(Q)

p(D)

p(D−(Q)) =
∑

D∈D−(Q)

p(D)

p(D0(Q)) =
∑

D∈D0(Q)

p(D)

9.3. QUERY SELECTION MEASURES 135

Then, the best query in a pool QP according to qsm() := ENT() is

QENT = arg min
{Q | 〈Q,P(Q)〉∈QP}

ENT(Q)

So, theoretically optimal w.r.t. ENT() is a queryQwhose positive and negative answers are equally likely
and for which D0(Q) is the empty set. In other words, the best query has the property that the sum of
probabilities of leading diagnoses predicting the positive answer as well as the sum of probabilities of
leading diagnoses predicting the negative answer is 50%.

Split-In-Half Query Selection. For the selection criterion qsm() := SPL(), on the other hand, the
query

QSPL = arg min
{Q | 〈Q,P(Q)〉∈QP}

SPL(Q)

is preferred where

SPL(Q) :=
∣∣ |D+(Q)| − |D−(Q)|

∣∣+ |D0(Q)|

Hence, this measure is optimized by queries Q for which the number of leading diagnoses predicting the
positive answer is equal to the number of leading diagnoses predicting the negative answer and for which
D0(Q) is the empty set.

Risk-Optimized Query Selection. For scenarios where a-priori probabilities are vague, we have pre-
sented another more complex query selection measure RIO() in [RSFF13] which uses a reinforcement
learning strategy to constantly adapt some “risk” parameter that indicates the current amount of trust in
the probabilities. Whereas ENT() and SPL() do not rely on qData, this learning strategy does so and re-
quires the invalidation rate or “performance”, i.e. |Dout|

|DX| , of the previous iteration for the adaptation of the
learning parameter. As long as the invalidation rate is “good”, the trust in the current (a-posteriori) prob-
abilities – that strongly depend on the vague a-priori probabilities – is high, but it is gradually decreased
after observing “worse” performance, and so on. High trust in the probabilities means usage of ENT()
which can exploit high quality fault information well as demonstrated in the experiments conducted in
[SFFR12], whereas low trust involves selection of queries that guarantee a higher worst case invalidation
rate, i.e. have similar properties to queries SPL() would select.

Example 9.1 Let us reconsider the queries and associated q-partitions for the example DPI of Table 15.2
that are depicted by Table 8.3 on page 113. Let us denote by Qi ≺M Qj that Qi is preferred over Qj and
by Qi ≺�M Qj that Qi is equally preferable as Qj if the query selection measure qsm() := M is used.
Furthermore, we make the assumption that the probability distribution pD of the (leading) diagnoses
DX = {D1, . . . ,D4} is as shown in Table 9.1.

Then, we make the following observations:

• Q6 is the theoretically optimal query w.r.t. ENT() since pD(D+(Q6)) = 0.5, pD(D−(Q6)) = 0.5
and D0(Q6) = ∅, i.e. the positive and the negative answer have equal probabilities of 50% and
thus Q6 the highest theoretically possible information gain of 1 (bit). This can be compared with
one toss of a coin where the information gain of tossing the coin and checking whether it is head
or tail is highest in a case where the coin is fair. For a coin that shows head with a probability of
0.95, conversely, the information gain of tossing the coin is rather small since we are already quite
sure about the result in advance.

136 CHAPTER 9. INTERACTIVE KB DEBUGGING ALGORITHM

D ∈ DX D1 D2 D3 D4

pD(D) 0.15 0.3 0.05 0.5

Table 9.1: (Example 9.1) Diagnosis probabilities for the example DPI given by Table 15.2.

• Q9 ≺M Q5 as well as Q9 ≺M Q2 for M ∈ {SPL(),ENT()} because both Q5 and Q2 share one
set in {D+,D−} with Q9, but exhibit a non-empty set D0 whereas D0(Q9) = ∅. This shows
that both split-in-half and entropy-based query selection penalize a query Q if there are leading
diagnoses that are definitely not discriminated by it, i.e. D0(Q) 6= ∅. This is perfectly desirable as
we discussed.

• Q4 ≺�M Q10 for M ∈ {SPL(),ENT()} since their q-partitions differ just by commutation of the
sets D+ and D−. This is what one would expect of such a measure, i.e. that it does not matter
whether the positive or negative answer is more probable if the probability values are the same (in
case of ENT()) and whether the number of diagnoses predicting the positive or negative answer is
higher if the numbers are the same (in case of SPL()). However, notice that Q4 might be much
easier to comprehend and answer for the interacting user. Therefore, Q4 might be preferred in
a scenario where some second measure qsm2() comes into play to identify a best query among
equally preferable queries w.r.t. some qsm1() that is used as a primary measure. For, example
some “query-easiness” measure qsm2() might be employed after qsm1() ∈ {SPL(),ENT()} has
filtered out an equally preferable set of queries; in this case let this set be {Q4, Q10}. The measure
qsm2() could be defined to simply count the logical connectives and quantifiers occurring in a
query Q and pick one for which this number is minimal. In this case, this number would be 0 for
Q4 and 7 for Q10, wherefore Q4 would be decisively better than Q10 w.r.t. qsm2().

• It holds that Q3 ≺ENT() Q10 ≺ENT() Q1, but Q3 ≺�SPL() Q10 ≺�SPL() Q1. The former holds
since all three queries feature an empty set D0, but the difference between p(D+) and p(D−) is
largest for Q1 (p(D+(Q1)) = 0.95), second largest for Q10 (p(D−(Q10)) = 0.85) and smallest
for Q3 (p(D+(Q3)) = 0.7).

• Q9 is the second best query among those given in Table 8.3 because both answers of it are almost
equally probable (positive answer has a probability of 0.55 and negative answer a probability of
0.45).

• Queries Q7, Q8 and Q9 are theoretically optimal w.r.t. the SPL() measure, since D0 = ∅ and
|D+| = |D−| for all of them.

• Regarding the RIO() measure, queries Q7, Q8 and Q9 are “no risk” queries since they feature the
maximum possible worst case elimination rate of 50%. Q2 and Q6, for instance, have a “higher
risk” as their minimal invalidation rate amounts to only 25%. That is, if Q2 (Q6) is answered
positively (negatively), then only one of four leading diagnoses is invalidated.

9.4 Interactive Debugging Algorithm: Correctness and Complexity
First, we prove the correctness of Proposition 9.1 on page 124 by using the results of Sections 11.4 and
12.4.10 which provide evidence for the correctness (soundness, completeness and optimality) of methods
STATICHS and DYNAMICHS:

9.4. ALGORITHM CORRECTNESS AND COMPLEXITY 137

Proof of Proposition 9.1. First, we argue why Algorithm 5 must terminate. The function GETFORMU-
LAPROBS in line 5 terminates since it applies Formulas 4.2 and 4.7 |K| times and |K| is finite by Defini-
tion 3.1. If mode = static, then STATICHS terminates due to Proposition 11.1. If mode = dynamic,
then DYNAMICHS terminates due to Corollary 12.8. GETPROBDIST terminates since (1) the number of
already answered queries |QA| is finite, (2) |DX| is finite since diagnoses are subsets of K and thus there
is only a finite number of (minimal) diagnoses w.r.t. any DPI according to Definition 3.1 (since all sets
included in the DPI are finite) and (3) reasoning (GETENTAILMENTS and ISKBVALID) is assumed to be
decidable for the logic L over which the DPI is formulated as per Chapter 2. Further, GETMODE clearly
terminates due to the fact that |DX| is finite and returns the mode Dmax of the diagnoses probability
distribution pD() over the diagnoses in DX. Now, if the stop criterion pD(Dmax) ≥ 1 − σ is met, then
GETSOLKB is called. GETSOLKB simply deletes the given diagnosis Dmax from the given KB K and
adds a finite set of formulas to it, and thence terminates.

If the stop criterion is not met, then |DX| ≥ 2 must hold as otherwise the single diagnosis D ∈ DX

would necessarily have fulfilled the stop criterion as its probability as per any probability measure over
the sample space Ω := DX must be equal to 1 and thus greater than or equal to 1− σ where σ ≥ 0.

Due to |DX| ≥ 2, Proposition 8.10 implies that GETPOOLOFQUERIES (called within CALCQUERY)
terminates and yields a non-empty query pool as output. SELECTBESTQUERY (also called within CAL-
CQUERY) terminates as well since it simply selects one query from the pool according to the measure
qsm() (cf. Section 9.3). Since we assume the interacting user to answer to a query or to reject it within
finite time, u(Q) also terminates. It is clear that APPEND terminates. GETINVALIDDIAGS simply ex-
tracts one entry of the given q-partition and thus terminates. Finally, UPDATEQDATA also terminates by
assumption (no qsm() must be used for which UPDATEQDATA might not terminate). As a consequence,
all functions called in Algorithm 5 terminate. What remains to be proven is that the stop criterion must
be met after a finite number of iterations, i.e. after a finite number of test cases have been added to the
input DPI.

In mode = static the stop criterion must be satisfied after a finite number of iterations due to the
following argumentation:

• There is a finite set of minimal diagnoses w.r.t. the input DPI 〈K,B,P ,N 〉R since each (minimal)
diagnosis w.r.t. this DPI is a subset of K according to Definition 3.5 and since |K| is finite by
Definition 3.1.

• In each iteration, one test case is added either to P ′ or N ′.

• Each test case added to whatever set P ′ or N ′ invalidates at least one minimal diagnosis w.r.t.
the input DPI in the set DX by the definition of a query (Definition 7.1) and since each query is
computed w.r.t. the leading diagnoses DX by the correctness of GETPOOLOFQUERIES (cf. Propo-
sition 8.10).

• DX contains only minimal diagnoses w.r.t. the input DPI by Proposition 11.1.

• Also by Proposition 11.1, no invalidated minimal diagnosis w.r.t. the input DPI can be an element
of some subsequent set of leading diagnoses DX.

• Therefore, unless the stop criterion is met before due to a sufficiently high probability of one of
multiple leading diagnoses as per pD(), Algorithm 5 inmode = staticmust arrive at a point where
|DX| = 1 after a finite number of iterations. Note that |DX| = 0 is impossible due to the definition
of a query (Definition 7.1) which ensures that each added test case leaves valid at least one minimal
diagnosis in DX.

Algorithm 5 terminates in mode = dynamic since for any sequence QA of queries that are added to
the positive or negative test cases P ′ or N ′, respectively, there is a finite number kQA such that there is no

138 CHAPTER 9. INTERACTIVE KB DEBUGGING ALGORITHM

more than one minimal diagnosis w.r.t. 〈K,B,P ∪ P ′,N ∪N ′〉R for |P ′| + |N ′| = kQA wherefore the
stop criterion must be met. Now, let us assume that the opposite holds. That is, there is a sequence QA∗

of queries that are added to the positive or negative test cases P ′ or N ′, respectively, and for all natural
numbers k there is more than one minimal diagnosis w.r.t. 〈K,B,P ∪ P ′,N ∪N ′〉R for |P ′|+ |N ′| = k.
Then we argue as follows to derive a contradiction:

• There is a finite set of (minimal) diagnoses w.r.t. any DPI 〈K,B,P ∪ P ′,N ∪N ′〉R obtained from
the input DPI by the addition of test cases. This is true since |K| is finite by Definition 3.1 and
since each (minimal) diagnosis w.r.t. 〈K,B,P ∪ P ′,N ∪N ′〉R is a subset of K according to Defi-
nition 3.5.

• In each iteration, one test case is added either to P ′ or N ′.

• Each test case added to whatever set P ′ or N ′ invalidates at least one minimal diagnosis w.r.t. the
current DPI in the set DX by the definition of a query (Definition 7.1) and since each query is
computed w.r.t. the leading diagnoses DX by the correctness of GETPOOLOFQUERIES (cf. Propo-
sition 8.10).

• If DPI denotes the current DPI at the time DYNAMICHS is called, then the set DX returned by
DYNAMICHS is a subset of or equal to mDDPI , i.e. DX contains only minimal diagnoses w.r.t.
DPI by Corollary 12.8.

• Let 〈DPI0, DPI1, . . . 〉 denote the sequence of DPIs encountered in the case of adding answered
queries as test cases to the input DPI DPI0 as per QA∗. Further, let 〈aD0,aD1, . . . 〉 be the
sequence such that aDi := aDDPIi , i = 0, 1, . . . , i.e. aDi is the set of all diagnoses w.r.t. DPIi.
Then aDi ⊃ aDi+1 for all i ≥ 0 due to Corollary 12.4.

• As each query added as a test case to DPIi leaves valid at least one (minimal) diagnosis w.r.t.
DPIi due to Definition 7.1, we have that aDk ⊃ ∅ for k = 0, 1,

• Since aDi is finite, there must be some finite number k∗ such that |aDk∗ | = 1 wherefore |mDk∗ | =
1 must also be valid. This is a contradiction.

Thence, Algorithm 5 terminates in any mode mode. Now, we show that propositions (1)-(6) of Proposi-
tion 9.1 hold for (i) mode = static and (ii) mode = dynamic.

(i): First, by the proof so far, we have that Algorithm 5 in mode = static given the input DPI
〈K,B,P ,N 〉R terminates. Since the only point where the algorithm can terminate is line 14, GETSOLKB
is called with arguments 〈Dmax, 〈K,B,P ∪ P ′,N ∪N ′〉R,P ′, static〉. By the definition of GETSOLKB
(see Section 9.2.4), we have that (K \ Dmax) ∪ UP is returned by the algorithm.

Propositions (1) and (2) follow from the specification of the GETMODE function which is called
with arguments 〈DX, pD()〉. Proposition (3) is true since GETSOLKB can never be reached without
pD(Dmax) ≥ 1 − σ being fulfilled. DX ⊆ mD〈K,B,P,N 〉R ∩ mD〈K,B,P∪P ′,N∪N ′〉R is true due to
Proposition 11.1, Remark 9.5 and the fact that DX is obtained as an output of STATICHS. Hence, Propo-
sition (4) holds. Proposition (5) is implied by Remark 9.5 and by the specification of the GETFORMU-
LAPROBS function which computes pK() from pK̃∪K() as per Formulas 4.2 and 4.7 in line 5. Finally,
Proposition (6) is a consequence of the definition of the GETPROBDIST function which accounts for the
computation of pD() from pK(), the input DPI, DX and the chronological sequence of all queries and
associated answers QA so far. Therefore, Proposition 9.1 is true for mode = static.

(ii): First, by the proof so far, we have that Algorithm 5 in mode = dynamic given the input
DPI 〈K,B,P ,N 〉R terminates. Since the only point where the algorithm can terminate is line 14, GET-
SOLKB is called with arguments 〈Dmax, 〈K,B,P ∪ P ′,N ∪N ′〉R,P ′, dynamic〉. By the definition of
GETSOLKB (see Section 9.2.4), we have that (K \ Dmax) ∪ UP∪P ′ is returned by the algorithm.

9.4. ALGORITHM CORRECTNESS AND COMPLEXITY 139

Propositions (1) and (2) follow from the specification of the GETMODE function which is called
with arguments 〈DX, pD()〉. Proposition (3) is true since GETSOLKB can never be reached without
pD(Dmax) ≥ 1 − σ being fulfilled. DX ⊆ mD〈K,B,P∪P ′,N∪N ′〉R is true due to Corollary 12.8, Re-
mark 9.5 and the fact that DX is obtained as an output of DYNAMICHS. Hence, Proposition (4) holds.
Proposition (5) is implied by Remark 9.5 and by the specification of the GETFORMULAPROBS function
which computes pK() from pK̃∪K() as per Formulas 4.2 and 4.7 in line 5. Finally, Proposition (6) is a
consequence of the definition of the GETPROBDIST function which accounts for the computation of pD()
from pK(), the input DPI, DX and the chronological sequence of all queries and associated answers QA
so far. Therefore, Proposition 9.1 is true for mode = dynamic.

Next, we show that the solution to Interactive Static KB Debugging is found for σ = 0 in case
mode = static:

(s1) DX ⊆mD〈K,B,P,N 〉R ∩mD〈K,B,P∪P ′,N∪N ′〉R holds for the output of STATICHS in each iteration
by Proposition 11.1. Therefore, DX comprises only minimal diagnoses w.r.t. the input DPI that
comply with all specified test cases in P ′ and N ′.

(s2) By pK̃∪K() : K̃ ∪ K → (0, 1] we derive by Formula 4.2 that each formula in K must have a
probability greater than zero. Further, by Formula 4.7, no formula in K can have a probability
greater than or equal to 0.5 (i.e. in particular a probability of 1 is not possible for a formula). Hence,
we have that pK : K → (0, 0.5) for the measure pK() computed by GETFORMULAPROBS in line 5
in Algorithm 5. Thence, by the definition of pnodes() in STATICHS based on p() := pK() (cf.
Definition 4.9 on page 73) due to the fact that pK() is given as an input argument to STATICHS
in line 8, we have that no diagnosis can have an (a-priori) probability of zero. Since the function
GETPROBDIST might only perform some multiplications of a diagnosis probability by 1

2 , also the
a-posteriori probability of each diagnosis must be greater than zero.

(s3) Hence, due to σ = 0, it must be necessarily be true that |DX| = 1 before the algorithm terminates.

(s4) By Problem Definition 6.2 and the specification of the GETSOLKB function, the output solution KB
must be the solution to Interactive Static KB Debugging.

That a solution found for σ > 0 in case mode = static might be an approximate solution to Inter-
active Static KB Debugging is a direct consequence of the definition of approximate solution given in
Remark 9.2.

Finally, the proof that the solution to Interactive Dynamic KB Debugging is found for σ = 0 in case
mode = dynamic is analogue to the one for mode = static, just

(d1) DX ⊆ mD〈K,B,P∪P ′,N∪N ′〉R holds for the output of DYNAMICHS in each iteration by Corol-
lary 12.8. Therefore, DX comprises only minimal diagnoses w.r.t. the current DPI.

(d2) By (s2), (s3), Problem Definition 6.1 and the specification of the GETSOLKB function, the output
solution KB must be the solution to Interactive Dynamic KB Debugging.

That a solution found for σ > 0 in case mode = dynamic might be an approximate solution to Interac-
tive Dynamic KB Debugging is a direct consequence of the definition of approximate solution given in
Remark 9.2.

This completes the proof of Proposition 9.1.

Next, we examine the complexity of Algorithm 5.26 To this end, we denote in the following by ex-
pensive operation a call of a (usually) expensive function such as one that internally consults a logical

26Considerations in the rest of this section rely on the assumption that P 6= NP (cf. http://bit.ly/1lIuNcP).

140 CHAPTER 9. INTERACTIVE KB DEBUGGING ALGORITHM

reasoner or another operation such as addition or multiplication that is the most time consuming algorith-
mic action within a certain part of an algorithm. We analyze Algorithm 5 in terms of the number num of
expensive operations that are required during its execution in the worst case. The worst case time required
by Algorithm 5 is then the multiplication of the maximal worst case time consumption of any expensive
operation throughout the algorithm by num.

The next propositions assume |K| as an upper bound of |P ′| + |N ′|. This is plausible in the light of
evaluations performed in e.g. [SFFR12, RSFF13] which substantiate that usually the size of the faulty KB
exceeds the number of queries that are necessary to solve the interactive debugging problem by several
orders of magnitude.

We first investigate the complexity of the function GETPROBDIST which is called once in each itera-
tion of Algorithm 5:

Proposition 9.2. Let |K| be an upper bound of |P ′| + |N ′|. Then, the function GETPROBDIST in Algo-
rithm 5 requires a number of expensive operations that is linear in |K|.

Proof. The time complexity of GETPROBDIST can be assessed by adding the complexities of (i) GET-
PRIODIAGPROBS, (ii) the for-loop between line 30 and 41, (iii) the summation in line 42 and (iv) the
for-loop in lines 43 and 44. Time complexity of (i) is in O(nmax |K|) since |DX| ≤ nmax where nmax

is a predefined constant and |K| − 1 multiplications must be conducted per diagnosis in DX. (ii) re-
quires |QA| |DX| ≤ (|P ′| + |N ′|)nmax ≤ |K|nmax many calls to functions GETENTAILMENTS and
ISKBVALID, respectively, that internally call a logic reasoner. Time requirements of (iii) amount to
O(|DX|) = O(nmax) summations. Finally, (iv) involves O(nmax) multiplications.

Thus, we obtain an overall time complexity of O(nmax |K| + nmax |K| + nmax + nmax) = O(|K|)
for GETPROBDIST.

The next proposition is based on this result and witnesses that Algorithm 5 requires only a quadratic
number of expensive operations in the size of the KB K.

Proposition 9.3. Let |K| be an upper bound of |P ′| + |N ′| and let the function qsm() given as input to
Algorithm 5 be such that the time complexity of UPDATEQDATA is in O(|K|). Minus the time consumed
by diagnosis computation (by STATICHS in case of mode = static or by DYNAMICHS otherwise), the
time complexity in terms of number of required expensive operations of Algorithm 5 is quadratic in |K|.

Proof. Variable instatiation (lines 1-4) and variable update (lines 18-26) is in O(1) where some query
selection measure qsm() is supposed to be used, for which the time complexity of UPDATEQDATA is
in O(|K|) (this holds for all query selection measures described in Section 9.3). GETFORMULAPROBS
called in line 5 runs in O(|K| |axmax|) as Formula 4.2 is applied once to each formula in K for each of
which at most |axmax| multiplications are performed where |axmax| is the maximum size of a formula in
K in terms of included syntactical elements (multiple occurrences of one and the same symbol are counted
multiply). As shown by Proposition 9.2, the complexity of GETPROBDIST called in line 11 is in O(|K|).
Execution of GETMODE needs one iteration over all diagnoses in DX in order to determine the one with
maximum probability, i.e. it runs in O(|nmax|) = O(1) time since nmax is a constant. Next, GETSOLKB
which computes a solution KB from a given diagnosis D works in O(|D|+ |P |+ |P ′|) ⊆ O(|K|) since
|D| elements need to be deleted from a set of cardinality K which can be accomplished in constant time
per element (e.g., using a hashtable) and additionally at most |P |+ |P ′| set union operations are required,
namely the union of (K \ D) with UP∪P ′ where the latter needs |P | + |P ′| − 1 set union operations.
As |P | is a constant c, O(|D| + |P | + |P ′|) ⊆ O(2c |K|) ⊆ O(|K|). In Section 8.5, we have already
underlined that GETPOOLOFQUERIES is a fixed parameter tractable problem, i.e. it requires

O

nmax +
∣∣∣Q(max)

min

∣∣∣ log

∣∣Q(max)
∣∣∣∣∣Q(max)

min

∣∣∣
 2nmax

 = O(1)

9.4. ALGORITHM CORRECTNESS AND COMPLEXITY 141

calls to a reasoner in the worst case (cf. Proposition 8.9). Similarly, SELECTQUERY involves O(2nmax)
comparisons qsm(Qi) < qsm(Qj) for Qi, Qj ∈ QP since the cardinality of the computed query pool is
in O(2nmax). The latter holds due to Proposition 8.10 which substantiates that the calculated query pool
includes at most one query Q for which D+(Q) = Y for each Y ⊂ DX. And, an upper bound for the
cardinality of DX is the constant nmax. Therefore, the runtime of SELECTQUERY is in O(1), too.

Since adding up a number of time complexities each of which is at most in O(|K|), we can conclude
that the runtime of one iteration of Algorithm 5 minus the time needed for diagnosis computation is also
in O(|K|), i.e. linear in |K| in terms of number of expensive operations needed. As there might be a
maximum of |K| iterations by the premise that |P ′| + |N ′| ≤ |K|, we obtain an overall time complexity
– minus the complexity of diagnoses computation – of O(|K|2) for Algorithm 5.

That is, Algorithm 5 requires only a quadratic number of expensive operations “outside” of the meth-
ods STATICHS or DYNAMICHS, respectively, that account for diagnosis computation. That the substantial
complexity of Algorithm 5 lies in the computation of diagnoses, is confirmed by the following results.

The first result is based on the fact that determining minimal diagnoses w.r.t. a DPI is an MBD problem
(cf. page 8) which in turn can be regarded as an abduction problem as defined in [BATJ91]. More
precisely, the problem of detecting minimal diagnoses w.r.t. a DPI is a monotonic abduction problem
[BATJ91]. Hence, the following proposition holds [BATJ91, Theorem 4.3]:

Proposition 9.4. Let 〈K,B,P ,N 〉R be a DPI over L and let ISKBVALID (see Algorithm 1) be a function
computable for L in polynomial time w.r.t. the size of 〈K,B,P ,N 〉R (cf. the description of the function
e in [BATJ91, Section 3.3]). Then, given a set D of minimal diagnoses w.r.t. 〈K,B,P ,N 〉R such that
∅ ⊂ D, it is NP-complete to determine whether there is a minimal diagnosis D w.r.t. 〈K,B,P ,N 〉R such
that D /∈ D.

Remark 9.11 The function ISKBVALID in the case of KB debugging is analogue to the function e used
in [BATJ91]. Given the overall data Dall that must be explained by a solution to an abduction problem,
the function e computes for a subset H of Hall, the set of all individual hypotheses, the set e(H) = D
where D ⊆ Dall is the data explained by H . H is an explanation of the abduction problem iff it is
set-minimal and e(H) = Dall [BATJ91].

In the case of our KB debugging system, given a DPI 〈K,B,P ,N 〉R,Dall corresponds to the set of all
requirements in R and all test cases in N violated byK∪B∪UP . Hall corresponds toK. So, e corresponds
to ISKBVALID since ISKBVALID is given some K \D and 〈·,B,P ,N 〉R (where D corresponds to some
H ⊆ Hall) and checks whether (K \ D) ∪ B ∪ UP does not violate any requirement or test case, i.e.
whether e(H) = Dall. Notice that ISKBVALID can easily be slightly modified to return the subset of
Dall that is explained by H , i.e. the subset of the initially violated requirements and test cases that are
resolved by deletion ofD fromK∪B∪UP . To this end, the early termination in case of detected invalidity
must simply be omitted.

Remark 9.12 An abduction problem is monotonic [BATJ91] iff for all H,H ′ ⊆ Hall it holds that
H ⊆ H ′ → e(H) ⊆ e(H ′). That parsimonious KB debugging (or the problems given by Problem
Definitions 3.2, 6.2, 6.1, 9.2 and 9.1) seen as an abduction problem is indeed monotonic is a simple
consequence of the monotonicity of the logic L over which a DPI must be defined (as per the postulations
of Chapter 2). For, if (K \ D′) ∪ B ∪ UP |= x, then also (K \ D) ∪ B ∪ UP |= x for D ⊆ D′. Modeling
requirements r ∈ R as unwanted entailments of the correct KB (see Remark 3.2), we immediately see that
D cannot resolve more unwanted entailments x ∈ R ∪ N than D′. Thence, parsimonious KB debugging
is a monotonic abduction problem.

Unfortunately, ISKBVALID is not tractable (i.e. computable in polynomial time) for many logics L.
In particular, it is already in ∆P

2 = PNP for PL (cf. the polynomial hierarchy defined by [MS72]). This

142 CHAPTER 9. INTERACTIVE KB DEBUGGING ALGORITHM

holds since propositional satisfiability checking is NP-complete [Coo71, Kar72] and since ISKBVALID,
in order to to check the validity (see Definition 3.3) of a set of PL formulas X w.r.t. some PL DPI
〈·,B,P ∪ P ′,N ∪ N ′〉R, requires a polynomial number of calls to a propositional satisfiability checker
AlgSAT. For, by the definition of ISKBVALID (see Algorithm 1), one call ofAlgSAT is required for testing
whether X ∪ B ∪ UP∪P ′ is consistent and a maximum of |N | + |N ′| further calls are needed to verify
whether X ∪ B ∪ UP∪P ′ ∪ {¬n} is consistent for all n ∈ N ∪ N ′, i.e. whether X ∪ B ∪ UP∪P ′ 6|= n
for all n ∈ N ∪ N ′ (note that ¬n refers to the formula ¬ax 1 ∨ · · · ∨ ¬axk if n := {ax 1, . . . , axk}, cf.
page 27). Since we assume |P ′| + |N ′| ≤ |K| and since |N | is a constant throughout the execution of
Algorithm 5, we have that the number |N |+ |N ′|+ 1 ≤ |N |+ |K|+ 1 of calls to AlgSAT performed by
ISKBVALID is bounded by a polynomial in |K|.

As a conclusion of this discussion and Proposition 9.4, we have:

Corollary 9.1. Let 〈K,B,P ,N 〉R be a PL DPI given as an input to Algorithm 5. Then, each call of
STATICHS or DYNAMICHS within Algorithm 5 must solve (at least) an NP-complete problem by means
of an oracle that requires a polynomial number of calls to another NP-complete oracle.

Proof. Both STATICHS and DYNAMICHS must return a set of at least nmin ≥ 2 minimal diagnoses each
time they are called (given that nmin minimal diagnoses exist w.r.t. the given DPI) due to the specification
of input parameter nmin in Algorithm 5 and the calls of STATICHS and DYNAMICHS in lines 8 and 10,
respectively. For the first call, this implies that at least two minimal diagnoses must be found. Hence,
Proposition 9.4 applies to the complexity of finding the second minimal diagnosis during the execution of
the first call of both STATICHS and DYNAMICHS, just that ISKBVALID does not terminate in polynomial
time, but uses a polynomial number of calls to an NP-complete oracle (the propositional satisfiability
checker).

In each subsequent call of any of the two methods STATICHS and DYNAMICHS, the existing set of
leading diagnoses will contain at least one minimal diagnosis w.r.t. the current DPI (since each query
leaves valid at least one leading diagnosis, cf. Definition 7.1), and at least one further minimal diagnosis
w.r.t. this DPI must be extracted (cf. bullet (aii) in the characterization of the outputs of STATICHS and
DYNAMICHS on page 128 ff.). Thus, Proposition 9.4 holds for the computation of the first diagnosis in
any subsequent call of any of the two functions, just that ISKBVALID does not terminate in polynomial
time, but uses a polynomial number of calls to an NP-complete oracle (the propositional satisfiability
checker).

The general complexity of ISKBVALID is even worse if DPIs over more expressive logics such as
OWL 2 are considered for which one single call of a reasoner invoked by ISKBVALID is already 2-
NEXPTIME-complete [GHM+08, Kaz08].

However, in spite of these discouraging theoretical complexity results, debugging techniques similar
to the ones discussed in this work have proven to perform reasonably in practice for many real-world
KB debugging problems over DL and OWL languages, respectively [SFFR12, RSFF13, SFRF14c] which
are more expressive than PL. For instance, we have shown in [SFFR12] that faulty real-world OWL KBs
with sizes of up to over 33000 formulas are efficiently interactively debuggable with similar methods
as those presented in this work (reaction time of the system, i.e. time between two successive queries:
only 1 minute; average query length: not more than 4 formulas; overall number of queries: at most 14).
Moreover, we have demonstrated in [RSFF13] that a pair of real-world OWL KBs (the first including
over 11000 formulas, the second almost 5000) that has been automatically integrated by diverse ontology
matching systems resulting in a faulty aligned KB (see Chapter 32 for details; we also list some match-
ing systems there) can be debugged with absolutely reasonable time and query answering effort for the
interacting user. In concrete terms, the RIO debugging strategy proposed in [RSFF13] (which can also be
plugged in as a query selection measure into the system described in this work, see Section 9.3) involved
an average reaction time of no more than 13 seconds and required an average number of queries to be
answered by the user of no more than nine.

Chapter 10

Summary

In this part we dealt with how the process of KB debugging can be designed so as to enable a (group of)
user(s) to interact with the debugging software in order to achieve high quality solutions. We defined the
problem of interactive static KB debugging as well as the problem of interactive dynamic KB debugging
which “naturally” arise from the fact that the DPI in interactive KB debugging is always renewed after
a new test case has been specified (a new query has been answered). The former problem searches for a
solution KB w.r.t. the original DPI given as input such that this solution KB satisfies all test cases added
during the debugging session and there is no other such solution KB. The latter problem searches for a
solution KB w.r.t. the current DPI (i.e. the original DPI including all new test cases added throughout the
debugging session so far) such that there is no other solution KB w.r.t. the current DPI.

We specified the pivotal notion of a query which constitutes the “interface” between the debugging
system and the interacting user. Queries are sets of logical formulas satisfying the search space restriction
as well as the solution preservation property. That is, incorporation of any answer to a particular query
into the debugging process leads to a reduction of the search space for solutions on the one hand, but
guarantees the existence of at least one remaining solution on the other hand. Queries are generated from
a set of leading diagnoses that act as a representative of all (minimal) diagnoses. We established that, for
any set of at least two leading diagnoses, a query exists. The unique q-partition of a query constitutes the
relationship between a query and the set of leading diagnoses and can be used to decide for a set of logical
formulas whether this set is or is not a query. Furthermore, the q-partition can be used to estimate the
impact of a query answer on the (distribution of the) set of solutions and thence can be exploited to assess
the (expected) quality of different queries which in turn can help to filter out a suitable query among a
pool of possible queries.

It was also presented how a pool of queries can be generated for a given set of leading diagnoses and
a DPI. We showed how to minimize these queries in terms of the included number of logical formulas the
aim of which is to strain the user(s) as little as possible when it comes to answering them. Moreover, we
pointed out that query generation is a fixed parameter tractable problem due to the fact that the (maximum)
number of leading diagnoses can be predefined and therefore constitutes a constant value (which is not
growing as the diagnosis problem instance grows). We featured an in-depth discussion of the properties
of the query generation algorithm, in the course of which we detected several drawbacks. The gave a
hint to potential solutions that we will address in our future work. Additionally, we formally proved the
correctness of the query generation method and derived complexity results. All of this was concretized
by means of several illustrating examples.

Finally, we explicated the central algorithm of this work which implements an interactive KB de-
bugging system. First, an overview of the workflow of interactive KB debugging was given, followed
by a more comprehensive detailed specification of the algorithm. Some query selection measures (all of

143

144 CHAPTER 10. SUMMARY

which are later covered in more depth in Parts IV and V) were discussed and optimization versions of the
problems of interactive dynamic and static KB debugging were defined where the goal is to obtain the
solution to these problems by asking the user a minimal number of queries. Finally, we formally proved
the correctness of the interactive KB debugging algorithm and gave a discussion of its complexity.

Part III

Iterative Diagnosis Computation

145

147

In this part we introduce and discuss two methods, STATICHS and DYNAMICHS, which are called
in lines 8 and 10 of Algorithm 5, respectively. The former provides a method for solving the Interactive
Static KB Debugging Problem (Problem Definition 6.2) whereas the latter aims at solving the Interactive
Dynamic KB Debugging Problem (Problem Definition 6.1). Both are methods for iterative diagnosis
computation that are employed to compute a set of leading diagnoses in each iteration of the presented
interactive KB debugging algorithm (Algorithm 5). Each time a query has been answered by the inter-
acting user and added to the respective set of test cases of the DPI, a subset of the leading diagnoses (and
usually also a set of not-yet-computed minimal diagnoses) is invalidated. An iterative diagnosis compu-
tation method is then invoked to update the leading diagnoses set taking the new information into account
that is given by the recently added test case. That is, the k ≤ nmax most probable ways of solving the
Interactive Static (Dynamic) KB Debugging Problem in the light of the new evidence are extracted by
STATICHS (DYNAMICHS) after the search space has been suitably pruned. In this vein, if there is only
one solution left, the (exact) solution of Interactive Static (Dynamic) KB Debugging has been found.

Chapter 11 provides an in-depth description of the static method and proves its correctness. Chap-
ter 12 details the dynamic method and demonstrates its correctness. The practically oriented reader or
the one that is willing to believe that the presented iterative diagnosis computation techniques in fact work
as claimed might skip Sections 11.4 as well as 12.4 in this part.27

27Parts of Part III already appeared in [Rod15]. However, [Rod15] includes a significantly less detailed presentation of the
algorithms and does not give any proofs of correctness.

Chapter 11

STATICHS: A Static Iterative Diagnosis
Computation Algorithm

As the name already suggests, STATICHS (Algorithm 7) is a procedure that solves the problem of Inter-
active Static KB Debugging defined by Problem Definition 6.2 if used for leading diagnosis computation
in Algorithm 5. STATICHS is sound, complete and optimal w.r.t. the set of solutions of the Interactive
Static KB Debugging problem (this will be proven in Section 11.4). Optimality refers to the best-first
computation of minimal diagnoses regarding a given probability measure.

11.1 Overview and Intuition
The STATICHS algorithm is strongly related to the non-interactive hitting set algorithm HS (see Al-
gorithm 2) in that, at any stage during the execution of Algorithm 5, the hitting set tree produced by
STATICHS corresponds to some part of the complete (non-interactive) wpHS-tree built-up by Algo-
rithm 2. This is achieved by the strategy to use new test cases only for the invalidation of diagnoses,
and not for the computation of conflict sets (and thus diagnoses). That is, all minimal conflict sets are
computed w.r.t. the input DPI. Thereby, the introduction of new diagnoses, i.e. ones that are not minimal
diagnoses w.r.t. the input DPI, through addition of new test cases to the DPI is prohibited (cf. Proposi-
tion 4.6).

So, what STATICHS as a subroutine of Algorithm 5 does is gradually building up the standard (non-
interactive) wpHS-tree in multiple phases. During each phase some new (not-yet-computed) minimal
diagnoses w.r.t. the input DPI are computed, in the order of their probability, most probable ones first.
Before such a newly detected minimal diagnosis is added to the set of leading diagnoses (Dcalc ∪DX),
a test is performed that verifies that this new diagnosis is consistent with all test cases added to the input
DPI so far. In this vein, all answered queries so far not only serve to eliminate a subset of the set of
leading diagnoses at the time when the respective query is answered, but also to eliminate incompatible
minimal diagnoses w.r.t. the input DPI that are found at some later point in time. However, in order to
be eliminated due to a specified test case, a minimal diagnosis must first be computed. That is, no partial
diagnoses can be eliminated due to newly specified test cases.

Between each two phases of tree construction, a query computed on the basis of the current set of
leading diagnoses is asked to the user (this is accomplished directly in Algorithm 5). After incorporating
the user’s answer, some leading diagnoses are eliminated (this is granted by the definition of a query, see
Definition 7.1). Moreover, the “state” of the tree is maintained during the execution of Algorithm 5 until
STATICHS is again called in order to calculate further leading diagnoses. The state of the current partial

149

150 CHAPTER 11. STATIC DIAGNOSIS COMPUTATION ALGORITHM

wpHS-tree is stored by variables

• Dcalc ∪ DX – computed minimal diagnoses w.r.t. the input DPI consistent with all test cases
specified so far,

• Q – the list of open, non-labeled nodes,

• Ccalc – minimal conflict sets w.r.t. the input DPI computed so far and

• D× – computed minimal diagnoses w.r.t. the input DPI not consistent with all test cases specified
so far.

Each time a tree construction phase, i.e. the computation of new leading diagnoses, is finished, a new
diagnosis probability distribution is obtained by the diagnosis probability update as per Bayes’ Theorem
described in Section 9.2. Once this distribution involves one highly probable diagnosis (the probability
of which exceeds a predefined threshold 1 − σ) and else just highly improbable ones, the algorithm
terminates. The output is a solution KB w.r.t. the input DPI built from this highly probable minimal
diagnosis.

Remark 11.1 In case σ has a predefined value of zero, the output is the (exact) solution to the problem
of Interactive Static KB Debugging for the input DPI. In a scenario where some fault tolerance σ > 0 is
given, the solution KB returned by Algorithm 5 is an approximation of the (exact) solution to Interactive
Static KB Debugging for the input DPI where a better approximation can be expected for smaller values
of σ (cf. Remark 9.2). “Better” in this context refers to the satisfaction of desired semantic properties
of the KB returned by Algorithm 5, i.e. desired entailments and desired non-entailments of the KB. The
intuition is that the specification of additional test cases T guarantees the output of a KB complying with
these test cases, whereas accepting one – albeit highly probable – of multiple solution KBs without having
incorporated T leaves open the possibility for this KB to not fulfill T .

However, answering queries is effort for an interacting user. Therefore, the approach that involves the
“early” termination of the algorithm after a solution KB has a sufficiently high probability (lower than
1) constitutes a trade-off between exactness of the output and the effort of the user and overall execution
time of the interactive KB debugging algorithm, respectively.

Constant “Convergence” towards the Solution. As said, each added test case is an answered query
and thus eliminates at least one minimal diagnosis w.r.t. the input DPI. And, only minimal diagnoses
w.r.t. the input DPI are computed by STATICHS. Hence, by the fact that a solution to Interactive Static
KB Debugging can only be constructed from a minimal diagnosis w.r.t. the input DPI, it is guaranteed
that the number of solutions to Interactive Static KB Debugging is strictly monotonically decreasing
throughout the execution of Algorithm 5. That is, the initial number of (all) minimal diagnoses (w.r.t. the
input DPI) is “static” which means that no “new” minimal diagnoses can be introduced when the input
DPI is extended by new test cases.

As a consequence of this, it is reasonable to employ STATICHS in a situation where the (complete)
wpHS-tree produced by the standard (non-interactive) algorithm HS is believed to be as compact as to fit
into the available system memory. In this case, STATICHS is also guaranteed to not exceed the available
memory, even if an exact solution (σ = 0) is intended.

Unfortunately, however, it will be generally the case that a complete enumeration of all minimal
diagnoses is intractable, especially due to an overwhelming space complexity. In such a case, Algorithm 5
using STATICHS will definitely run out of memory (given that STATICHS is called sufficiently often).
The reason is that the space consumption of STATICHS will sooner or later definitely reach the huge
extent of the wpHS-tree produced by HS. Nevertheless, STATICHS might be used to (possibly) find some
(approximate) solution. This might work in a scenario where the given probabilistic information in terms

11.2. ALGORITHM WALKTHROUGH 151

of pK̃∪K() provided as an input to Algorithm 5 is “reasonable” in that the desired diagnosis is assigned a
rather high probability and is thus figured out early, before the available memory is exhausted.

A possible modification of the stop criterion in STATICHS in a way that new leading diagnoses are not
computed until a desired number of such is detected or a timeout is reached, but rather until a predefined
maximum space is consumed, would not mitigate space complexity issues very much. An explanation
for this is that stopping STATICHS on account of no more available memory implies that no further call
of STATICHS will be able to execute. That is because, as mentioned before, an added test case can only
invalidate already computed diagnoses, no other branches in the wpHS-tree, and each invalidated minimal
diagnosis cannot be discarded, but must be stored (in D×) to avoid the usage of leading diagnoses that
are non-minimal w.r.t. the input DPI (cf. lines 21-23 in Algorithm 7).

Poor Search Tree Pruning. As we explained before, the preservation of a constantly shrinking set of
minimal diagnoses comes at the cost of being able to exploit new test cases only partially, i.e. only for the
invalidation of already computed minimal diagnoses w.r.t. the input DPI and not for the computation of
minimal conflict sets and thus minimal diagnoses. The incorporation of test cases into the DPI that is used
to determine minimal conflict sets (line 30 in Algorithm 7) could, on the one hand, lead to new minimal
conflict sets that are no minimal conflict sets w.r.t. the input DPI. As a consequence of this, minimal
diagnoses might be determined by the algorithm which are no minimal diagnoses w.r.t. the input DPI, but
w.r.t. the current DPI. Hence, the soundness of STATICHS w.r.t. the set of solutions of the Interactive Static
KB Debugging problem would be violated. Furthermore, such conflict sets could lead to the missing of
some minimal diagnoses w.r.t. the input DPI, a violation of the completeness of STATICHS w.r.t. the set
of solutions of the Interactive Static KB Debugging problem.

On the other hand, the exploitation of new test cases for conflict set generation might give rise to
the possibility of pre-pruning of any tree branches, not just branches that already correspond to diagnoses
w.r.t. the input DPI. Such a “dynamic” strategy which exploits the new information given by a test case not
just partially, but for the invalidation and computation of diagnoses and conflict sets, will be implemented
be DYNAMICHS which we will detail in Chapter 12.

Put another way, in STATICHS only the standard pruning rules for the construction of a wpHS-tree
are applicable, namely the deletion of duplicate nodes and the elimination of non-minimal diagnoses (cf.
Definition 4.10). Newly defined test cases only facilitate the deletion of tree branches from the leading
diagnoses set Dcalc ∪ DX, but not from memory (as invalidated minimal diagnoses must be stored in
D×, as pointed out before).

To summarize, STATICHS on the one hand makes sure to only consider relevant solutions of the
problem of Interactive Static KB Debugging, but on the other hand suffers from this conservative strategy
in that tree pruning cannot be designed very effectively. So, on the positive side, uncontrolled growth
of the produced wpHS-tree can be avoided, but, on the negative side, consultation of an interacting user
cannot be taken advantage of in terms of reduction of the space complexity of STATICHS compared to
the construction of a wpHS-tree by a non-interactive procedure like Algorithm 2.

11.2 Algorithm Walkthrough
Input Parameters. When STATICHS (Algorithm 7) is called for the first time in Algorithm 5, the inputs
Ccalc, DX, D×, P ′ and N ′ correspond to the empty set and Q = [∅] (cf. lines 1-4 and 8 in Algorithm 5).
Further on, Dcalc is defined to be the empty set at the beginning of each execution of STATICHS. That is,
STATICHS starts the construction of the wpHS-tree from an initial tree consisting of a single unlabeled
root node ∅ (∈ Q). And, all collections that are later returned by STATICHS, except for Q, are initially
empty. Further input arguments are the DPI 〈K,B,P ,N 〉R provided as an input to Algorithm 5, the
sets of positively (P ′) and negatively (N ′) answered queries since the start of Algorithm 5, the leading

152 CHAPTER 11. STATIC DIAGNOSIS COMPUTATION ALGORITHM

diagnosis computation parameters nmin, nmax, t (see the description in Chapter 7 on page 95) and the
probability measure p() := pK() that assigns a probability in the interval (0, 0.5) to each formula in K
(cf. line 5 in Algorithm 5).

The Main Loop. During the repeat-loop, in each iteration the first node node in Q is processed
(GETFIRST, line 5). That is, node is deleted from Q (DELETEFIRST, line 6) and the SLABEL func-
tion is called given node (i.a.) as a parameter. Notice that elements are added to Q (line 17) in a way that
a sorting of Q in descending order according to pnodes() (cf. Definition 4.9) is maintained throughout the
execution of STATICHS.

Computation of a Node Label. The SLABEL function processes node as follows. First, the non-
minimality criterion (lines 21-23) is checked. That is, among all nodes in D(×,X,calc) = D×∪DX∪Dcalc

one is searched which is a subset of node. If such a node nd is found, then node must be a non-minimal
diagnosis (nd ⊂ node) or a duplicate diagnosis (nd = node) w.r.t. 〈K,B,P ,N 〉R since all sets D×, DX

and Dcalc contain only minimal diagnoses w.r.t. 〈K,B,P ,N 〉R. In this case, the branch in the wpHS-tree
corresponding to node can be dismissed which is taken account of by returning the label closed for node.

In case the non-minimality criterion is not satisfied, the duplicate criterion (lines 24-26) is checked
next. Here, Q is browsed for a node that is equal to node. If such a one is found, node can be discarded
because it suffices to consider only one tree branch among multiple tree branches in the wpHS-tree fea-
turing one and the same set of edge labels. Hence, closed is returned as a label for node. Altogether,
this means that only the last processed exemplar of a node corresponding to one and the same set of edge
labels is labeled, all others are discarded.

If the duplicate criterion is not met, the reuse criterion (lines 27-29) is checked next. That is, Ccalc

is browsed for a set C (Ccalc comprises only minimal conflict sets w.r.t. 〈K,B,P ,N 〉R) such that C and
node are disjoint sets. If such a C is detected, then C can be used to label node since the set of edge labels
along the path in the wpHS-tree leading from the root node to node does not hit C. In this case, the label
C is returned for node by SLABEL.

Given that the reuse criterion fails, QX is called given the DPI 〈K \ node,B,P ,N 〉R as an argument
(line 30). If the output L is equal to ’no conflict’, then we know by Proposition 4.9 that node is a diagnosis
w.r.t. 〈K,B,P ,N 〉R, wherefore the label valid is returned for node. Otherwise, the output L must be a
minimal conflict set w.r.t. 〈K,B,P ,N 〉R that has an empty set-intersection with node. Since the reuse
criterion failed, i.e. there is no set in Ccalc that does not intersect with node, L must be a fresh minimal
conflict set w.r.t. 〈K,B,P ,N 〉R in the sense that L /∈ Ccalc must hold. Therefore the label L is first
added to Ccalc and then returned by SLABEL as a label for node.

Processing of a Node Label. Back in the main procedure, Ccalc is updated (line 8) and then the label
L returned by the SLABEL function is processed as follows. If L = valid, then it is a fact that node is a
minimal diagnosis w.r.t. 〈K,B,P ,N 〉R, but it is not certain that node also meets all positive test cases P ′

and all negative test cases N ′ that have been specified and added to 〈K,B,P ,N 〉R so far. Thus, according
to Proposition 7.3, the validity of the KB K \ node w.r.t. 〈·,B,P ∪ P ′,N ∪ N ′〉R must still be checked
(line 10). If successful, node is added to the set Dcalc of calculated minimal diagnoses w.r.t. the input
DPI that comply with all answered queries so far. Otherwise, node is added to the set D× of minimal
diagnoses w.r.t. the input DPI that have been invalidated by some answered query.

Roughly, the minimality of diagnoses added to Dcalc is assured by the pruning rule (lines 21-23)
which eliminates non-minimal nodes and the fact that pnodes() sorts a node nd′ corresponding to a super-
set of some node nd behind nd in Q.

If, on the other hand, L = closed is the label returned by SLABEL, then node must simply be removed
from Q which has already been executed in line 6. Thence, no actions are necessary (cf. line 14).

11.2. ALGORITHM WALKTHROUGH 153

In the third case, if a minimal conflict set L is returned by SLABEL, then L is a label for node meaning
that |L| successor nodes of node, namely a node node ∪ {e} for all elements e ∈ L, need to be added to
Q in sorted order using the function pnodes() (INSERTSORTED, line 17).

Stop Criterion. The first criterion causing STATICHS to terminate is Q = [] which means that the
complete wpHS-tree has been constructed and no further nodes can be labeled. In this case, Dcalc ∪DX

comprises all minimal diagnoses w.r.t. 〈K,B,P ,N 〉R that are compliant with all the specified positive
and negative test cases P ′ and N ′.

If the first criterion is not met, then the second criterion is checked. That is, a test is performed which
checks whether the number of leading minimal diagnoses w.r.t. 〈K,B,P ,N 〉R in Dcalc ∪DX amounts
to at least nmin and either |Dcalc ∪ DX| = nmax or more than t time has passed since the start of the
execution of STATICHS. In the latter case, nmin ≤ |Dcalc ∪ DX| < nmax holds. In the former case,
|Dcalc ∪DX| = nmax is satisfied.

Processing of the Leading Diagnoses Returned by STATICHS. When a call of STATICHS in Al-
gorithm 5 returns 〈Dcalc ∪DX,Q,Ccalc,D×〉, the set Dcalc ∪ DX is stored in the variable DX in
Algorithm 5. Between two successive calls of STATICHS in Algorithm 5, only this set DX as well as D×
are modified. The list Q and the set Ccalc remain unchanged until they are used as input parameters to
the next call of STATICHS in Algorithm 5.

In case one diagnosis Dmax of the current leading diagnoses in DX has a probability greater or equal
1−σ as per the probability measure pD() (see Section 9.2), the stop criterion of interactive KB debugging
is met and a solution KB w.r.t. 〈K,B,P ,N 〉R constructed from the input DPI 〈K,B,P ,N 〉R as well as
from Dmax is returned to the user. Thereafter, Algorithm 5 terminates and no more calls of STATICHS
take place.

Otherwise, if no leading diagnosis satisfies the stop criterion, a query Q together with its q-partition
P(Q) is computed, as was detailed in Chapter 8 and Section 9.2. An answer u(Q) to this query is
submitted by the interacting user (line 17 in Algorithm 5). Then u(Q) along with P(Q) is exploited to
figure out the subset Dout of DX that does not comply with u(Q). This set Dout is then deleted from
DX and added to D×. Additionally, Q is added to the positive test cases P ′ if u(Q) = true and to the
negative test cases N ′ otherwise. Subsequently, STATICHS is called again given

• the updated parameters DX, D×, P ′ and N ′ (which are modified within and outside of STATICHS
during the execution of Algorithm 5),

• the unchanged parameters Q, Ccalc (which are modified only within STATICHS during the execu-
tion of Algorithm 5) and

• the constant parameters 〈K,B,P ,N 〉R, t, nmin, nmax and pK() (which are not modified within or
outside of STATICHS during the execution of Algorithm 5).

The execution of this next and any subsequent call to STATICHS runs in analogue way as described.

Remark 11.2 We want to emphasize that queries are computed w.r.t. the current DPI 〈K,B,P∪P ′,N ∪
N ′〉R although STATICHS focuses on solutions to the problem of Interactive Static KB Debugging which
involves exclusively minimal diagnoses w.r.t. the input DPI 〈K,B,P ,N 〉R. However, a minimal diagno-
sis w.r.t. 〈K,B,P ,N 〉R that satisfies all positive test cases P ′ as well as all negative test cases N ′ is also
a minimal diagnosis w.r.t. 〈K,B,P ∪ P ′,N ∪N ′〉R. And, a minimal diagnosis w.r.t. 〈K,B,P ,N 〉R that
does not satisfy all positive test cases P ′ as well as all negative test cases N ′ is not a minimal diagnosis
w.r.t. 〈K,B,P ∪P ′,N ∪N ′〉R. These two facts are guaranteed by Proposition 12.5 that will be given on
page 201.

Hence, it holds that

154 CHAPTER 11. STATIC DIAGNOSIS COMPUTATION ALGORITHM

• D is a minimal diagnosis w.r.t. 〈K,B,P ,N 〉R that satisfies P ′ ∪ {Q} as well as N ′ if and only if
D is a minimal diagnosis w.r.t. 〈K,B,P ∪ P ′ ∪ {Q} ,N ∪N ′〉R and

• D is a minimal diagnosis w.r.t. 〈K,B,P ,N 〉R that satisfies P ′ as well as N ′ ∪ {Q} if and only if
D is a minimal diagnosis w.r.t. 〈K,B,P ∪ P ′,N ∪N ′ ∪ {Q}〉R.

Therefore, each query constructed during Algorithm 5 with mode = static must be a query w.r.t. the
current set of leading diagnoses DX and the current DPI 〈K,B,P ∪ P ′,N ∪ N ′〉R (cf. Equation 7.1,
Definition 7.2 and Proposition 7.3 on pages 95-96).

As a consequence of this, no additional test is required in order to ascertain that each diagnosis in the
set DX that is given as a parameter to the next call of STATICHS does in fact satisfy all answered queries
so far.

11.3 Illustrating Examples
In this section we will give two examples of how interactive KB debugging using STATICHS (Algorithm 5
with parameter mode = static) works. The first one will show the similarities and differences between
the usage of STATICHS (within Algorithm 5) and HS (within Algorithm 3) since it will depict the appli-
cation of STATICHS on the same example DPI (see Table 15.3) that was used to show the functionality
of HS in examples 4.8 and 4.9. At the same time, the first example will provide evidence that solving the
problem of Interactive Static KB Debugging can be more efficient than solving the problem of Interactive
Dynamic KB Debugging in terms of the number of query answers required from an interacting user. This
will be discussed in more detail in Chapter 13.

The second example is supposed to deepen the reader’s understanding of the way STATICHS works.
To this end, the example DPI provided by Table 4.2 will be used which constitutes a significantly harder
(interactive) debugging task than the DPI investigated in the first example. This example will involve the
construction of a relatively large hitting set tree and thereby give a presentiment of the space and time
complexity problems caused by the poor tree pruning inherent in the STATICHS algorithm. In addition,
this example will draw a reverse image of the first example in that it will stress the advantage of the
decision to search for a solution of Interactive Dynamic KB Debugging rather than for a solution of
Interactive Static KB Debugging (more on that in Chapter 13).

Example 11.1 In this example we assume that the author (called user throughout this example) of
the (admissible) DPI 〈K,B,P ,N 〉R given by Table 15.3 applies Algorithm 5 with mode = static to
interactively debug 〈K,B,P ,N 〉R. Further, suppose the following user requirements:

In order to guarantee a fast reaction time of the system (the time between two successive queries to
the user), the user wants each query to be computed from the minimally necessary number of leading
diagnoses. Thus, in each iteration exactly two leading diagnoses should be computed by STATICHS (cf.
Proposition 7.5). This postulation is reflected by setting nmin = nmax = 2. Notice that the time limit t is
irrelevant in this case.

Moreover, the user desires to get just any query, i.e. they do not demand any particular properties
– such as optimal information gain among a pool of queries – to be satisfied by a query. This can be
ensured by choosing q := 1 (cf. Chapter 8) and qsm() equal to any query selection measure described in
Section 9.3.

The user is new to KB debugging and has neither an idea of faults they frequently make nor access to
any kind of data that would indicate their tendency to certain types of faults. Thence, pK(ax) := c < 0.5
for all ax ∈ K, i.e. all formula fault probabilities are specified to be equal (to some constant c). In such
a case, if a formula fault probability measure pK() is given as an input to Algorithm 5, then line 5 in
Algorithm 5 is omitted. Please notice that this aspect is not shown in Algorithm 5.

11.3. EXAMPLES 155

Finally, the user’s intention is to get the (exact) solution to the problem of Interactive Static KB
Debugging. This can be taken into account by specifying σ := 0.

The tree constructed and parameters computed and used by Algorithm 5 using STATICHS are visu-
alized by Figure 11.1. We use the same notation as in Figures 4.2 and 4.3 which is described in Exam-
ples 4.8 and 4.9. The only new notational element here is the =⇒ labeled by some designator of a query.

That is, X(Di)
Qj

=⇒ X means that Di is still a minimal diagnosis after Qj has been answered and added

to the respective set of test cases of the DPI. On the other hand, X(Di)
Qj

=⇒ × signifies that the minimal
diagnosis Di is invalidated through the addition of the answered query Qj to the respective set of test
cases of the DPI. Please notice that =⇒ does not point at a node of the wpHS-tree. Instead, the label at
which =⇒ points is to be understood as the new label of the node originally labeled by X(Di) from which
the (first of possibly multiple) =⇒ goes out. This notation should help to keep track of the evolution of
node labels in the wpHS-tree without needing to overload a single node by multiple different successive
labels.

In the first iteration, i.e. during the execution of the first call of STATICHS during Algorithm 5, the root
node (initially the empty set) is labeled by the minimal conflict set 〈1, 2, 5〉 w.r.t. 〈K,B,P ,N 〉R and three
successor nodes, namely {1}, {2} as well as {5}, are added to the queue of open nodes Q. Since all for-
mulas have been assigned an equal fault probability, STATICHS conducts a breadth-first tree construction
(as displayed by the numbers i© that give the order of node labeling). That is, Q in this case is a first-in-
first-out queue. In this vein, first [1] and then [2] are identified as minimal diagnoses w.r.t. the given DPI.
Since DX∪Dcalc = ∅∪{[1], [2]} has a cardinality of nmin = nmax = 2, the stop criterion of STATICHS
causes it to terminate and return 〈Dcalc ∪DX,Ccalc,Q,D×〉 = 〈{[1], [2]} , {〈1, 2, 5〉} , [{5}], ∅〉 (be-
cause DX and D× are initially empty sets), as shown in the upper right column in Figure 11.1.

Then, in Algorithm 5, outside of the STATICHS procedure, the first query Q1 = {E → ¬A} is com-
puted from the leading diagnoses set {[1], [2]}. The q-partition P(Q1) associated withQ1 is 〈{[1]} , {[2]},
∅〉. The user’s answer u(Q1) to Q1 is then false . Thence, the set Dout is calculated from P(Q1) as
D+(Q1) = {[1]} (due to negative answer, cf. Remark 7.4), deleted from DX := DX ∪Dcalc to yield
DX = {[2]} and added to D× to yield D× = {[1]}. The set DX corresponds to the set of all already
computed minimal diagnoses w.r.t. the input DPI that satisfy all queries answered so far. The set D×
comprises all already computed minimal diagnoses w.r.t. the input DPI that do not satisfy all queries
answered so far. These sets DX and D× along with the collections Q and Ccalc which are unmodified
outside of STATICHS are used as input arguments for the second call of STATICHS. Notice that, in the
figure, the resulting values of operations performed within STATICHS are given in the righthand column
above the dashed line whereas values computed outside of STATICHS are given below the dashed line.

After the modifications caused by the addition of the query Q1 to the negative test cases of 〈K,B,P ,
N 〉R have been taken into account in step 4©, the partial wpHS-tree built in iteration 1 is further con-
structed in iteration 2 resulting in the tree depicted by the middle picture in the lefthand column of Fig-
ure 11.1. Whereas the branches with edge labels {5, 1} and {5, 2} correspond to proper supersets of the
minimal diagnoses [1] and [2], respectively, w.r.t. the input DPI 〈K,B,P ,N 〉R and are thus closed by the
non-minimality criterion tested in the SLABEL function, the branch with edge labels {5, 7} is identified
as a minimal diagnosis D3 := [5, 7] w.r.t. 〈K,B,P ,N 〉R. However, D3 is not directly added to the set
Dcalc. In fact, the validity of the KB K \ D3 w.r.t. the current DPI 〈K,B,P ,N ∪ {Q1}〉R is tested be-
forehand. As this test is successful, meaning that D3 ∈ mD〈K,B,P,N 〉R ∩mD〈K,B,P,N∪{Q1}〉R , D3 can
be safely added to Dcalc implying the set of leading diagnoses DX ∪Dcalc = {D2,D3} with cardinality
two. Due to nmin = nmax = 2, STATICHS terminates.

After the second query Q2 has been answered negatively involving the dismissal of the leading diag-
nosisD2, STATICHS ends up with an empty queue Q of open nodes in iteration 3 (see the tree in the lower
left column of Figure 11.1). Hence, STATICHS returns a singleton set including the leading diagnosisD3.
Now, independently of the specified formula probabilities, pD(D3) = 1 ≥ 1 − σ = 1 is satisfied since

156 CHAPTER 11. STATIC DIAGNOSIS COMPUTATION ALGORITHM

the probability space considered by the probability measure pD() focuses on the sample space Ω = {D3}
(cf. Sections 4.6 and 9.2). Thus, the stop condition of Algorithm 5 is met wherefore the solution KB
Ksol := (K \ D3) ∪ UP = (K \ D3) ∪ ∅ = K \ D3 is returned to the user. This solution KB Ksol is
the (exact) solution to Interactive Static KB Debugging given the DPI 〈K,B,P ,N 〉R of Table 15.3 as
an input because D3 is the only minimal diagnosis w.r.t. 〈K,B,P ,N 〉R that conforms with all answered
queries Q1 = false and Q2 = false .

All in all, the execution of Algorithm 5 in this example performs

• 2 full QX calls, i.e. calls of QX that actually return a minimal conflict set (there are two minimal
conflict sets labeled by C in the picture at the bottom of the lefthand column in Figure 11.1) and

• 6 validity checks, i.e. calls of QX that return ’no conflict’ (one check for each of the three found
minimal diagnoses; notice that QX does only perform a single KB validity check by ISKBVALID
in case it returns ’no conflict’, see Algorithm 1) or calls of ISKBVALID in line 10 in STATICHS
(one call for each of the three found minimal diagnoses),

computes

• 3 minimal diagnoses w.r.t. the input DPI,

• 2 minimal conflict sets w.r.t. the input DPI and

• 2 queries and asks the user 2 logical formulas (1 per query)

and stores

• a maximum of 5 nodes (where node refers to the internal representation of a node in STATICHS as
a set of edge labels along a path from the root node to a leaf node; there are even more nodes in the
sense of tree nodes in the picture at the bottom of the lefthand column in Figure 11.1).

Example 11.2 Let us now consider the (admissible) DPI 〈K,B,P ,N 〉R given by Table 4.2. We assume
an expert (called user throughout this example) in the domain Dom modeled by K who wants to find a
solution to Interactive Static KB Debugging for the given DPI 〈K,B,P ,N 〉R by means of Algorithm 5
with mode = static. Further, we suppose the following requirements:

The user wants each query to be computed from three leading diagnoses. Thus, after each iteration of
STATICHS, the set DX ∪Dcalc should comprise exactly three elements. This postulation is reflected by
setting nmin = nmax = 3. Notice that the time limit t is irrelevant in this case.

Moreover, as in example 11.1, we assume no demand for queries satisfying special properties which
is reflected by choosing q := 1 (cf. Chapter 8) and qsm() equal to any query selection measure described
in Section 9.3.

Let there be several documentations of past debugging sessions (e.g. in terms of formula change logs)
involving KBs in the domain Dom of the author auth of K accessible to the user. Further, let the user
have extracted term and logical construct probabilities pK̃∪K(ax) ∈ [0, 1] for ax ∈ K for auth from this
data. This function pK̃∪K : K̃ ∪ K → [0, 1] is then provided as an input to Algorithm 5.

Finally, the user’s intention is to get the (exact) solution to the problem of Interactive Static KB
Debugging. This can be taken into account by specifying σ := 0.

The tree constructed and parameters computed and used by Algorithm 5 using STATICHS are visual-
ized by Figures 11.2 as well as 11.3. We use the same notation as in Figures 4.2, 4.3 and 11.1 which is
described in Examples 4.8, 4.9 and 11.1.

After the initialization of variables, Algorithm 5 calls the function GETFORMULAPROBS in line 5
which exploits pK̃∪K() to calculate the function pK() giving the fault probabilities of formulas in K (cf.
Sections 4.6.1, 9.2 and Example 4.7). Let the resulting probabilities be as depicted by Table 11.1.

11.3. EXAMPLES 157

ax ∈ K 1 2 3 4 5 6 8

pK(ax) 0.26 0.18 0.21 0.41 0.18 0.40 0.18

Table 11.1: (Example 11.2) Computed formula fault probabilities for the example DPI given by Table 4.2.

Then, STATICHS is called for the first time, resulting in the wpHS-tree given in the first picture in
Figure 11.2. Contrary to Example 11.1, where the tree was built up in breadth-first order, in this example
the formula probabilities p() := pK() given by Table 11.1 are used to assign a probability pnodes(n) to
each path n in the wpHS-tree starting from the root node (cf. Formula 4.6 and Definition 4.9). In this vein,
as outlined by the numbers i© indicating when a node is labeled, after the root node has been labeled by
C1 := 〈1, 2, 5〉, the node corresponding to the outgoing edge of C1 labeled by the formula with the largest
fault probability among all formulas in C1 is labeled first. That is, the node {1} with pnodes({1}) = 0.41
(as opposed to the nodes {2} and {5} with 0.25 each) is labeled first. The SLABEL procedure, after
checking whether {1} is a non-minimal diagnosis w.r.t. 〈K,B,P ,N 〉R or a duplicate of some other node
in Q (both checks negative), computes another minimal conflict set C2 := 〈2, 4, 6〉 such that {1}∩C2 = ∅
(C2 is not hit by the node {1}) to constitute a label for node {1}. The successor nodes {1, 2}, {1, 4} and
{1, 6} of {1} are generated and added to the list Q in a way that the sorting of Q in descending order of
pnodes() is maintained.

Since {1, 4} (0.28) as well as {1, 6} (0.27) have a larger probability (as per pnodes()) than the nodes
{2} (0.25) and {5} (0.25), Q is given by [{1, 4} , {1, 6} , {2} , {5} , {1, 2}] when it comes to the process-
ing of the next node. Since STATICHS always treats the first node of Q next, it identifies the first minimal
diagnosis D1 := [1, 4] w.r.t. 〈K,B,P ,N 〉R in step 3©. In steps 4© and 8©, two further minimal diagnoses
D2 := [1, 6] and D3 := [5, 4] are detected. Altogether, the union of DX (initially the empty set) and
Dcalc (comprising the three computed diagnoses) now contains 3 = nmin = nmax elements wherefore
STATICHS terminates and outputs the tuple 〈Dcalc ∪DX,Ccalc,Q,D×〉 where the sets in this tuple are
given under the wpHS-tree of iteration 1 in Figure 11.2.

From this set of leading diagnoses DX := DX ∪ Dcalc, the probability measure pD : DX →
[0, 1] is computed by the function GETPROBDIST (cf. Algorithm 6 and Section 9.2). The result is
〈pD(D1), pD(D2), pD(D3)〉 = 〈0.38, 0.37, 0.25〉. The mode Dmax := D1 of this probability distri-
bution is then computed by GETMODE. As σ = 0, pD(Dmax) = 0.38 6≥ 1 wherefore the stop criterion
of Algorithm 5 is not satisfied.

Consequently, Algorithm 5 proceeds to generate the first queryQ1 = {B v K} (based on the current
set of leading diagnoses DX) along with its associated q-partition P(Q1) = 〈{D1,D2} , {D3} , ∅〉. The
diagnosis D1 is in D+(Q1) because K∗1 = (K \D1)∪B ∪UP (recall Formula 7.1 for a definition of K∗i)
comprises formulas 2, 3, 5, 6, 7, 8 and 9 as well as p1 (cf. Table 4.2) wherefore K∗1 |= {B v K} = Q1

(due to the set of formulas {2, 3} = {B v G,G v K}). That D2 belongs to D+(Q1) as well follows
analogously. On the other hand,D3 ∈ D−(Q1) must be true sinceK∗3 ∪Q1 includes i.a. A v B (formula
1) and B v K (∈ Q1) wherefore {A v K} = n1 is an entailment of K∗3 . Thus, the negative test case n1

is violated.
The positive user answer u(Q1) = true is incorporated in that Q1 is appended to the set of positive

test cases P yielding P ∪ {Q1} = {{r(x, y)} , {B v K}}. Step 9© shows the impact of this test case
addition on the set of leading diagnoses, i.e. all diagnoses in the set Dout = D−(Q1) = {D3} (due to
positive answer, cf. Remark 7.4) are re-labeled by × whereas all other leading diagnoses (D1,D2) are
still labeled by X.

In the same fashion, further node labelings are conducted in iteration 2 until |DX ∪ Dcalc| =
| {D1,D2} ∪ {[2, 1]} | = 3 = nmin = nmax holds again. These actions are displayed by the tree at
the bottom of Figure 11.2.

Notice that, after step 12©, two nodes corresponding to the same set are elements of the list Q. At

158 CHAPTER 11. STATIC DIAGNOSIS COMPUTATION ALGORITHM

step 13©, the duplicate criterion checked by SLABEL comes into play. Since the node {1, 2} (the leftmost
branch in the tree) is ranked first in Q (we assume a first-in-first-out ordering of nodes corresponding to
equal sets of edge labels in Q), the SLABEL procedure is called given node := {1, 2} as an argument
and detects the node {2, 1} (the fourth leftmost branch in the tree) in Q. Hence, node = {1, 2} is closed
as a duplicate node which finds expression in the label ×(dup). When {2, 1} (which must have the same
probability as {1, 2} due to set-equality) is processed at step 14©, it is discovered to be a minimal diagnosis
(D5) w.r.t. 〈K,B,P ,N 〉R.

Moreover, we want to point out that another minimal diagnosis (D4 = [2, 4, 6]) is found in iteration 2
before D5 is detected. However, D4 is immediately ruled out and added to D× (cf. line 13 in STATICHS)
due to the fact that K\D4 is invalid w.r.t. the current DPI 〈·,B,P ∪{Q1} ,N 〉R (cf. Definition 3.3). The
explanation why this holds is as follows:

By Definition 3.3,K\D4 is valid w.r.t. 〈·,B,P∪{Q1} ,N 〉R iffK∗4 = (K\D4)∪B∪U(P∪{Q1}) (recall
Formula 7.1 for a definition of K∗i) does not violate any r ∈ R = {consistency, coherency} and does not
entail any n ∈ N = {n1,n2} = {{A v K} , {L v ∃r.F,B(x), G v K}}. Applying the diagnosis D4

to K yields K \ D4 = {1, 3, 5, 8} which includes in particular formula 1 which is equal to A v B (see
Table 4.2). However, there is also the negative test case n1 indicating that A v K must not be entailed
by K∗4 . That is, B v K ∈ K∗4 (due to Q1) and A v B ∈ K∗4 which implies that K∗4 |= {A v K} = n1

wherefore K∗4 is invalid w.r.t. 〈·,B,P ∪ {Q1} ,N 〉R.
Such a direct dismissal of a discovered diagnosisDi due to a newly added test case Qj is indicated by

k©X(Di)
Qj

=⇒ k©×, i.e. the step number k© at the shaft of the =⇒ is equal to the step number at the head
of =⇒. In case of the invalidation of a leading diagnosis (i.e. one that was utilized in the computation of
Qj), on the contrary, the step number at the shaft is lower than the step number at the arrow head.

As shown at the top of Figure 11.3, the second query Q2 computed from the leading diagnosis set
DX∪Dcalc = {D1,D2,D5} is then answered by u(Q2) = true as well, wherefore the leading diagnoses
D2,D5 are ruled out and added to D×. So, the input argument DX given to the next call of STATICHS
in Algorithm 5 consists of the single diagnosis D1.

In the third iteration (see the picture given in Figure 11.3), STATICHS again executes in order to
complete the leading diagnosis set to contain three elements. However, as we can say in advance, D1 is
the only minimal diagnosis w.r.t. the input DPI 〈K,B,P ,N 〉R which is also a diagnosis w.r.t. the current
DPI 〈K,B,P ∪ {Q1, Q2} ,N 〉R. Nevertheless, STATICHS continues expanding the wpHS-tree until it
has verified that this is the case (Q = []). This is equivalent to finishing the construction of the non-
interactive wpHS-tree that is generated by HS with parameters nmin = nmax = ∞. We want to stress
that the construction of the entire wpHS-tree w.r.t. 〈K,B,P ,N 〉R and p() := pK() is inevitable in a
debugging scenario where the (exact) solution to the Interactive Static KB Debugging problem is sought
(the probability w.r.t. pD() of a diagnosis can only be equal to 1 if there is only a single leading diagnosis
returned by STATICHS).

In fact, there are five further diagnoses D6, . . . ,D10 w.r.t. 〈K,B,P ,N 〉R that are detected in iteration
3 and directly dismissed (added to D×) after the validity check in line 10 of STATICHS. All other tree
branches are closed due to the non-minimality (label ×(⊃Di)) or duplicate criterion (label ×(dup)). Due
to σ = 0 and the associated necessity to grow the wpHS-tree until all leaf nodes are labeled, the final tree
(19 labeled leaf nodes) depicted in Figure 11.3 is relatively large in comparison to the small size |K| = 7.

This example might already give an idea of the potential explosion of the wpHS-tree produced by
STATICHS in case the (exact) solution to the Interactive Static KB Debugging problem is desired. This is
why it will usually make sense in practice to specify a fault tolerance σ > 0 which enables Algorithm 5
with mode = static to escape from the generally intractable complexity of the complete investigation of
all minimal diagnoses w.r.t. the input DPI (full construction of the wpHS-tree). However, in this concrete
example, allowing a small fault tolerance σ has no effect either. Actually, σ ≥ 0.56 is necessary to
achieve a premature termination of the tree construction. This holds due to the fact that the probability
distributions of leading diagnoses are 〈pD(D1), pD(D2), pD(D3)〉 = 〈0.38, 0.37, 0.25〉 (after iteration 1)

11.3. EXAMPLES 159

and 〈pD(D1), pD(D2), pD(D5)〉 = 〈0.44, 0.42, 0.14〉 (after iteration 2). Now, given say σ := 0.6, the
stop criterion of Algorithm 5 would be met after iteration 2 because pD(Dmax) = pD(D1) = 0.44 ≥
0.4 = 1 − 0.6 = 1 − σ. Nate that, in this case, the same (exact) solution would be returned as for
the setting σ := 0. The (significant) difference is just that the final tree in this case has only 14 leaf
nodes, of which only 7 are labeled (the labeling of a node is in general significantly more costly than the
mere generation of a node). As opposed to this, the full tree comprises 19 labeled nodes. On the other
side of the coin, choosing a value of σ > 0.5, for example, means that – from the point of view of the
knowledge at the time Algorithm 5 terminates – a solution to Interactive Static KB Debugging is returned
by Algorithm 5 which has a higher probability of not being the (exact) solution than of being the (exact)
solution.

All in all, the execution of Algorithm 5 in this example performs

• 4 full QX calls, i.e. calls of QX that actually return a minimal conflict set (there are four minimal
conflict sets labeled by C in the tree in Figure 11.3) and

• 20 validity checks, i.e. calls of QX that return ’no conflict’ (one check for each of the 10 found
minimal diagnoses; notice that QX does only perform a single KB validity check by ISKBVALID
in case it returns ’no conflict’, see Algorithm 1) or calls of ISKBVALID in line 10 in STATICHS
(one call for each of the 10 found minimal diagnoses),

computes

• 10 minimal diagnoses w.r.t. the input DPI,

• 4 minimal conflict sets w.r.t. the input DPI and

• 2 queries and asks the user 2 logical formulas (1 per query)

and stores

• a maximum of 19 nodes (where node refers to the internal representation of a node in STATICHS
as a set of edge labels along a path from the root node to a leaf node; there are even more nodes in
the sense of tree nodes in the picture in Figure 11.3).

160 CHAPTER 11. STATIC DIAGNOSIS COMPUTATION ALGORITHM

1©〈1, 2, 5〉C

2©X(D1) 3©X(D2) ?

1

zz
2

��
5

))

Iteration 1

〉
DX ∪Dcalc = ∅ ∪ {D1,D2} = {[1], [2]}

Q = [{5}]

Ccalc = {〈1, 2, 5〉}

D× = ∅

〈Q1,P(Q1)〉 = 〈{E → ¬A} , 〈{D1} , {D2} , ∅〉〉

u(Q1) = false

DX = {D2}

Dout = D× = {D1}

〉

1©〈1, 2, 5〉C

2©X(D1) 3©X(D2) 5©〈1, 2, 7〉C

4©× 4©X 6©×(⊃D1) 7©×(⊃D2) 8©X(D3)

1

zz
2

��
5

))

Q1

��
Q1

��
1

zz
2

��
7

$$

Iteration 2

〉
DX ∪Dcalc = {D2} ∪ {D3} = {[2], [5, 7]}

Q = []

Ccalc = {〈1, 2, 5〉 , 〈1, 2, 7〉}

D× = {D1} = {[1]}

〈Q2,P(Q2)〉 = 〈{Y → ¬A} , 〈{D2} , {D3} , ∅〉〉

u(Q2) = false

DX = {D3}

Dout = {D2}

D× = {D1,D2}

〉

1©〈1, 2, 5〉C

2©X(D1) 3©X(D2) 5©〈1, 2, 7〉C

4©× 4©X 6©×(⊃D1) 7©×(⊃D2) 8©X(D3)

9©× 9©X

1

zz
2

��
5

))

Q1

��
Q1

��
1

zz
2

��
7

$$

Q2

��
Q2

��

Iteration 3

〉
DX ∪Dcalc = {D3} ∪ ∅ = {[5, 7]}

Q = []

Ccalc = {〈1, 2, 5〉 , 〈1, 2, 7〉}

D× = {D1,D2} = {[1], [2]}

pD(D3) = 1

⇒ return the solution KB (K \ D3)

Figure 11.1: (Example 11.1) Solving the problem of Interactive Static KB Debugging (Problem Definition 6.2) for the
example DPI given by Table 15.3 by means of Algorithm 5 and STATICHS.

11.3. EXAMPLES 161

1 ©
〈1
,2
,5
〉C

2 ©
〈2
,4
,6
〉C

5 ©
〈1
,3
,4
〉C

6 ©
〈2
,4
,6
〉R

?
3 ©
X

(D
1
)

4 ©
X

(D
2
)

?
?

7 ©
〈1
,5
,6
,8
〉C

?
8 ©
X

(D
3
)

?

?
?

?
?

1

0
.4

1
tt

2
0
.2

5
��

5
0
.2

5
--

2

0
.0

9
��

4

0
.2

8
��

6

0
.2

7
��

1

0
.0

9
��

3
0
.0

7
��

4
0
.1

8
++

2 0
.0

6
��

4
0
.1

8
��

6

0
.1

7 **

1

0
.0

6
��

5

0
.0

4
��

6
0
.1

1
��

8

0
.0

4 ''

It
er

at
io

n
1

〉

D
X
∪
D

c
a
lc

=
∅
∪
{D

1
,D

2
,D

3
}

=
{[

1
,4

],
[1
,6

],
[5
,4

]}
,

Q
=

[{
5
,6
}
,{

2
,4
,6
}
,{

1
,2
}
,{

2
,1
}
,{

2
,3
}
,{

5
,2
}
,{

2
,4
,1
}
,{

2
,4
,5
}
,{

2
,4
,8
}]

,
D
×

=
∅

C
c
a
lc

=
{〈

1
,2
,5
〉,
〈2
,4
,6
〉,
〈1
,3
,4
〉,
〈1
,5
,6
,8
〉}

,

〈Q
1
,P

(Q
1
)〉

=
〈{
B
v
K
}
,〈
{D

1
,D

2
}
,{
D

3
}
,∅
〉〉

,
u

(Q
1
)

=
tr
u
e

,
D

X
=
{D

1
,D

2
},

D
o
u
t

=
D
×

=
{D

3
}

〉

1 ©
〈1
,2
,5
〉C

2 ©
〈2
,4
,6
〉C

5 ©
〈1
,3
,4
〉C

6 ©
〈2
,4
,6
〉R

13 ©
×

(d
u
p
)

3 ©
X

(D
1
)

4 ©
X

(D
2
)

14 ©
X

(D
5
)

?
7 ©
〈1
,5
,6
,8
〉C

?
8 ©
X

(D
3
)

10 ©
〈1
,3
,4
〉R

?
?

?
11 ©
X

(D
4
)

9 ©
×

9 ©
X

9 ©
X

?
?

12 ©
×

(⊃
D

3
)

11 ©
×

1

0
.4

1
uu

2
0
.2

5
��

5
0
.2

5
--

2

0
.0

9
��

4

0
.2

8
��

6

0
.2

7
��

1

0
.0

9
��

3
0
.0

7
��

4
0
.1

8 ++

2 0
.0

6
��

4
0
.1

8
��

6

0
.1

7
))

1

0
.0

6
��

5

0
.0

4
��

8

0
.0

4
''

6
0
.1

1
��

Q
1

��
Q

1

��
Q

1

��

1

0
.0

6 ��
3

0
.0

4
��

4

0
.1

1
��

Q
1

��

It
er

at
io

n
2

〉

Fi
gu

re
11

.2
:(

E
xa

m
pl

e
11

.2
)S

ol
vi

ng
th

e
pr

ob
le

m
of

In
te

ra
ct

iv
e

St
at

ic
K

B
D

eb
ug

gi
ng

(P
ro

bl
em

D
efi

ni
tio

n
6.

2)
fo

rt
he

ex
am

pl
e

D
PI

gi
ve

n
by

Ta
bl

e
4.

2
by

m
ea

ns
of

A
lg

or
ith

m
5

an
d

S
TA

T
IC

H
S.

162 CHAPTER 11. STATIC DIAGNOSIS COMPUTATION ALGORITHM

D
X
∪
D

c
a
lc

=
{D

1 ,D
2 }
∪
{D

5 }
=
{
[1
,4

],[1
,6

],[2
,1

]},
Q

=
[{

2
,4
,6}

,{
2
,3}

,{
5
,2}

,{
2
,4
,1}

,{
5
,6
,1}

,{
2
,4
,5}

,{
5
,6
,3}

],
D
×

=
{D

3 ,D
4 }

=
{
[5
,4

],[2
,4
,6

]}

C
c
a
lc

=
{〈1

,2
,5〉

,〈2
,4
,6〉

,〈1
,3
,4〉

,〈1
,5
,6
,8〉},

〈Q
2 ,P

(Q
2)〉

=
〈{
B
v
∃
r.F
}
,〈{D

1 }
,{D

2 ,D
5 }
,∅〉〉,

u
(Q

2)
=

tru
e,

D
X

=
{D

1 },
D

o
u
t

=
{D

2 ,D
5 },

D
×

=
{D

3 ,D
4 ,D

2 ,D
5 }

〉

1©
〈1,2,5〉

C

2©
〈2
,4,6〉

C

5©
〈1,3,4〉

C

6©
〈2
,4,6〉

R

13
©
×

(d
u
p
)

3©
X

(D
1
)

4©
X

(D
2
)

14
©

X
(D

5
)

16
©
〈1
,5
,6,8〉

R
7©
〈1
,5,6,8〉

C

17
©
〈1
,3
,4〉

R
8©
X

(D
3
)

10
©
〈1,3,4〉

R

18
©
×

(⊃
D

5
)

20
©
×

(⊃
D

3
)

21
©
X

(D
6
)

11
©

X
(D

4
)

9©
×

9©
X

9©
X

15
©
×

19
©
×

(⊃
D

2
)

22
©
X

(D
7
)

12
©
×

(⊃
D

3
)

28
©
×

(⊃
D

5
)

24
©
×

(⊃
D

3
)

25
©
×

(⊃
D

5
)

26
©
×

(d
u
p
)

23
©
X

(D
8
)

27
©
X

(D
9
)

29
©
X

(D
1
0
)

11
©
×

22
©
×

15
©

X
15
©
×

21
©
×

23
©
×

27
©
×

29
©
×

(D
1
0
)

1

0
.4

1
uu

2

0
.2

5
��

5

0
.2

5//

2

0
.0

9
��

4

0
.2

8
��

6

0
.2

7
��

1

0
.0

9
uu

3
0
.0

7
��

4
0
.1

8,,

2

0
.0

6
tt

4

0
.1

8
��

6
0
.1

7
&&

1

0
.0

6
uu

5
0
.0

4
��

8

0
.0

4
))

6
0
.1

1
��

Q
1

��

Q
1

��
Q

1

��

10
.0

6
xx

3

0
.0

4
��

4
0
.1

1
&&

1

0
.0

2
xx

5

0
.0

2
��

6

0
.0

4
��

8

0
.0

2
��

4
0
.0

4
&&

10
.0

2
xx

3

0
.0

2
��

Q
1

��

Q
2

��

Q
2

��
Q

2

��

Q
1

��

Q
2

��

Q
1

��

Q
1

�� Q
1

��

Iteration
3

〉

D
X
∪
D

c
a
lc

=
{D

1 }
∪
∅

=
{D

1 },
Q

=
[],

C
c
a
lc

=
{〈1

,2
,5〉

,〈2
,4
,6〉

,〈1
,3
,4〉

,〈1
,5
,6
,8〉},

D
×

=
{D

3 ,D
4 ,D

2 ,D
5 ,D

6 ,D
7 ,D

8 ,D
9 ,D

1
0 }

=
{
[5
,4

],[2
,4
,6

],[1
,6

],[2
,1

],[2
,4
,8

],[5
,6
,3

],[2
,3
,6

],[2
,3
,8

],[5
,2
,3

]},

p
D

(D
1)

=
1
⇒

return
the

solution
K

B
(K
\
D

1)∪
p

1
(p

1 :cf.Table
4.2)

Figure
11.3:

(E
xam

ple
11.2

continued)Solving
the

problem
ofInteractive

Static
K

B
D

ebugging
(Problem

D
efinition

6.2)forthe
exam

ple
D

PIgiven
by

Table
4.2

by
m

eans
of

A
lgorithm

5
and

S
TA

T
ICH

S.

11.4. ALGORITHM CORRECTNESS 163

11.4 Correctness of the Algorithm
In this section we will demonstrate the correctness of STATICHS. That is, we will prove that STATICHS,
given the inputs described in Algorithm 7, yields the outputs enumerated in Algorithm 7. Used in Al-
gorithm 5 to iteratively compute a set of leading diagnoses for query generation, STATICHS in this way
serves to solve the problem of Interactive Static KB Debugging approximately (parameter σ > 0 in
Algorithm 5) or exactly (σ = 0).

After each call to STATICHS during Algorithm 5, the hitting set tree produced by STATICHS is a
(partial) wpHS-tree w.r.t. the DPI 〈K,B,P ,N 〉R given as an input to Algorithm 5 and pnodes() which
can be directly obtained from the function p() given as input to STATICHS. This proposition is made by
Lemma 11.3.

In order to be able to prove this proposition, we formulate and prove two lemmata, Lemma 11.1 and
11.2. The former, which is given next, shows that this proposition holds for the very first call of STATICHS
during the execution of Algorithm 5. The latter assures that this proposition holds for any further call of
STATICHS during Algorithm 5 for an adequate set of input parameters to STATICHS. Finally, Lemma 11.3
exploits these results to ascertain that this proposition is satisfied for all calls of STATICHS.

Lemma 11.1. Let the following be the input parameters to the STATICHS function:

• 〈K,B,P ,N 〉R is the DPI given as input to Algorithm 5,

• nmin, nmax, t ∈ N where nmin ≥ 2,

• a function p : K → (0, 0.5),

• Q = [∅],

• P ′ = N ′ = D× = DX = Ccalc = ∅.

Then, STATICHS creates a (partial) wpHS-tree T w.r.t. 〈K,B,P ,N 〉R and pnodes() (cf. Definition 4.9)
equivalent to one produced by Algorithm 2 with input parameters 〈K,B,P ,N 〉R, nmin, nmax, t and p()
and returns 〈D,Q,Ccalc,D×〉 where 〈D ∪D×,Q,Ccalc〉 is the relevant data of T .

Proof. Since all input parameters P ′, N ′, D×, DX and Ccalc are equal to the empty set, Dcalc = ∅
and Q includes only the node ∅, we might regard 〈Dcalc,Q,Ccalc〉 as the initial relevant data of some
(partial) wpHS-tree which includes only an unlabeled root node. The root node ∅ cannot be labeled as
otherwise it would be necessarily an element of Dcalc if ∅ is a diagnosis w.r.t. 〈K,B,P ,N 〉R or the set
Ccalc would include the conflict set that labels the root node.

D× can never be extended during the execution of STATICHS since line 13 can never be reached.
This holds because the test made in line 10 can never be negative. Namely, as P ′ = N ′ = ∅, this
test actually checks whether K \ node is valid w.r.t. 〈·,B,P ,N 〉R. Due to the fact that L = valid
has been output as a label for node (line 9) by the SLABEL function called in line 7, it must hold that
QX(〈K \ node,B,P ,N 〉R) yielded ’no conflict’. By Proposition 4.9, this implies that K \ node is valid
w.r.t. 〈·,B,P ,N 〉R. Thence, D× = ∅ definitely holds whenever STATICHS terminates.

Moreover, each node with the label valid is added to Dcalc since line 13 can never be reached. As
a consequence, with the given input parameters, the execution of the code between line 2 and line 18 of
Algorithm 7 has exactly the same effect as executing the code between line 2 and line 16 of Algorithm 2.

DX can never be extended as there is no such modification operation at all in STATICHS. Thus,
DX = ∅ holds throughout the execution of STATICHS.

Now, the SLABEL procedure is equivalent to the LABEL procedure of Algorithm 2, except for the
first line of the non-minimality criterion. That is, in STATICHS (line 21) some nd is searched for in
D(×,X,calc) whereas in Algorithm 2 (line 19) such nd is searched in Dcalc. However, we point out that

164 CHAPTER 11. STATIC DIAGNOSIS COMPUTATION ALGORITHM

D(×,X,calc) in the SLABEL procedure corresponds to the set D×∪DX∪Dcalc in STATICHS (cf. the call
to SLABEL in line 7), where DX = D× = ∅ is an invariant, as argued above. Taking these arguments
into account, we have that D(×,X,calc) in SLABEL in line 21 is equal to Dcalc, just as in Algorithm 2.

Hence, with the given input parameters, we have verified that STATICHS acts equivalently to Al-
gorithm 2. As Algorithm 2 produces a (partial) wpHS-tree T w.r.t. the input DPI 〈K,B,P ,N 〉R and
pnodes() by Lemma 4.15, we infer that STATICHS also does so.

As opposed to Algorithm 2 which returns only Dcalc, STATICHS returns 〈D,Q,Ccalc,D×〉 where
D := Dcalc ∪DX = Dcalc since DX = ∅, as argued above. In that, Dcalc, Q and Ccalc correspond
exactly to the equally named collections in Algorithm 2 and D× = ∅, as argued above. Therefore, by
Corollary 4.6, 〈D ∪D×,Q,Ccalc〉 = 〈Dcalc,Q,Ccalc〉 is the relevant data of the (partial) wpHS-tree T
w.r.t. 〈K,B,P ,N 〉R and pnodes() produced by Algorithm 2.

The next lemma manifests that STATICHS, given such parameters that 〈D× ∪DX,Q,Ccalc〉 is the
relevant data of a (partial) wpHS-tree w.r.t. 〈K,B,P ,N 〉R and pnodes(), again yields a (partial) wpHS-
tree w.r.t. 〈K,B,P ,N 〉R and pnodes().

Lemma 11.2. Let the following be the input parameters to the STATICHS function:

• 〈K,B,P ,N 〉R is the DPI given as input to Algorithm 5,

• P ′ is the set of positive and N ′ is the set of negative test cases specified since the start of Algorithm 5
where P ′ ∪N ′ ⊃ ∅,

• nmin, nmax, t ∈ N where nmin ≥ 2,

• a function p : K → (0, 0.5),

• D× 6= ∅, DX 6= ∅, Ccalc 6= ∅ and Q such that 〈D× ∪DX,Q,Ccalc〉 is the relevant data of a (par-
tial) wpHS-tree w.r.t. 〈K,B,P ,N 〉R and pnodes() produced by Algorithm 2 with input parameters
〈K,B,P ,N 〉R and p().

Then, STATICHS creates a (partial) wpHS-tree T w.r.t. 〈K,B,P ,N 〉R and pnodes() equivalent to one
produced by Algorithm 2 with input parameters 〈K,B,P ,N 〉R and p() and returns 〈D,Q,Ccalc,D×〉
where 〈D ∪D×,Q,Ccalc〉 is the relevant data of T .

Proof. Since 〈D× ∪DX,Q,Ccalc〉 is the relevant data of a (partial) wpHS-tree T w.r.t. 〈K,B,P ,N 〉R
and pnodes() produced by Algorithm 2 with input parameters 〈K,B,P ,N 〉R and p(), it is clear that, if
the construction of T is continued by an algorithm working equivalently to Algorithm 2 and using this
relevant data, the relevant data of a (partial) wpHS-tree T ′ w.r.t. 〈K,B,P ,N 〉R and pnodes() will be
stored by this algorithm (Corollary 4.6). Therefore, we show that STATICHS is such an algorithm.

In Algorithm 2, the set of all already computed minimal diagnoses w.r.t. 〈K,B,P ,N 〉R is denoted
by Dcalc. Nodes labeled by valid are added to Dcalc (line 11) and Dcalc is used in the non-minimality
criterion in the LABEL function (line 19). If Algorithm 2 should be used to continue construction of T
using the relevant data 〈D× ∪DX,Q,Ccalc〉, the required setting is just to use Dcalc := D× ∪DX and
use Q and Ccalc for the equally named variables in Algorithm 2. If then a new node nd labeled by valid
were added to Dcalc, we would have that Dcalc := D× ∪DX ∪ {nd}. By Corollary 4.7, this set Dcalc

used by Algorithm 2 would at each point in time comprise exactly the |Dcalc| most probable minimal
diagnoses w.r.t. 〈K,B,P ,N 〉R and pnodes().

In STATICHS, each node node labeled by valid is added either to Dcalc, which is initially the empty
set in STATICHS, or to D× (lines 11 and 13), i.e. node is added to Dcalc ∪D×. Thus, it is also true to
say that node is added to Dcalc ∪D× ∪DX. So, the first new node nd labeled by valid is added to this
set which is then equal to D× ∪ DX ∪ {nd}. This set is equal to the set Dcalc that would be used by
Algorithm 2 to further construct the (partial) wpHS-tree T .

11.4. ALGORITHM CORRECTNESS 165

In the non-minimality criterion in function SLABEL, D×,X,calc is used which is equal to the set
Dcalc ∪D× ∪DX in STATICHS (cf. the call to SLABEL in line 7). Hence, Dcalc ∪D× ∪DX is used
and modified in STATICHS in exactly the same way as Dcalc is used and modified in Algorithm 2.

Apart from this, as can be easily verified, the labeling function SLABEL in STATICHS is identical to
LABEL in Algorithm 2 and the way Q and Ccalc are used and modified in STATICHS is exactly equivalent
to the way these are used and modified in Algorithm 2.

What remains to be shown is that Dcalc ∪ D× ∪ DX, as Dcalc in Algorithm 2, always contains
all already computed minimal diagnoses w.r.t. 〈K,B,P ,N 〉R which are the |Dcalc ∪ D× ∪ DX| most
probable minimal diagnoses w.r.t. 〈K,B,P ,N 〉R.

Since D× ∪DX is the first set in the relevant data of a (partial) wpHS-tree T w.r.t. 〈K,B,P ,N 〉R
and pnodes() produced by Algorithm 2 with input parameters 〈K,B,P ,N 〉R and p(), by Corollaries 4.6
and 4.7, it must be valid that D× ∪ DX comprises the |D× ∪ DX| most probable minimal diagnoses
w.r.t. 〈K,B,P ,N 〉R. Since Dcalc is initially defined to be the empty set in STATICHS, it is also true
to say that D× ∪ DX ∪ Dcalc comprises the |D× ∪ DX ∪ Dcalc| most probable minimal diagnoses
w.r.t. 〈K,B,P ,N 〉R when STATICHS starts executing. Since, by assumption, the same p() is used by
STATICHS as was used for the construction of the (partial) wpHS-tree T so far, the same ordering of Q
is used by STATICHS as would be used by Algorithm 2 to further construct the (partial) wpHS-tree T .
Therefore, D× ∪ DX ∪ Dcalc must indeed comprise the |D× ∪ DX ∪ Dcalc| most probable minimal
diagnoses w.r.t. 〈K,B,P ,N 〉R at each point in time.

The set D in the tuple 〈D,Q,Ccalc,D×〉 returned by STATICHS corresponds exactly to Dcalc∪DX.
So, D ∪D× = D× ∪DX ∪Dcalc.

To summarize, STATICHS acts exactly equivalently to Algorithm 2. As a consequence, Corollary 4.6
regarding Algorithm 2 applies to STATICHS as well. This means that the tuple consisting of the set of
nodes labeled by valid, i.e. D× ∪DX ∪Dcalc, the list of open nodes Q and the set of minimal conflict
sets w.r.t. 〈K,B,P ,N 〉R in STATICHS store the relevant data of a (partial) wpHS-tree T as it could have
been generated by Algorithm 2. This completes the proof.

Lemma 11.3. Any call to STATICHS within Algorithm 5 yields an output 〈D,Q,Ccalc,D×〉 where

• 〈D ∪D×,Q,Ccalc〉 is the relevant data of T and

• T is a (partial) wpHS-tree w.r.t. 〈K,B,P ,N 〉R and pnodes() equivalent to one produced by Algo-
rithm 2 with input parameters 〈K,B,P ,N 〉R and p().

Proof. As can be easily verified, the arguments given to STATICHS at the first time it is called through-
out the execution of Algorithm 5 correspond exactly to the input parameters to STATICHS assumed in
Lemma 11.1 (cf. the variable instantiations in lines 1-4 of Algorithm 5). Thus, by Lemma 11.1, we con-
clude that the first call to STATICHS during the runtime of Algorithm 5 yields the output 〈D,Q,Ccalc,D×〉
where 〈D ∪D×,Q,Ccalc〉 is the relevant data of T and T is a (partial) wpHS-tree w.r.t. 〈K,B,P ,N 〉R
and pnodes() equivalent to one produced by Algorithm 2 with input parameters 〈K,B,P ,N 〉R and p().

When this first call to STATICHS returns in Algorithm 5, D is renamed to become DX in Algorithm 5
(line 8). Q, Ccalc and D× bear unmodified names within Algorithm 5. We point out that Q and Ccalc

are not modified anywhere in Algorithm 5. DX and D× are modified only in lines 21 and 22. In these
lines, a subset Dout of DX is deleted from DX and added to D×.

Dout must be a subset of DX. This holds, first, because 〈Q,P(Q)〉 is a query Q w.r.t. the leading
diagnoses DX and the DPI 〈K,B,P ∪ P ′,N ∪ N ′〉R together with its q-partition P(Q) (CALCQUERY
in line 16, cf. Section 9.2). Second, Dout corresponds either to D+(Q) (if the answer u(Q) = false) or
to D−(Q) (if the answer u(Q) = true) where both sets must be subsets of the set of leading diagnoses
DX by Definition 7.2 (GETINVALIDDIAGS in line 19, cf. Section 9.2).

Hence, DX ∪ D× remains unchanged throughout Algorithm 5. By the renaming of D to become
DX in Algorithm 5 (see the argumentation above), DX ∪ D× is equal to the set D ∪ D× where

166 CHAPTER 11. STATIC DIAGNOSIS COMPUTATION ALGORITHM

〈D,Q,Ccalc,D×〉 is the output of the first call to STATICHS in Algorithm 5. Therefore, the relevant
data 〈D ∪D×,Q,Ccalc〉 of T is unmodified until the second call to STATICHS within Algorithm 5 is
made.

So, we have that the arguments given to STATICHS at the second time it is called throughout the exe-
cution of Algorithm 5 correspond exactly to the input parameters to STATICHS assumed in Lemma 11.2.
Notice that the probability measure pK() which corresponds to the probability measure p() in STATICHS
is never changed throughout the while-loop in Algorithm 5 (cf. Section 9.2).

Thus, by Lemma 11.2, we conclude that the second call to STATICHS during the runtime of Algo-
rithm 5 yields the output 〈D,Q,Ccalc,D×〉 where 〈D ∪D×,Q,Ccalc〉 is the relevant data of T ′ and
T ′ is a (partial) wpHS-tree w.r.t. 〈K,B,P ,N 〉R and pnodes() equivalent to one produced by Algorithm 2
with input parameters 〈K,B,P ,N 〉R and p().

By means of the same line of argument we used so far and further applications of Lemma 11.2 it can
be derived that the proposition of this lemma holds for any call to STATICHS throughout Algorithm 5.

By means of the just proven Lemma 11.3, we are now able to show by the next lemma that STATICHS
computes minimal diagnoses w.r.t. the DPI 〈K,B,P ,N 〉R given as an input to Algorithm 5 in most-
probable-first order. Further on, the next lemma will reveal that only minimal diagnoses w.r.t. the DPI
〈K,B,P ,N 〉R are computed by STATICHS which assures the soundness of STATICHS concerning the
(input) DPI 〈K,B,P ,N 〉R. The soundness of STATICHS as regards the (current) DPI 〈K,B,P ∪P ′,N ∪
N ′〉R will be considered in Lemma 11.6 below.

Lemma 11.4. Any call to STATICHS within Algorithm 5 yields an output 〈D,Q,Ccalc,D×〉 where
D ∪D× is the set of |D ∪D×| most probable (w.r.t. pnodes()) minimal diagnoses w.r.t. 〈K,B,P ,N 〉R.

Proof. Let T be the (partial) wpHS-tree T produced by any call to STATICHS within Algorithm 5. Then,
by Lemma 11.3,

• T is equal to a (partial) wpHS-tree produced by Algorithm 2 with input parameters 〈K,B,P ,N 〉R
and p() and

• the first set Dcalc in the relevant data 〈Dcalc,Q,Ccalc〉 of T produced by Algorithm 2 corresponds
to D ∪D×.

So, by Corollary 4.7, the proposition of this lemma follows.

Moreover, Lemma 11.3 provides the basis for showing the completeness of STATICHS. That is,
Lemma 11.5 will manifest that all minimal diagnoses w.r.t. the DPI 〈K,B,P ,N 〉R given as an input
to Algorithm 5 will be found by STATICHS given that it keeps executing for a sufficiently long period of
time.

Lemma 11.5. Any call to STATICHS within Algorithm 5 where the execution of STATICHS terminates
due to Q = [] yields an output 〈D,Q,Ccalc,D×〉 where D ∪ D× is the set of all minimal diagnoses
w.r.t. 〈K,B,P ,N 〉R.

Proof. The proposition of this lemma follows from Lemma 11.3 and Proposition 4.15 by an analogue
argumentation as in the proof of Lemma 11.4.

The following lemma proves that STATICHS is sound w.r.t. the finding of minimal diagnoses w.r.t.
the current DPI 〈K,B,P ∪ P ′,N ∪ N ′〉R, i.e. the DPI 〈K,B,P ,N 〉R given as an input to Algorithm 5
extended by all new positive and negative test cases P ′ and N ′, respectively, that have been collected so
far.

Lemma 11.6. If any call to STATICHS adds an element D to the set Dcalc during the execution of
Algorithm 5, D is a minimal diagnosis w.r.t. 〈K,B,P ∪ P ′,N ∪N ′〉R.

11.4. ALGORITHM CORRECTNESS 167

Proof. By Lemma 11.4 we know that each node node that is added to Dcalc by STATICHS is a min-
imal diagnosis w.r.t. the input DPI 〈K,B,P ,N 〉R. Through the test for validity of K \ node w.r.t.
〈·,B,P ∪ P ′,N ∪ N ′〉R (cf. Definition 3.3) which must be successful before node is added to Dcalc

(ISKBVALID in line 10), we have that node must also be a diagnosis w.r.t. 〈K,B,P ∪ P ′,N ∪ N ′〉R by
Proposition 3.2. Since node is a minimal diagnosis w.r.t. 〈K,B,P ,N 〉R as argued and due to Proposi-
tion 12.4 (see page 200), there cannot be a minimal diagnosis w.r.t. 〈K,B,P ∪ P ′,N ∪ N ′〉R which is a
proper subset of node. Thence, node must be a minimal diagnosis w.r.t. 〈K,B,P ∪ P ′,N ∪N ′〉R.

We are now in a position to bring to proof that the first set D in the tuple output by any call of
STATICHS in Algorithm 5 contains only these minimal diagnoses w.r.t. the (input) DPI 〈K,B,P ,N 〉R
that are also minimal diagnoses w.r.t. the (current) DPI 〈K,B,P ∪ P ′,N ∪ N ′〉R. In other words, this
means that the set of leading diagnoses used for query generation in Algorithm 5 consists only of minimal
diagnoses w.r.t. the input DPI that are in agreement with the additional information given by all query
answers so far.

Lemma 11.7. Any call to STATICHS within Algorithm 5 yields an output 〈D,Q,Ccalc,D×〉 where
D ⊆mD〈K,B,P,N 〉R ∩mD〈K,B,P∪P ′,N∪N ′〉R .

Proof. The output set D of any call to STATICHS during the execution of Algorithm 5 corresponds to
the set Dcalc ∪ DX in STATICHS. As per Lemma 11.6, Dcalc includes only minimal diagnoses w.r.t.
〈K,B,P ∪P ′,N ∪N ′〉R. By Lemma 11.4, Dcalc includes only minimal diagnoses w.r.t. 〈K,B,P ,N 〉R.
Therefore, we can conclude that Dcalc ⊆ mD〈K,B,P,N 〉R ∩mD〈K,B,P∪P ′,N∪N ′〉R . So, we must show
that DX ⊆ mD〈K,B,P,N 〉R ∩mD〈K,B,P∪P ′,N∪N ′〉R holds when any call to STATICHS during the exe-
cution of Algorithm 5 terminates. We will perform an induction proof.

Base Case: At the first call of STATICHS during the execution of Algorithm 5, the argument DX

passed to STATICHS is the empty set. As argued in the proof of Lemma 11.1, DX is never modified
throughout STATICHS. Thus, DX = ∅ ⊆ mD〈K,B,P,N 〉R ∩mD〈K,B,P∪P ′,N∪N ′〉R holds for the output
of the first call to STATICHS. Therefore, the proposition of this lemma holds for the output of the first call
of STATICHS.

Induction Step: Assume that the proposition of this lemma holds for the last-but-one call to STATICHS
during the execution of Algorithm 5 (Induction Hypothesis). Consider the last, i.e. most recent, call to
STATICHS during the execution of Algorithm 5.

First, the set DX given as an input argument to STATICHS at the last call of STATICHS is unmodified
throughout the entire execution of STATICHS, as already mentioned. Second, DX = D′ \ Dout ⊆
D′ holds where D′ is the output of the last-but-one call of STATICHS by Algorithm 5 since the only
modification to the set D′ (which is denoted by DX in Algorithm 5) during Algorithm 5 is the deletion
(line 21) of exactly those diagnoses Dout in D′ that are invalidated by the addition of the most recent
test case (GETINVALIDDIAGS in line 19). That is, the input DX to the most recent call to STATICHS
includes only diagnoses that comply with the most recently added test case. Call the most recently added
test case tc. By the Induction Hypothesis, D′ ⊆ mD〈K,B,P,N 〉R ∩mD〈K,B,P∪(P ′\{tc}),N∪(N ′\{tc})〉R .
Notice that either tc ∈ P ′ or tc ∈ N ′ holds, but not both. As DX ⊆ D′, it must be true that DX ⊆
mD〈K,B,P,N 〉R ∩mD〈K,B,P∪(P ′\{tc}),N∪(N ′\{tc})〉R and DX complies with the test case tc. Hence, we
infer that DX ⊆ mD〈K,B,P,N 〉R ∩mD〈K,B,P∪P ′,N∪N ′〉R . Consequently, the proposition of this lemma
must hold for each call of STATICHS during the execution of Algorithm 5.

The results proven so far in this section facilitate the proof of correctness of STATICHS:

Proposition 11.1 (Correctness of STATICHS). Any call to STATICHS (given the inputs described in
Algorithm 7) within Algorithm 5 terminates and yields an output 〈D,Q,Ccalc,D×〉 where

(1) it holds for D that

168 CHAPTER 11. STATIC DIAGNOSIS COMPUTATION ALGORITHM

(a) D ⊆ mD〈K,B,P,N 〉R ∩ mD〈K,B,P∪P ′,N∪N ′〉R is the set of most probable minimal diagnoses
w.r.t. 〈K,B,P ,N 〉R that satisfy all test cases P ′ and N ′ such that

(i) nmin ≤ |D| ≤ nmax and
(ii) D ⊃ DX,

if such a set D exists, or

(b) D is equal to the set of all minimal diagnoses mD〈K,B,P,N 〉R ∩mD〈K,B,P∪P ′,N∪N ′〉R , other-
wise,

where “most-probable” refers to the probability measure pnodes() (cf. Definition 4.9) obtained from
the given function p();

(2) Q is the current queue of open (non-labeled) nodes of the produced (partial) wpHS-tree,

(3) Ccalc is the set of all minimal conflict sets w.r.t. 〈K,B,P ,N 〉R computed so far and

(4) D× is the set of all minimal diagnoses w.r.t. 〈K,B,P ,N 〉R computed so far where each diagnosis in
D× does not satisfy all test cases P ′ and N ′.

Proof. Termination of any call to STATICHS within Algorithm 5 is granted by the fact that each node is a
subset of K wherefore 2|K| is a finite upper bound of the overall number of nodes that might be elements
of Q during the execution of any call of STATICHS. Moreover, in each iteration of the repeat-loop in
STATICHS, one element is removed from Q (line 6) and no once removed element can ever be readded to
Q. The latter is satisfied due to the non-minimality criterion (lines 21-23) that deletes all but one nodes
set-equal to some set X ⊆ K before the first node set-equal to X is processed and due to the fact that no
once labeled nodes, i.e. those nodes that are elements of Dcalc, DX or D×, are ever added to Q again
(because there is no line of code in STATICHS that does so).

Proposition (1): During the execution of Algorithm 5 (and STATICHS), diagnoses are added to D×
only in line 22. In this line, only and all diagnoses not complying with the most recent test case are
added to D× (GETINVALIDDIAGS in line 19, cf. Section 9.2). Hence, no diagnosis in D× can be
in mD〈K,B,P,N 〉R ∩ mD〈K,B,P∪P ′,N∪N ′〉R . Now, by Lemmata 11.4 and 11.7, we deduce that D ⊂
mD〈K,B,P,N 〉R∩mD〈K,B,P∪P ′,N∪N ′〉R is the set of most probable minimal diagnoses w.r.t. 〈K,B,P ,N 〉R
that satisfy all test cases P ′ and N ′. If STATICHS does not terminate due to Q = [], properties (a)-(i) and
(a)-(ii) of D are direct consequences of the stop criterion in line 18 in STATICHS. Otherwise, we infer by
Lemma 11.5 that (b) must be true.

Propositions (2) and (3) hold by Lemma 11.3 and the definition of relevant data of a (partial) wpHS-
tree (cf. Remark 4.2).

Proposition (4): This proposition follows from the line of argument in the proof of proposition (1)
above.

11.4. ALGORITHM CORRECTNESS 169

Algorithm 7 Iterative Construction of a Static Hitting Set Tree

Input: a tuple 〈〈K,B,P ,N 〉R,Q, t, nmin, nmax,Ccalc,DX,D×, p(),P
′,N ′〉 consisting of

• the DPI 〈K,B,P ,N 〉R given as input to Algorithm 5,

• the overall sets of positively (P ′) and negatively (N ′) answered queries added as test cases to 〈K,B,P ,N 〉R so far,

• the current queue Q of open (non-labeled) nodes of a (partial) wpHS-tree,

• some desired computation timeout t,

• a desired minimal (nmin ≥ 2) and maximal (nmax) number of minimal diagnoses to be returned,

• the set Ccalc of all minimal conflict sets w.r.t. 〈K,B,P ,N 〉R computed so far,

• the set DX of all minimal diagnoses w.r.t. 〈K,B,P ,N 〉R computed so far that satisfy all test cases P ′ and N ′,

• the set D× of all minimal diagnoses w.r.t. 〈K,B,P ,N 〉R computed so far that do not satisfy all test cases P ′ and N ′.

• a function p : K → (0, 0.5).

Output: a tuple 〈D,Q,Ccalc,D×〉 where

• D is the current set of leading diagnoses such that

(a) D ⊆mD〈K,B,P,N〉R ∩mD〈K,B,P∪P′,N∪N ′〉R is the set of most probable minimal diagnoses w.r.t. 〈K,B,P ,N 〉R that
satisfy all test cases P ′ and N ′ such that
(i) nmin ≤ |D| ≤ nmax and

(ii) D ⊃ DX,
if such a set D exists, or

(b) D is equal to the set of all minimal diagnoses mD〈K,B,P,N〉R ∩mD〈K,B,P∪P′,N∪N ′〉R , otherwise,

where “most-probable” refers to the probability measure pnodes() (cf. Definition 4.9) obtained from the given function p();

• Q is the current queue of open (non-labeled) nodes of the produced (partial) wpHS-tree,

• Ccalc is the set of all minimal conflict sets w.r.t. 〈K,B,P ,N 〉R computed so far and

• D× comprises those minimal diagnoses w.r.t. 〈K,B,P ,N 〉R computed so far that do not satisfy all test cases P ′ and N ′.

1: procedure STATICHS(〈K,B,P ,N 〉R,Q, t, nmin, nmax,Ccalc,DX,D×, p(),P
′,N ′)

2: tstart ← GETTIME()
3: Dcalc ← ∅
4: repeat
5: node← GETFIRST(Q)
6: Q← DELETEFIRST(Q)
7: 〈L,C〉 ← SLABEL(〈K,B,P ,N 〉R, node,Ccalc,D× ∪DX ∪Dcalc,Q)
8: Ccalc ← C
9: if L = valid then . node is minimal diagnosis w.r.t. 〈K,B,P ,N 〉R

10: if ISKBVALID(K \ node, 〈·,B,P ∪ P ′,N ∪N ′〉R) then . ISKBVALID (see Algorithm 1)
11: Dcalc ← Dcalc ∪ {node} . node does satisfy all test cases P ′ and N ′

12: else
13: D× ← D× ∪ {node} . node does not satisfy all test cases P ′ and N ′

14: else if L = closed then . do nothing, no need to store non-minimal diagnoses
15: else . L must be a minimal conflict set
16: for e ∈ L do
17: Q← INSERTSORTED(node ∪ {e} ,Q, pnodes(), descending)

18: until Q = [] ∨ [|Dcalc| 6= ∅ ∧ |Dcalc ∪DX| ≥ nmin ∧ (|Dcalc ∪DX| = nmax ∨ GETTIME()− tstart > t)]
19: return 〈Dcalc ∪DX,Q,Ccalc,D×〉

20: procedure SLABEL(〈K,B,P ,N 〉R, node,Ccalc,D(×,X,calc),Q)
21: for nd ∈ D(×,X,calc) do
22: if node ⊇ nd then . node is a non-minimal diagnosis
23: return 〈closed,Ccalc〉
24: for nd ∈ Q do
25: if node = nd then . node is a duplicate node
26: return 〈closed,Ccalc〉
27: for C ∈ Ccalc do
28: if C ∩ node = ∅ then . the minimal conflict set C can be reused to label node
29: return 〈C,Ccalc〉
30: L← QX(〈K \ node,B,P ,N 〉R) . see Algorithm 1 (page 48)
31: if L = ’no conflict’ then . node is a diagnosis
32: return 〈valid,Ccalc〉
33: else . L is a new minimal conflict set (/∈ Ccalc)
34: Ccalc ← Ccalc ∪ {L}
35: return 〈L,Ccalc〉

Chapter 12

DYNAMICHS: A Dynamic Iterative
Diagnosis Computation Algorithm

As the name already suggests, DYNAMICHS (Algorithm 8) is a procedure that solves the problem of
Interactive Dynamic KB Debugging defined by Problem Definition 6.1 if used for leading diagnosis com-
putation in Algorithm 5. DYNAMICHS is sound, complete and optimal w.r.t. the set of solutions of the
Interactive Dynamic KB Debugging problem (this will be proven in Section 12.4.10). Optimality refers
to the best-first computation of minimal diagnoses regarding a given probability measure.

12.1 Overview and Intuition

Synoptic View of the Algorithm. DYNAMICHS (Algorithm 8) is employed as a subroutine in Algo-
rithm 5 with mode = dynamic to build up a hitting set tree iteratively. That is, each time DYNAMICHS
is called in Algorithm 5, it expands the existing tree only to a sufficient extent in order to determine a
desired number of new leading diagnoses used for the generation of the next query. Then, the leading
diagnoses set is returned.

Outside of the DYNAMICHS method in Algorithm 5, a new diagnosis probability distribution is ob-
tained by the diagnosis probability update (cf. Section 9.2). Once this distribution involves one diagnosis,
the probability of which exceeds a predefined threshold 1− σ, the algorithm terminates. The output is a
solution KB w.r.t. the current DPI built from this highly probable minimal diagnosis.

Remark 12.1 In case σ has a predefined value of zero, the output is the (exact) solution to the prob-
lem of Interactive Dynamic KB Debugging for the input DPI. In a scenario where some fault tolerance
σ > 0 is given, the solution KB returned by Algorithm 5 is an approximation of the (exact) solution to
Interactive Dynamic KB Debugging for the input DPI where a better approximation can be expected for
smaller values of σ (cf. Remark 9.2). “Better” in this context refers to the satisfaction of desired semantic
properties of the KB returned by Algorithm 5, i.e. desired entailments and desired non-entailments of the
KB. The intuition is that specification of additional test cases T guarantees the output of a KB complying
with these test cases, whereas accepting one – albeit highly probable – of multiple solution KBs without
having incorporated T leaves open the possibility for this KB to not fulfill T .

However, answering queries is effort for an interacting user. Therefore, the approach that involves the
“early” termination of the algorithm after a solution KB has a sufficiently high probability (lower than
1) constitutes a trade-off between exactness of the output and the effort of the user and overall execution
time of the interactive KB debugging algorithm, respectively.

171

172 CHAPTER 12. DYNAMIC DIAGNOSIS COMPUTATION ALGORITHM

In case there is no highly probable leading diagnosis, a query constructed from the current set of
leading diagnoses is asked to the user. The user’s answer is incorporated into the current DPI resulting in
a new DPI. Thereafter, DYNAMICHS is invoked again given this new DPI as an argument.

Storage of the Search Tree. Between each two calls of DYNAMICHS in Algorithm 5, the “state” of the
current hitting set tree is stored by variables

• Dcalc – computed minimal diagnoses w.r.t. the current DPI,

• Q – the list of open, non-labeled nodes,

• Ccalc – (not necessarily minimal) conflict sets w.r.t. the current DPI computed so far,

• D⊃ – non-minimal diagnoses w.r.t. the current DPI computed so far,

• Qdup – non-labeled duplicate nodes (i.e. nodes corresponding to tree branches with the same set of
edge labels as branches that are already present in the tree)

• D× – the empty set (is filled up during Algorithm 5 between two calls of DYNAMICHS with
diagnoses from Dcalc that have been invalidated by an answered query)

where nodes in the tree again store (among others) the edge labels on the path from the root node to
themselves.

Search Tree Update. It is immediately apparent from the enumeration given above that, in comparison
to STATICHS, additional collections, i.e. D⊃ as well as Qdup, need to be maintained in order to “remem-
ber” the current tree while Algorithm 5 is processing outside of the method DYNAMICHS. The cause for
these additional variables is the tree update necessary after each addition of a test case to a DPI. For,
each iteration of DYNAMICHS considers a different DPI in terms of the test cases. And, any two different
DPIs in general lead to a different hitting set tree and to different sets of minimal diagnoses and conflict
sets. Hence, the idea of the tree update is the following: Reuse the partial hitting set tree T (stored by
the variables described above) constructed before the new test case was added to the current DPI DPIj
and perform suitable modifications to T in order to obtain a tree T ′ such that the further expansion of T ′

allows to identify all minimal diagnoses w.r.t. the new DPI DPIj+1 resulting from the addition of the
new test case to DPIj . In other words, the tree update seeks to establish a tree that is equivalent to one
built by execution of DYNAMICHS using the new DPI DPIj+1 starting from an empty tree.

Node Storage. Notice that, unlike in STATICHS or HS, it is crucial to store nodes not as sets in DY-
NAMICHS, but as ordered lists of formulas. That is, each node nd stores a list of all the edge labels along
the (directed) path in the hitting set tree from the root node to nd where the order of formulas in the list
is given by the order of traversing the edge labels along this path. Additionally, DYNAMICHS stores the
attribute nd.cs for each node nd which is an ordered list including the node labels, i.e. the conflict sets,
along the path from the root node to nd in analogous way. Associating a node with these two lists instead
of one set is necessary from the point of view of the tree update. Because this facilitates the differentiation
between two nodes corresponding to an equal (partial) diagnosis. For example, there could be some node
nd1 that is “redundant” after some query Q has been answered, but there is a set-equal node nd2 which
is still “relevant” (set-equality refers to equal sets, not lists, of edge labels stored by two nodes). In this
case, the algorithm should get rid of nd1 (in order to save time and space) while preserving node nd2 (in
order to maintain completeness). Associating set-equal nodes with each other might thus either lead to
unnecessary tree expansion steps (if none is deleted) or incompleteness of the algorithm concerning the
consideration of all minimal diagnoses (in case both are deleted).

12.1. OVERVIEW AND INTUITION 173

Addition of a Test Case Changes Set of Solutions. Unlike the STATICHS algorithm, which is strongly
related to the non-interactive hitting set algorithm HS (Algorithm 2) as outlined in Section 11.1, the
hitting set tree produced by DYNAMICHS will usually differ significantly from the non-interactive hitting
set tree produced by HS. The reason for this is that in DYNAMICHS the initial DPI DPI0 is not fixed (in
that conflict sets and diagnoses are calculated only w.r.t. DPI0), but new test cases are also used for the
computation of minimal conflict sets (and thus minimal diagnoses) and not only for the invalidation of
diagnoses. Hence, every time a query has been answered and a respective test case has been incorporated
into the DPI, the minimal conflict sets computed for the old DPI DPIj might not be minimal conflict
sets w.r.t. the current DPI DPIj+1 anymore (see Examples 12.1 and 12.2). On the one hand, a minimal
conflict set C w.r.t.DPIj might be a non-minimal conflict set w.r.t.DPIj+1 (since there is a new minimal
conflict set C′ ⊂ C w.r.t. DPIj+1). On the other hand, there might be also “completely new” minimal
conflict sets Ck w.r.t. DPIj+1 which are in no set-relationship with any minimal conflict set w.r.t. DPIj .

Due to this changing set of minimal conflict sets, the set of minimal diagnoses is variable as well
(cf. Proposition 4.6). To see this, let D be a minimal diagnosis w.r.t. DPIj . Then D hits all minimal
conflict sets Ck in mCDPIj . Now, assume that D comprises (only) the element ax from Ck, but there
is a minimal conflict set C′k in mCDPIj+1 such that C′k ⊆ Ck \ {ax}. In this case, D is not a (minimal)
hitting set of all minimal conflict sets in mCDPIj+1

(since D does not hit C′k), i.e. D is not a (minimal)
diagnosis w.r.t. DPIj+1. That means, D needs to be extended (by a hitting set of all minimal conflict
sets in mCDPIj+1

it does not hit) in order to become a diagnosis w.r.t. DPIj+1. After extending D,
both situations might arise, either thatD is a minimal diagnosis w.r.t.DPIj+1 or thatD is a non-minimal
diagnosis w.r.t. DPIj+1. When the latter case occurs, DYNAMICHS might often be able to figure out
that (the tree branch corresponding to) D is simply redundant (w.r.t. the new DPI DPIj+1) and does not
need to be considered during the further expansion of the hitting set tree (which searches for minimal
diagnoses w.r.t. DPIj+1 and not w.r.t. DPIj). That is, such redundant tree branches are unnecessary in
order to explore all minimal diagnoses w.r.t.DPIj+1 (cf. Sections 12.1 and 12.4.5 for an explanation and
precise characterization of redundancy).

As a consequence, the nice property of STATICHS that the set of minimal diagnoses that needs to
be taken into account given DPIj+1 is a proper subset of the minimal diagnoses set that needed to
be considered given DPIj in no longer valid for DYNAMICHS. That is, the set of remaining solution
candidates in DYNAMICHS is not guaranteed to “converge” constantly towards a singleton comprising
only one solution. The DPI, the minimal conflict sets as well as the minimal diagnoses are “dynamic”.
What holds for both DYNAMICHS and STATICHS is the guarantee that the set of all (i.e. minimal and
non-minimal) diagnoses is constantly shrinking, i.e. aDDPIj ⊃ aDDPIj+1

(as well will later prove by
Corollary 12.4).

Search Tree Pruning. Let T be the hitting set tree produced in the j-th iteration of DYNAMICHS (i.e.
T is the tree that was used to search for minimal diagnoses w.r.t. DPIj). Then, after a new test case has
been added to DPIj , there are often redundant subtrees in T that can be pruned. The resulting tree T ′

can then be used in the (j + 1)-th iteration of DYNAMICHS to identify minimal diagnoses w.r.t. the new
DPI DPIj+1. Using T instead of T ′ might lead to a significant time and (more severely) space overhead,
due to the unnecessary expansion of redundant branches that are known to give no new information at
all. Another approach could be to simply discard the entire tree T and start to construct a new one
w.r.t. DPIj+1 from scratch. This strategy, however, will usually also suffer from a non-negligible time
overhead since most of the tree T can be safely reused in iteration j+1 and only parts of it must be revised.
In particular, this strategy would potentially involve many additional calls of QX (which internally calls
an expensive reasoner) as, in the worst case (when no pruning is possible), the entire existing tree might
be rebuilt.

As we shall see in Remark 12.5, Section 12.4 and Examples 12.1 as well as 12.2, the overhead in
terms of (expensive) calls to a reasoner (i.e. calls of QX) due to tree pruning (compared to its impact on

174 CHAPTER 12. DYNAMIC DIAGNOSIS COMPUTATION ALGORITHM

the tree) is absolutely reasonable. In fact, only one call of a “fast version” of QX (see Section 12.4.6)
might already lead to the deletion of 75% of the tree branches as one can see in the first pruning step in
Example 12.2.

The evolution of the hitting set tree produced by Algorithm 5 using DYNAMICHS is thus characterized
by alternating expansion and pruning phases. Also for very complex problems, in case that expansion
phases are “short enough” such that tree pruning can take place “often enough”, one might be able to
keep the hitting set tree “small enough” to handle it efficiently. The extent of the expansion phase can
be steered by the specification of the leading diagnosis parameters nmin, nmax and t (cf. Section 9.2). In
the extreme case, these can be defined in a way (nmin = nmax = 2) the algorithm will allow only the
computation of a single further minimal diagnosis (in the first expansion phase: two diagnoses) before
DYNAMICHS (i.e. the tree expansion phase) terminates and a further pruning phase might take place.

However, it is not automatically warranted that tree pruning is possible after each expansion phase.
Similarly, no certainty is given that the transition from DPIj to DPIj+1 just causes the deletion of parts
of the tree and no additional expansion of the tree. In fact, this depends on certain properties of the test
case that is added after an expansion phase (i.e. properties of the generated query).

Test Cases Affect Tree Pruning. Some added test case might give rise to some pruning steps as well as
it might induce the construction of new subtrees (where “new” means that these would be no subtress of a
hitting set tree w.r.t. the previous DPIDPIj). The latter situation occurs when “completely new” minimal
conflict sets (see above) are introduced by the addition of a test case. If this is the only impact of a test
case, then this test case has only a negative influence on the time and space complexity. In other words,
none of the invalidated minimal diagnoses (and no other nodes in the tree) are redundant; but all of them
must additionally hit the set of “completely new” minimal conflict sets (in order to become diagnoses
w.r.t. DPIj+1). Hence, in this case, the transition from DPIj to DPIj+1 results only in monotonic
growth of the tree. If possible, such “negative-impact test cases” must be avoided. On the other hand,
one must strive for the usage of “positive-impact test cases”, i.e. those that only trigger tree pruning, but
no tree expansion. Defining and studying properties that constitute such “positive-impact test cases” and
developing specialized algorithms for extracting exactly those types of queries that enable as substantial
and effective pruning as possible is a topic of future research.

An idea pertinent to this issue could for example be to attempt to extract a query by means of the
conflict set C that labels the root node of the tree. More concretely, if any answer to a query yields a
new test case that leads to the introduction of a minimal conflict set that is a proper subset of C, then it
is for sure that significant pruning can take place (since entire subtrees starting from the root of the tree
can be deleted). For instance, the first query Q1 in Example 12.2 features this property. Roughly, the
reasons for that are that Q1 is an entailment of a proper subset Csub of C (i.e. Csub is a justification of Q1,
cf. Section 4.2) and Q1 is “relevant” for this conflict set C to be a conflict set. In other words, the latter
means that Q1 can be used to “replace” the part Csub of C, i.e. (C \ Csub) ∪Q1 is invalid w.r.t. the given
DPI. That is, addition of Q1 to the positive test cases asserts the correctness of one part of C, namely Csub
(cf. Example 12.2), wherefore the other part must be incorrect (because some part of a conflict set must
be definitely incorrect). On the other hand, assignment of Q1 to the negative test cases asserts exactly
the incorrectness of Csub wherefore the formulas C \ Csub become obsolete in the minimal conflict set C
yielding the new minimal conflict set C′ := Csub. Another desirable property of Q1 is that addition of Q1

to either set of test cases does not imply the origination of any “completely new” conflict sets (see above)
which result in additional growth of the tree.

That is, in its original form (without assuring only the usage of “positive-impact test cases”), the
time and space complexity of DYNAMICHS is a function of the generated queries. There is a potential
to perform significant pruning, but also the risk of significant tree growth. In case mostly “positive-
impact queries” are generated and asked to the user, the performance might be very nice and significantly
superior to the one of STATICHS. In the reverse case, the performance might be also worse than the one

12.2. ALGORITHM WALKTHROUGH 175

of STATICHS. In the case of STATICHS, there is no chance for significant pruning, but also no chance for
a tree growth that goes beyond the size of the non-interactive tree produced by HS.

In STATICHS, there are only expansion phases (in case the tree pruning described by Definition 4.8
is considered part of an expansion phase) which means that the tree constructed by STATICHS will con-
stantly grow (apart from the deleted duplicate nodes and non-minimal diagnoses). All the user can do is
hope that Algorithm 5 applying STATICHS will not run out of memory (cf. Section 11.1).

The idea is now to be able to use DYNAMICHS instead of STATICHS particularly if the latter runs out
of memory soon. If the leading diagnosis parameters are specified small enough to prevent the hitting set
tree produced during one expansion phase from becoming too large and test cases are not chosen unfavor-
ably, the DYNAMICHS method should be able to outperform STATICHS significantly, as Examples 11.2
and 12.2 suggest.

12.2 Algorithm Walkthrough
Input Parameters. When DYNAMICHS (Algorithm 8) is called for the first time in Algorithm 5, the
inputs Ccalc, DX, D×, P ′ and N ′ correspond to the empty set and Q = [∅] (cf. lines 1-4 and 10 in
Algorithm 5). Further on, Dcalc is defined to be the empty set at the beginning of each execution of DY-
NAMICHS. That is, DYNAMICHS starts the construction of the hitting set tree from an initial tree consist-
ing of a single unlabeled root node ∅ (∈ Q). And, all collections that are later returned by DYNAMICHS in
line 25, except for Q, are initially empty. Further input arguments are the DPI 〈K,B,P ,N 〉R provided as
an input to Algorithm 5, the sets of positively (P ′) and negatively (N ′) answered queries since the start of
Algorithm 5 (both sets initially empty), the leading diagnosis computation parameters nmin, nmax, t (see
description in Chapter 7 on page 95) and the probability measure p() := pK() that assigns a probability
in the interval (0, 0.5) to each formula in K (see line 5 in Algorithm 5).

Tree Update during First Iteration of DYNAMICHS. Before the repeat-loop in DYNAMICHS is en-
tered, the UPDATETREE function is called (line 4), but has no effect. This holds since UPDATETREE first
iterates over all elements in D×, then over all elements in D⊃ and finally over all elements in DX where
D× = D⊃ = DX = ∅, as pointed out before.

The Main Loop. During the repeat-loop, in each iteration the first node node in the queue Q of open
(non-labeled) nodes is processed (GETFIRST, line 6). Notice that, anywhere throughout DYNAMICHS,
nodes are added to Q in a way that a sorting of Q in descending order according to pnodes() (cf. Def-
inition 4.9) is maintained (cf. INSERTSORTED in lines 17, 68, 77, 80, 100 and 103). Hence, the most
probable node (according to pnodes()) is always processed next.

So, when node is processed, it is first deleted from Q (DELETEFIRST, line 7). Then a test is performed
whether node ∈ DX, i.e. whether node is already known to be a minimal diagnosis w.r.t. the current DPI
〈K,B,P ∪ P ′,N ∪ N ′〉R. In case this test is positive, node is directly added to Dcalc, the set of leading
diagnoses that will be output by the current call of DYNAMICHS. Otherwise, the DLABEL function is
called given node (i.a.) as a parameter (line 11).

Computation of a Node Label. The DLABEL function processes node as follows. First, the non-
minimality criterion (lines 27-29) is checked. That is, among all nodes in Dcalc, one is searched which
is a proper subset of node. If such a node nd is found, then node must be a non-minimal diagnosis w.r.t.
the current DPI since, anytime throughout the execution of DYNAMICHS, Dcalc contains only minimal
diagnoses w.r.t. the current DPI 〈K,B,P ∪P ′,N ∪N ′〉R (this will be proven later by Proposition 12.9).
In this case, unlike in STATICHS, the branch in the hitting set tree corresponding to node cannot be simply
discarded, but needs to be still stored (in the set D⊃). It is necessary to store non-minimal diagnoses as

176 CHAPTER 12. DYNAMIC DIAGNOSIS COMPUTATION ALGORITHM

these might become minimal diagnoses w.r.t. the new DPI obtained after the subsequent addition of a new
test case to the current DPI (cf. Proposition 12.5).

In case the non-minimality criterion is not satisfied, the reuse criterion (lines 30-40) is checked next.
That is, the set Ccalc containing (not necessarily minimal) conflict sets w.r.t. the current DPI is browsed
for a set C such that C and node are disjoint sets. If such a set C is found, there must be some set X ⊆ C
which is a minimal conflict set w.r.t. the current DPI. This minimal conflict set X can then be used to
label node since the set of edge labels along the path in the tree leading from the root node to node does
not hit X (because it does not hit C).

The minimality of C is verified by a call of QX(〈C,B,P ∪ P ′,N ∪ N ′〉R) that yields X , a minimal
conflict set w.r.t. the current DPI (cf. Proposition 4.9; notice that X must be a non-empty set due to
Proposition 12.2, for details see Section 12.4). In case X ⊂ C (line 33), before X is returned as a label
for node, the following tree pruning steps are performed:

• All the conflict sets Ci used as node labels in the hitting set tree or in duplicate tree branches so far
(i.e. Ci ∈ nd.cs for a node nd ∈ Q∪D⊃∪Qdup) such thatX ⊂ Ci are replaced byX (PRUNEQDUP
and PRUNE in lines 36-38),

• any subtree is pruned if its root node is linked to a node now labeled byX (replacing some Ci ⊃ X)
by an edge with label ax where ax is in Ci \X (PRUNEQDUP and PRUNE in lines 36-38) and

• for each pruned node nd, if there is a non-pruned node in Qdup suited to construct a node nd′ that
can replace nd, nd′ is added to the collection of nodes from which nd was deleted (PRUNEQDUP
and PRUNE in lines 36-38),

• all the conflict sets Ci ∈ Ccalc that are proper supersets of X are deleted from Ccalc and X is
added to Ccalc (ADDSETDELSUPSETS in line 39).

Otherwise, C (= X) is directly returned by DLABEL without performing any tree pruning because the
reused conflict set C is (still) a minimal conflict set w.r.t. the current DPI 〈K,B,P ∪P ′,N ∪N ′〉R (notice
that each element of Ccalc was added to Ccalc as a minimal conflict set w.r.t. some DPI 〈K,B,P∪P ′′,N∪
N ′′〉R where P ′′ ⊆ P ′ and N ′′ ⊆ N ′ during the execution of this or a previous call of DYNAMICHS). For
an in-depth explanation of the pruning functions PRUNE and PRUNEQDUP the reader is kindly referred to
Section 12.4.6.

Remark 12.2 During the execution of the first call of DYNAMICHS in Algorithm 5, no tree pruning can
take place (neither within the scope of DLABEL nor anywhere else) since all elements of Ccalc (initially
the empty set) must be minimal conflict sets w.r.t. the input DPI which is at the same time the current
DPI. Pruning of the hitting set tree is only possible in case some non-leaf nodes of the tree are labeled by
conflict sets that are not minimal w.r.t. the current DPI.

Given that the reuse criterion fails, QX is called given the current DPI 〈K\node,B,P∪P ′,N ∪N ′〉R
as an argument (line 41). If the output L is equal to ’no conflict’, then we know by Proposition 4.9 that
node is a diagnosis w.r.t. the current DPI, wherefore the label valid is returned for node. Otherwise, the
output L must be a minimal conflict set w.r.t. 〈K,B,P ∪P ′,N ∪N ′〉R that has an empty set-intersection
with node. Since the reuse criterion failed, i.e. there is no set in Ccalc that does not intersect with node,
L must be a fresh minimal conflict set w.r.t. 〈K,B,P ∪ P ′,N ∪ N ′〉R in the sense that L /∈ Ccalc must
hold. Therefore the label L is first added to Ccalc and then returned by DLABEL as a label for node.

Remark 12.3 Please notice that this call of QX to label a node is one of the key differences between
STATICHS and DYNAMICHS. Whereas the former uses QX exclusively for the computation of minimal
conflict sets w.r.t. the (static) input DPI exploiting just the initial sets of positive and negative test cases
P and N , respectively, the latter employs QX to compute minimal conflict sets w.r.t. the (dynamic)

12.2. ALGORITHM WALKTHROUGH 177

current DPI which includes all new test cases (P ′ and N ′) resulting from answered queries in the ongoing
interactive debugging session so far.

Processing of a Node Label. Back in the main procedure, the label L returned by the DLABEL function
is processed as follows. If L = valid, then it is a fact that node is a minimal diagnosis w.r.t. the current
DPI (cf. Proposition 12.9 in Section 12.4.9) wherefore node is added to the set Dcalc. Otherwise, if
nonmin is the returned label for node, node is added to the set D⊃ of non-minimal diagnoses w.r.t. the
current DPI. Otherwise, i.e. if L /∈ {valid, nonmin}, then L must be a minimal conflict set w.r.t. the
current DPI (see the description of node label computation above). In this case, |L| successor nodes of
node are generated (lines 18 and 19). For each logical formula e ∈ L, a new node is computed from
node (and node.cs) as nodee := ADD(node, e) and nodee.cs := ADD(node.cs, L) which means that e is
appended to the end of the list node and L is appended to the end of the list node.cs.

If there is already a node nd ∈ Q such that nd = nodee (line 20), where ’=’ applied to these lists
means that the list nd interpreted as a set is equal to the list nodee interpreted as a set (cf. Section 12.4.1
for an explication of this notation), then there is already a branch in the existing tree which includes the
same set of edge labels as the new node nodee. Note that the tree branch corresponding to nd will differ
from the one corresponding to nodee in terms of the order of edge labels or (the order of) the node labels
visited when traversed starting from the root node. As it makes no sense to expand two branches with
equal sets of edge labels in a hitting set tree (cf. rule 6 in Definition 4.8) for time and space complexity
reasons and the fact that the sought diagnoses are sets – and not lists – of edge labels in the tree, such a
duplicate node nodee is stored in the separate list Qdup. This list Qdup is always kept sorted by ascending
node-cardinality (INSERTSORTED in line 21).

The purpose of storing and not deleting such nodes is the possibility that the now “active” branch nd
might be pruned after the addition of some test case whereas nodee might be unaffected by that pruning
step. In this case, nodee, given it meets certain properties (see Section 12.4 for details), can be reactivated
and incorporated into the tree in order to replace nd. Had nodee just been discarded instead of being
stored, the completeness of Algorithm 5 with mode = dynamic would be violated in general. That is,
we would not have any guarantee that all minimal diagnoses w.r.t. the current DPI are actually explored
by the algorithm.

Otherwise, if there is no node in Q that is set-equal to nodee, then nodee is added to the k-th position
in Q (INSERTSORTED in line 23) if there are (exactly) k − 1 nodes in Q that have a probability as per
pnodes() that is greater than or equal to pnodes(nodee).

Stop Criterion. The repeat-loop of DYNAMICHS is executed until the stop criterion in line 24 is sat-
isfied. The first criterion causing DYNAMICHS to terminate is Q = [] which means that the complete
hitting set tree has been constructed and no further nodes can be labeled. In this case, Dcalc comprises
all minimal diagnoses w.r.t. the current DPI 〈K,B,P ∪ P ′,N ∪N ′〉R (cf. Proposition 12.8).

If the first criterion is not met, then the second criterion is checked. That is, a test is performed
which checks first whether there is at least one new diagnosis w.r.t. the current DPI in Dcalc which was
not returned by the last-but-one call of DYNAMICHS (i.e. which is not an element of DX). Notice that
this criterion or Q = [] will be definitely met after finite execution time of DYNAMICHS since either
new nodes in Q will be processed (and labeled) until there is some new diagnosis w.r.t. the current DPI
identified or the Q will become empty.

Additionally, the second criterion involves a test that checks whether the cardinality of Dcalc amounts
to at least nmin and either |Dcalc| = nmax or more than t time has passed since the start of the execution
of DYNAMICHS. In the latter case, nmin ≤ |Dcalc| < nmax holds. In the former case, |Dcalc| = nmax is
satisfied.

178 CHAPTER 12. DYNAMIC DIAGNOSIS COMPUTATION ALGORITHM

Processing of the Leading Diagnoses Returned by DYNAMICHS. When a call of DYNAMICHS in
Algorithm 5 returns 〈Dcalc,Q,Ccalc,D×,D⊃,Qdup〉, the set Dcalc is stored in the variable DX in
Algorithm 5. Between two successive calls of DYNAMICHS in Algorithm 5, only this set DX as well as
D× are modified. The collections Q, Ccalc, D⊃ as well as Qdup remain unchanged until they are used
as input parameters when it comes to the next call of DYNAMICHS in Algorithm 5.

In case one diagnosis Dmax of the current leading diagnoses in DX has a probability greater than or
equal to 1− σ as per the probability measure pD() (see Section 9.2), the stop criterion of interactive KB
debugging is met and the solution KB (K\Dmax)∪UP∪P ′ w.r.t. the current DPI 〈K,B,P∪P ′,N ∪N ′〉R
is returned to the user (GETSOLKB in line 14, cf. Section 9.2). Thereafter, Algorithm 5 terminates and
no more calls of DYNAMICHS take place.

Otherwise, if no leading diagnosis satisfies the stop criterion, a query Q together with its q-partition
P(Q) is computed as has been detailed in Chapter 8 and Section 9.2. An answer u(Q) to this query is
submitted by the interacting user (line 17 in Algorithm 5). Then u(Q) along with P(Q) is exploited to
figure out the subset Dout of DX that does not comply with u(Q). This set Dout is then deleted from
DX and added to D×. Additionally, Q is added to the positive test cases P ′ if u(Q) = true and to the
negative test cases N ′ otherwise. Subsequently, DYNAMICHS is called again given

• the updated parameters DX, D×, P ′ and N ′ (which are modified within and outside of DY-
NAMICHS during the execution of Algorithm 5),

• the unchanged parameters Q, Ccalc, D⊃ and Qdup (which are modified only within DYNAMICHS
during the execution of Algorithm 5) and

• the constant parameters 〈K,B,P ,N 〉R, t, nmin, nmax and pK() (which are not modified within or
outside of DYNAMICHS during the execution of Algorithm 5).

The execution of this next and any subsequent call to DYNAMICHS runs in analogue way as described
so far, except for the effect of the UPDATETREE function called at the very beginning of each execution
of DYNAMICHS (recall that the execution of UPDATETREE had no effect during the first execution of
DYNAMICHS). We shall now explicate how this function works in all other executions of DYNAMICHS,
except for the first one.

Tree Update. Between line 48 and line 69, UPDATETREE goes through all nodes nd ∈ D× (recall that
D× includes exactly these diagnoses that have been ruled out by the most recently answered query) and
first performs the Quick Redundancy Check (QRC, lines 50-54) for nd. If the QRC is not successful, it
additionally performs the Complete Redundancy Check (CRC, lines 56-60) for nd.

The QRC (for details see Lemma 12.6) aims at identifying whether nd is redundant and can be pruned,
i.e. it attempts to find a witness of redundancy of nd. Informally, a redundant node in (redundant subtree
of) the tree is a node (subtree) such that the further expansion of the current tree without this node (subtree)
still yields to the detection of all minimal diagnoses w.r.t. the current DPI. A witness of redundancy of nd
is a minimal conflict set C′ w.r.t. the current DPI such that a superset C ⊃ C′ was used as a node label on
the tree path nd represents (that is, there is some i ≤ |nd.cs| such that C is the i-th element of nd.cs, i.e.
C = nd.cs[i]) and the label (nd[i]) of the outgoing edge of C on the path represented by nd is an element
not in C′ (that is, an element in C \ C′). Formal and precise characterizations of redundancy of nodes and
the witness of redundancy of a node are given by Definition 12.4 in Section 12.4.5.

To this end, the QRC involves the call of QX(〈Und.cs \ nd,B,P ∪ P ′,N ∪N ′〉R) which returns X .
If X is a set (and not ’no conflict’), then X is a minimal conflict set w.r.t. the current DPI 〈K,B,P ∪
P ′,N ∪N ′〉R (as Und.cs \ nd ⊆ K, cf. Proposition 4.9). To check if X is in fact a witness of redundancy
of nd, X ⊂ C (line 52) is tested for all C ∈ nd.cs. If such a C is located, X is a witness of redundancy of
nd and the QRC is successful (expressed by quickRC ← true in line 53). In this case, the execution is
resumed at line 61.

12.2. ALGORITHM WALKTHROUGH 179

The QRC bears its name due to the fact that it requires at most one call of QX (which internally
performs expensive calls to a reasoner). Moreover, it passes to QX a (DPI including a) KB of a size
that is generally significantly smaller than |K| where |K| is roughly the size of the KB used in the (more
expensive) calls of QX made in the DLABEL function. Hence, the QRC will be usually very fast (cf.
Proposition 4.8).

Otherwise, since the negative outcome of the QRC (which is sound, but not complete w.r.t. the finding
of a witness of redundancy of nd) does not imply the non-existence of a witness of redundancy of nd, the
CRC (for details see Lemma 12.7) must be performed. As the name already suggests, the CRC is sound
and complete and will therefore be positive and yield a witness of redundancy if and only if there is some.
The CRC involves multiple calls of QX(〈nd.cs[i] \ {nd[i]} ,B,P ∪ P ′,N ∪N ′〉R), one for each conflict
set nd.cs[i] in nd.cs. It is straightforward from the characterization of a witness of redundancy given
before that, given the CRC returns a set X , X is a witness of redundancy of nd.

If nd is non-redundant, there cannot be any witness of redundancy of nd. Hence, the complete and
sound method CRC will not find such a one. Therefore, quickRC = false and completeRC = false
must hold in line 61. In this case, the for-loop in line 48 continues with the next node in D×.

On the other hand, if nd is redundant, due to the completeness of CRC, either quickRC = true or
completeRC = true must hold when it comes to the execution of the if-statement in line 61. At this
point, it is guaranteed that the variable X stores a witness of redundancy of nd.

The CRC, contrary to the QRC, generally requires multiple (at most |nd|) calls of QX (which inter-
nally performs expensive calls to a reasoner). But, like the QRC, it passes to QX a (DPI including a) KB
of a size that is generally significantly smaller than |K|. Furthermore, at most one call of QX will involve
more than one call of ISKBVALID (see Algorithm 1), i.e. the function that calls the reasoner. This must
be true since CRC only requires an additional call of QX if a witness of redundancy has not yet been
found. And, each call of QX that does not find a witness of redundancy of nd returns ’no conflict’ which
necessitates only a single invocation of ISKBVALID. Hence, each execution of the CRC will be very fast
in general as well (cf. Proposition 4.8).

What comes next is the pruning of all redundant nodes in the tree for which X is a witness of re-
dundancy. Essentially, the same pruning steps are performed here as in the reuse criterion described in
’Computation of a node label’ above. A detailed discussion of the pruning functions PRUNE as well as
PRUNEQDUP can be found in Section 12.4.6.

Notice that a redundant node is guaranteed to be a redundant node in any further iteration of DY-
NAMICHS (using a new current DPI that incorporates new test cases). We will prove this by Lemma 12.4
in Section 12.4.5. So, nodes pruned by PRUNE or PRUNEQDUP can be deleted for good and do not need
to be stored any longer. Moreover, it should be noted that only redundant nodes are pruned at any pruning
step in DYNAMICHS. For, as long as a node in DYNAMICHS is not known to be redundant, some suc-
cessor node of this node might be a minimal diagnosis w.r.t. the current DPI. Thus, the deletion of such
a node could perhaps prevent the algorithm from finding a particular minimal diagnosis which would
implicate the algorithm’s incompleteness.

Remark 12.4 Since the removal of a node from a collection S ∈ {D×,Q,Qdup,D⊃} within the scope
of PRUNE or PRUNEQDUP can be followed by the re-addition to S of a suitable duplicate node constructed
from a node stored in Qdup (see Section 12.4.6 for a precise explanation of node replacements), D× might
be changed both in that nodes are deleted from it and added to it during the for-loop (line 48). Therefore,
the ’for nd ∈ D×’-statement must be read as ’if nd is a node in the current set D× which has not
yet been processed’. For a better code readability, we abstained from using a programmatically precise
representation of this issue in Algorithm 9.

Due to the soundness and completeness of QRC paired with CRC concerning the identification of a
witness of redundancy for a given node and the accomplished pruning of (at least) all nodes in D× for
which a witness of redundancy has been extracted, all nodes that are in D× when the algorithm reaches

180 CHAPTER 12. DYNAMIC DIAGNOSIS COMPUTATION ALGORITHM

line 67 are non-redundant nodes. Consequently, there is no evidence to exclude the remaining nodes in
D× from the further search for minimal diagnoses. For this reason, each of these nodes is reinserted into
Q by INSERTSORTED in line 68 such that the sorting of Q in descending order of pnodes() is maintained.
Then these nodes are deleted from D×. Thus, D× = ∅ holds after each execution of UPDATETREE.

So, in DYNAMICHS, unlike in STATICHS, diagnoses (and nodes in general) are not ruled out due
to the fact that they contradict an answered query, but only if they are (found to be) redundant. Nev-
ertheless, a diagnosis that contradicts an answered query is a “hot candidate” for finding some witness
of redundancy. For that reason, UPDATETREE searches for witnesses of redundancy (only) by means of
D× which includes the most “suspicious” nodes. Namely, it comprises those nodes that were minimal
diagnoses w.r.t. the last-but-one DPI, but have been invalidated by the most recently answered query. The
two possible reasons for a diagnosis nd to be invalidated are its redundancy as defined above or that it
does not hit a new minimal conflict set (which is not a subset of one in nd.cs) that has been introduced by
the addition of the test case resulting from the user’s query answer. Thus, it is likely to detect witnesses
of redundancy by investigating nodes in D×, as the QRC and the CRC do. Throughout the pruning steps
performed in lines 62-65, witnesses of redundancy extracted from nodes in D× are exploited to remove
redundant nodes in the other collections Qdup, D⊃ and Q as well.

Remark 12.5 It should be noted that the collections Q as well as D⊃ are not necessarily cleaned from
all redundant nodes after all pruning steps in UPDATETREE are finished. At this point, all those redundant
nodes are still elements of these collections for which no witness of redundancy was found (there might
exist one, though) throughout the redundancy checks (QRC and CRC) performed.

Assuring the non-existence of redundant nodes in Q and D⊃ might involve extensive usage of the
(expensive) reasoner. In the worst case, one call of QX for each non-leaf node along each path from
the root node to a leaf node labeled by nonmin or to a leaf node that has no label would be necessary.
However, the number of these non-leaf nodes is generally exponential in the maximum length of such a
path in the tree. In comparison, the number of calls of QX for investigating all nodes in D× by QRC
and CRC is polynomial (linear) in the maximum length of a tree path labeled by ×. For, the number
of QX-calls cannot get larger than (nmax − 1)(|ndmax| + 1) where the constant nmax is the maximum
number of desired leading diagnoses predefined by the user and |ndmax| is the maximum cardinality of
some nd ∈ D×. This holds since |D×| ≤ nmax − 1 (cf. Corollary 7.3) and QRC requires at most one
and CRC at most |ndmax| QX-calls.

Other than that, the chance of locating new witnesses of redundancy by means of investigating nodes
in Q and D⊃ can be assumed to be smaller than for nodes in D× since there is no indication or evidence
that these nodes might be redundant. So, cleaning Q and D⊃ from all redundant nodes might be signifi-
cant effort with negligible impact. Therefore, DYNAMICHS is designed to focus the search for witnesses
of redundancy only on the “suspicious nodes” in D×.

As mentioned above, when the execution arrives at line 70, only nodes that are definitely redundant
(because they were deleted due to some witness of redundancy) have been deleted from the sets Q, D×,
D⊃ and Qdup.

In lines 70-78, each node nd ∈ D⊃ which has not been deleted throughout the pruning operations in
line 65 is processed as follows: If there is no minimal diagnosis D ∈ DX such that nd ⊃ D, then nd is
removed from D⊃ and reinserted into Q (lines 77 and 78) in a way the sorting of Q in descending order
according to pnodes() is maintained (INSERTSORTED). This re-insertion is plausible since there is no
more evidence of nd (which is a non-minimal diagnosis w.r.t. the last-but-one DPI) being a non-minimal
diagnosis w.r.t. the current DPI (non-minimal diagnoses might become minimal diagnoses by the addition
of test cases, cf. Section 12.4.3 and Proposition 12.5).

Otherwise, nd remains an element of the set of non-minimal diagnoses D⊃ w.r.t. the current DPI as
DX comprises exclusively minimal diagnoses w.r.t. the current DPI and one of these is a proper subset of
nd.

12.3. EXAMPLES 181

In lines 79-80, all elements in DX, each of which is a minimal diagnosis w.r.t. the current DPI, are
added to Q in a way the sorting of Q in descending order according to pnodes() is maintained.

Remark 12.6 Please notice that the elements of DX, although they are known to be minimal diagnoses
w.r.t. the current DPI, are not directly added to the set of found leading diagnoses Dcalc w.r.t. the current
DPI, but to Q. The reason for this is that there might be (not-yet-found) minimal diagnoses w.r.t. the
current DPI (nodes in Q or successor nodes thereof) which were not minimal diagnoses w.r.t. the last-
but-one DPI (and thus are no elements of DX) that have a higher probability as per pnodes() than elements
of DX. For instance, such diagnoses might have been added to Q from the set D⊃ in line 77.

In this way, since always the first (and most probable) node in Q is processed next, a guarantee is
given that Dcalc always comprises the |Dcalc| most probable minimal diagnoses w.r.t. the current DPI as
per pnodes(). The knowledge of the validity of minimal diagnoses in DX w.r.t. the current DPI is however
not forgotten, but exploited in line 12 (i.e. no call of DLABEL and QX is necessary for a node in DX to
be added to Dcalc), as elucidated in ’The main loop’ above.

12.3 Illustrating Examples
In this section we will give two examples of how interactive KB debugging using DYNAMICHS (Algo-
rithm 5 with parametermode = dynamic) works. The first one will show the similarities and differences
between the usage of DYNAMICHS (within Algorithm 5) and HS (within Algorithm 3) since it will depict
the application of STATICHS on the same example DPI (see Table 15.3) that was used to show the func-
tionality of HS in examples 4.8 and 4.9. At the same time, the first example will provide evidence that
solving the problem of Interactive Dynamic KB Debugging can be less efficient than solving the problem
of Interactive Static KB Debugging in terms of the number of query answers required from an interacting
user. This will be discussed in more detail in Chapter 13.

The second example is supposed to deepen the reader’s understanding of the way DYNAMICHS works.
To this end, the example DPI provided by Table 4.2 will be used which constitutes a significantly harder
(interactive) debugging task than the DPI investigated in the first example. This example will involve the
construction of a relatively large hitting set tree in the first iteration of DYNAMICHS (which behaves very
similarly to STATICHS as well as HS and constructs the same wpHS-tree as these methods), but will then
show the power of the tree pruning that can be exploited in Interactive Dynamic KB Debugging in that the
tree will shrink rapidly after the addition of test cases. Hence, this example will emphasize the advantage
of the decision to search for a solution of Interactive Dynamic KB Debugging rather than for a solution
of Interactive Static KB Debugging (more on that in Chapter 13).

Notice that, in the following examples, whenever some tuple or list occurs in an expression using set
operators, it is interpreted as a set.

Example 12.1 In this example we assume that the author (called user throughout this example) of the
(admissible) DPI 〈K,B,P ,N 〉R given by Table 15.3 applies Algorithm 5 with mode = dynamic to
interactively debug 〈K,B,P ,N 〉R. Further, the same scenario and parameter settings as in Example 11.1
are supposed. That is, nmin = nmax = 2 (notice that the time limit t is irrelevant in this case), q := 1 (cf.
Chapter 8), qsm() is equal to any query selection measure described in Section 9.3, pK(ax) := c < 0.5
for all ax ∈ K, i.e. all formula fault probabilities are specified to be equal (to some constant c) and σ := 0.

The tree constructed and parameters computed and used by Algorithm 5 using DYNAMICHS are
visualized by Figures 12.1 and 12.2. We use the same notation as in Figures 4.2, 4.3, 11.1, 11.2 and 11.3
which is described in Examples 4.8, 4.9, 11.1 and 11.2.

In the first iteration, i.e. during the execution of the first call of DYNAMICHS during Algorithm 5,
the root node (initially the empty set) is labeled by the minimal conflict set 〈1, 2, 5〉 w.r.t. 〈K,B,P ,N 〉R
and three successor nodes, namely nd1 := [1], nd2 := [2] as well as nd3 := [5] with nd1.cs = nd2.cs =

182 CHAPTER 12. DYNAMIC DIAGNOSIS COMPUTATION ALGORITHM

nd3.cs = [〈1, 2, 5〉], are added to the queue of open nodes Q. Since all formulas have been assigned
an equal fault probability, DYNAMICHS conducts a breadth-first tree construction (as displayed by the
numbers i© that give the order of node labeling). That is, Q in this case is a first-in-first-out queue. In
this vein, first [1] and then [2] are identified as minimal diagnoses w.r.t. the given DPI.

Since Dcalc = {[1], [2]} has a cardinality of nmin = nmax = 2, the stop criterion of DYNAMICHS
causes it to terminate and return 〈Dcalc,Q,Ccalc,Q,D×,D⊃,Qdup〉 = 〈 {[1], [2]}, [[5]], {〈1, 2, 5〉},
∅, ∅, []〉, as shown in the upper right column in Figure 12.1.

Then, in Algorithm 5, outside of the DYNAMICHS procedure, the first query Q1 = {E → ¬A}
is computed from the leading diagnoses set {[1], [2]}. The q-partition P(Q1) associated with Q1 is
〈{[1]} , {[2]} , ∅〉. The user’s answer u(Q1) to Q1 is then false . Thence, the set Dout is calculated from
P(Q1) as D+(Q1) = {[1]} (due to negative answer, cf. Remark 7.4), deleted from DX := DX ∪Dcalc

to yield DX = {[2]} and added to D× to yield D× = {[1]}. Now, the set DX corresponds to the set of
all computed (i.e. added to Dcalc) minimal diagnoses w.r.t. the last-but-one DPI 〈K,B,P ,N 〉R that are
minimal diagnoses w.r.t. current DPI 〈K,B,P ,N ∪ {Q1}〉R, i.e. that satisfy the most recently answered
queryQ1. The set D× comprises all computed (i.e. added to Dcalc) minimal diagnoses w.r.t. the last-but-
one DPI 〈K,B,P ,N 〉R that are not minimal diagnoses w.r.t. current DPI 〈K,B,P ,N ∪{Q1}〉R, i.e. that
do not satisfy the most recently answered query Q1.

These sets DX and D× along with the collections Q, Qdup, D⊃ and Ccalc which are unmodified
outside of DYNAMICHS are used as input arguments for the second call of DYNAMICHS. Notice that,
in Figures 12.1 and 12.2, the resulting values of operations performed within DYNAMICHS are given in
the righthand column above the dashed line whereas values computed outside of DYNAMICHS are given
below the dashed line.

The execution of the second call of DYNAMICHS starts with a call of the UPDATETREE function.
The purpose of this function is to transform the hitting set tree T that was constructed by the first call of
DYNAMICHS into an updated hitting set tree T ′. Whereas the tree T was used to locate minimal diag-
noses w.r.t. the last-but-one DPI 〈K,B,P ,N 〉R, the modified tree T ′ should serve to generate minimal
diagnoses w.r.t. the current DPI 〈K,B,P ,N ∪ {Q1}〉R. The parameters DX, D×, Q, Qdup, D⊃ and
Ccalc that represent the tree T (given at the top of the lefthand column in Figure 12.1), where DX ∪D×
is equal to the set Dcalc produced by the first call of DYNAMICHS, are i.a. given as input arguments to
the UPDATETREE function.

As a first step within UPDATETREE, a redundancy check is performed for each diagnosis in D×.
In this case D× = {D1} since D1 is the only minimal diagnosis that has been ruled out by the most
recently added negative test case Q1. The purpose of the redundancy check is to figure out whether D1 is
redundant w.r.t. the current DPI and must be pruned or whether it might be extended to become a minimal
diagnosis w.r.t. the current DPI.

First, the Quick Redundancy Check (QRC) QX(〈{2, 5} ,B,P ,N ∪ {Q1}〉R) = 〈2, 5〉 (line 50 in
DYNAMICHS) is executed for D1 which detects (line 52 in DYNAMICHS) that D1 (and possibly some
further nodes) is redundant and can be pruned. This holds since the minimal conflict set 〈1, 2, 5〉 w.r.t. the
last-but-one DPI 〈K,B,P ,N 〉R is not a minimal conflict set w.r.t. the current DPI 〈K,B,P ,N ∪{Q1}〉R
because 〈2, 5〉 returned by QX is already a minimal conflict set w.r.t. the current DPI (cf. Proposition 4.9).
We call the minimal conflict set 〈2, 5〉 a witness of redundancy for D1. Hence, all branches in the hitting
set tree starting from the outgoing edge of 〈1, 2, 5〉 labeled by 1 can be safely deleted from all collections
representing the new tree T ′ (warranted that all minimal diagnoses w.r.t. the current DPI can still be
generated from the pruned tree T ′).

Please notice that the QRC involves only a single call of QX using a KB of a size (here: 2) that is
generally significantly smaller than |K| (here: 7) which is roughly the size of the KB used in calls of QX
made in the DLABEL function. Hence, the QRC will be usually very fast.

An illustration why 〈2, 5〉 “replaces” 〈1, 2, 5〉 as a minimal conflict set w.r.t. the current DPI can be
given as follows: First, 〈1, 2, 5〉 is a minimal conflict set w.r.t. 〈K,B,P ,N 〉R as it is a set-minimal subset

12.3. EXAMPLES 183

of K that entails {¬A} = n1 ∈ N , there is no other negative test case in N except for n1 and there is
no proper subset C′ of 〈1, 2, 5〉 where C′ ∪ B ∪ UP violates any r ∈ R (see example 4.2 for a detailed
explanation). Second, formula 2 implies in particular E → Y which, along with formula 5 (Y → ¬A),
yields E → ¬A. As the negative answer to Q1 is equivalent to postulating that {E → ¬A} must not be
entailed by the KB desired by the user, we have that 〈2, 5〉 is a conflict set w.r.t. 〈K,B,P ,N ∪ {Q1}〉R.
As neither {2} nor {5} is a invalid KB w.r.t. 〈·,B,P ,N ∪ {Q1}〉R (cf. Corollary 4.1 and Definition 4.1),
we have that 〈2, 5〉 is a minimal conflict set w.r.t. 〈K,B,P ,N ∪ {Q1}〉R.

Because the QRC has been successful, yielding some witness of redundancy of D1, the Complete
Redundancy Check (CRC) is no more necessary and the collections Qdup, Q, D× as well as D⊃ are
processed by the PRUNE and PRUNEQDUP functions, respectively, which involve the removal of all nodes
in these collections that are redundant due to the witness 〈2, 5〉. In other words, all nodes are eliminated
which correspond to a path in the tree that includes a node label Cold ⊃ 〈2, 5〉 and the label e of the
outgoing edge of Cold on this path is an element of Cold \ 〈2, 5〉. Moreover, all the supersets of 〈2, 5〉
in Ccalc (here, only 〈1, 2, 5〉) are replaced by 〈2, 5〉 since they are not minimal conflict sets anymore
(ADDSETDELSUPSETS).

The pruning of nodes is expressed by dashed arrows in the pictures labeled by ’Updated Tree’ in
Figures 12.1 and 12.2 where the location of cutting a branch is marked by a crossline at the shaft of a
dashed arrow. Furthermore, the elements of “old” minimal conflict sets that are no more elements of
known (i.e. already computed) current minimal conflict sets are crossed out. As shown by the picture
’Updated Tree’ in the righthand column of Figure 12.1, D1 is the only removed node during the pruning
steps using the witness of redundancy 〈2, 5〉.

Since D⊃ = ∅, UPDATETREE directly jumps to the last three lines where all elements of DX are re-
added to Q in sorted order (but at the same time remain elements of DX). In the figure, this is displayed

by the
Q1

=⇒ pointing to a question mark (which stands for an open node) instead of a checkmark as in the
case of the STATICHS algorithm. Notice that, although it is a fact that all elements of DX are minimal
diagnoses w.r.t. the current DPI, this step is necessary in order to make sure the set Dcalc returned by any
call of DYNAMICHS actually comprises the |Dcalc| most probable minimal diagnoses w.r.t. the current
DPI. For, there might be, for instance, some node that is a non-minimal diagnosis w.r.t. the last-but-one
DPI (and is thus not an element of DX), but becomes a minimal diagnosis w.r.t. the current DPI and has a
higher probability than some node in DX. Additionally, we want to point out that no calls of the DLABEL
procedure are needed for diagnoses in DX as we know their label must be valid. This is reflected by the
test in line 8 in DYNAMICHS.

In the figure, all the updated collections D⊃, Ccalc, Q as well as Qdup, after being processed by
UPDATETREE are shown at the bottom of fields labeled by UPDATETREE. We want to remark that D×
is always the empty set at the end of the execution of UPDATETREE since each node in D× gets either
pruned or is reinserted into Q as an open node. These updated collections represent the new pruned
hitting set tree that can be further constructed in order to detect all and only minimal diagnoses w.r.t. the
current DPI 〈K,B,P ,N ∪{Q1}〉R. Note that the actions carried out by UPDATETREE take place between
steps 4© and 5©.

The expansion of this tree during the repeat-loop in DYNAMICHS is depicted by the picture named
’Iteration 2’ in Figure 12.1. Namely, first (step 5©) the node [2] is directly labeled by valid (line 8) since it
is a known minimal diagnosis w.r.t. the current DPI (as explained before). In the sixth step, [5] is labeled
by the minimal conflict set 〈1, 2, 7〉 w.r.t. the current DPI and three further nodes ([5, 1], [5, 2] and [5, 7],
all with nd.cs = [〈2, 5〉 , 〈1, 2, 7〉]) are generated as successor nodes of [5] and are added to Q. Now,
[5, 1] (first-in-first-out) is the foremost node in Q and is thus processed next and found to be a minimal
diagnosis w.r.t. the current DPI. Therefore, DYNAMICHS terminates and returns i.a. the new set of leading
diagnoses Dcalc = {[2], [5, 1]}.

Please notice the difference here to Example 11.1 where the node {5, 1} never became part of Q in
STATICHS due to the existence of a minimal diagnosis [1] w.r.t. the input DPI 〈K,B,P ,N 〉R which is

184 CHAPTER 12. DYNAMIC DIAGNOSIS COMPUTATION ALGORITHM

a proper subset of this node (and due to the fact that STATICHS must only consider minimal diagnoses
w.r.t. the input DPI). In the current example, this node can only become relevant w.r.t. the current DPI if
all (known) diagnoses (here, only [1]) that are proper subsets of it have already been pruned. It should
now be clear to the reader why non-minimal nodes cannot be deleted for good as in STATICHS and why
the set D⊃ is necessary in DYNAMICHS.

This leading diagnosis [5, 1] is also the reason why the second query Q2 = {E → G} is different
from the second query (Y → ¬A) calculated in Example 11.1.

The execution of the algorithm continues in an analogue manner as explained so far. In the following,
we just want to explain some interesting aspects in the rest of its execution:

• After the query Q3 = {Y → ¬A} (the same query as the second query in Example 11.1) is an-
swered negatively and Q3 is added to N ′ yielding the current DPI 〈K,B,P ,N ∪ {Q1, Q2, Q3}〉R,
the UPDATETREE function not only prunes [2] = D2 ∈ D× and adds [5, 7] = D4 ∈ DX to Q as
we delineated above for the first query Q1, but adds [5, 2] ∈ D⊃ to Q as well. The reason for that
is the deletion of the minimal diagnosis [2] w.r.t. the last-but-one DPI 〈K,B,P ,N ∪ {Q1, Q2}〉R
wherefore the last evidence for the non-minimality of node [5, 2] has been deleted. Hence, the sta-
tus of [5, 2] as a non-minimal diagnosis is no more justified wherefore it must be added to the queue
to preserve the completeness of the algorithm w.r.t. the finding of all minimal diagnoses w.r.t. the
current DPI. And, indeed, [5, 2] is identified as minimal diagnosis (D5) in iteration 4.

• For each element of D× during each execution of UPDATETREE throughout the execution of Al-
gorithm 5, the Quick Redundancy Check (QRC) is successful. That is, each witness of redundancy
used for pruning throughout the entire runtime of the algorithm could be determined very fast.
Namely, as it is easy to see from line 50 in DYNAMICHS, the KB used in the call of QX in the
QRC for some node nd has a size in O((|nd| − 1)|Cmax|) where Cmax is the minimal conflict set
of maximum cardinality in Ccalc. In most of the cases, |nd| � |K| as well as |Cmax| � |K| will
hold. The (usually more expensive) Complete Redundancy Check (CRC), which requires O(|nd|)
calls to QX with a KB of size O(|Cmax| − 1), is thus never employed.

• In this example, the same minimal diagnosis [5, 7] is used to compute the finally returned solution
KB as in Example 11.1. The only difference between both outputs is that the KB (K \ [5, 7]) ∪Q4

returned by DYNAMICHS in this example contains the new positive test case Q4 ∈ P ′. The output
by STATICHS in Example 11.1 does not contain any newly specified positive test case in P ′ (cf.
Remark 9.9), just the union of the “original” positive test cases in P (apart from that, there is not
even a newly specified positive test case in Example 11.1).

• In spite of finding the same solution diagnosis, STATICHS requires fewer queries than DYNAMICHS.
Notably, DYNAMICHS even needs a proper superset of the queries asked by STATICHS (Q1, Q2 in
Example 11.1 are equal to Q1, Q3 in our current example) in this case. Such a proposition however
cannot be made in general since the queries formulated by STATICHS generally differ from those
formulated by DYNAMICHS. In this vein, it might just as well be the case that it takes DYNAMICHS
fewer queries to finish than it takes STATICHS, due to its advantages in tree pruning.

All in all, the execution of Algorithm 5 in this example performs

• 2 full QX calls, i.e. calls of QX using the KBK\node for a node node that actually return a minimal
conflict set (there are two minimal conflict sets labeled by C in Figures 12.1 and 12.2 which do not
result from QRC, CRC or the minimality test of a conflict set in line 32 of DYNAMICHS),

• 4 fast QX calls, i.e. executions of QX within the scope of the QRC (one call of QX each for the
QRC of D1, D3, D2 and D5),

12.3. EXAMPLES 185

• 5 validity checks, i.e. calls of QX that return ’no conflict’ (one check for each of the five found
minimal diagnoses where the identification of diagnoses D2 at step 5©, D2 at step 9©, D4 at step

14© and D4 at step 16© does not require any call to a reasoning service by means of DX, see line 8
in DYNAMICHS; notice that QX does only perform a single KB validity check by ISKBVALID in
case it returns ’no conflict’, see Algorithm 1) and

• 4 tree update processes involving 4 pruned nodes (1 per tree update),

computes

• 5 minimal diagnoses (D1, D2, D4 w.r.t. the input DPI and D3 and D5 w.r.t. some DPI resulting
from the input DPI by addition of new test cases),

• 6 minimal conflict sets (〈1, 2, 5〉 as well as 〈1, 2, 7〉 w.r.t. the input DPI and the subsets thereof
〈2, 5〉, 〈2, 7〉, 〈5〉 and 〈7〉 w.r.t. some DPI resulting from the input DPI by addition of new test
cases) and

• 4 queries and asks the user 4 logical formulas (1 per query)

and stores

• a maximum of 4 nodes (where node refers to the internal representation of a node nd in DY-
NAMICHS as a list of edge labels (nd) and a list of node labels (nd.cs) along a path from the
root node to a leaf node).

186 CHAPTER 12. DYNAMIC DIAGNOSIS COMPUTATION ALGORITHM

1©〈1, 2, 5〉C

2©X(D1) 3©X(D2) ?

1

zz
2

��
5

**

Iteration 1

〉
Dcalc = {D1,D2} = {[1], [2]}

Q = [[5]]

Ccalc = {〈1, 2, 5〉}

D⊃ = ∅

Qdup = []

〈Q1,P(Q1)〉 = 〈{E → ¬A} , 〈{D1} , {D2} , ∅〉〉

u(Q1) = false

DX = {D2}, D× = {D1}

〉

UPDATETREE:

QRC (D1): QX(〈{2, 5} ,B,P ,N ∪ {Q1}〉) = 〈2, 5〉

⇒ PRUNE: 〈1, 2, 5〉 → 〈2, 5〉

• prune all subtrees starting from nodes 〈1, 2, 5〉

by outgoing edge with label 1

• replace by 〈2, 5〉 all node labels in the tree

that are proper supersets of 〈2, 5〉

⇒ D⊃ = ∅, Ccalc = {〈2, 5〉},

Q = [[2], [5]], Qdup = [],

〉
1©
〈
�A1, 2, 5

〉C
2©X(D1) 3©X(D2) ?

4©× 4©?

4
1

zz
2

��
5

**

Q1

��
Q1

��

Updated Tree

〉

1©〈2, 5〉C

3©X(D2) 6©〈1, 2, 7〉C

5©X(D2) 7©X(D3) ? ?

2

��
5

**

Q1

��
1

zz
2

��

7

$$

Iteration 2

〉
Dcalc = {D2,D3} = {[2], [5, 1]}

Q = [[5, 2], [5, 7]]

Ccalc = {〈2, 5〉 , 〈1, 2, 7〉}

D⊃ = ∅

Qdup = []

〈Q2,P(Q2)〉 = 〈{E → G} , 〈{D3} , {D2} , ∅〉〉

u(Q2) = false

DX = {D2}, D× = {D3}

〉

UPDATETREE:

QRC (D3): QX(〈{2, 7} ,B,P ,N ∪ {Q1, Q2}〉) = 〈2, 7〉

⇒ PRUNE: 〈1, 2, 7〉 → 〈2, 7〉

⇒ D⊃ = ∅, Ccalc = {〈2, 5〉 , 〈2, 7〉}

Q = [[2], [5, 2], [5, 7]], Qdup = []

〉
1©〈2, 5〉C

3©X(D2) 6©
〈
�A1, 2, 7

〉C
5©X(D2) 7©X(D3) ? ?

8©? 8©×

2

��
5

**

Q1

��

4
1

zz
2

��

7

$$

Q2

��
Q2

��

Updated Tree

〉

1©〈2, 5〉C

3©X(D2) 6©〈2, 7〉C

5©X(D2) 10©×(⊃D2) 11©X(D4)

9©X(D2)

2

��
5

**

Q1

��
2

��
7

$$

Q2

��

Iteration 3

〉
Dcalc = {D2,D4} = {[2], [5, 7]}

Q = []

Ccalc = {〈2, 5〉 , 〈2, 7〉}

D⊃ = {[5, 2]}

Qdup = []

〈Q3,P(Q3)〉 = 〈{Y → ¬A} , 〈{D2} , {D4} , ∅〉〉

u(Q3) = false

DX = {D4}, D× = {D2}

〉

Figure 12.1: (Example 12.1) Solving the problem of Interactive Dynamic KB Debugging (Problem Definition 6.1) for the exam-
ple DPI given by Table 15.3 by means of Algorithm 5 and DYNAMICHS.

12.3. EXAMPLES 187

UPDATETREE:

QRC (D2): QX(〈{5} ,B,P ,N ∪ {Q1, Q2, Q3}〉) = 〈5〉

⇒ PRUNE: 〈2, 5〉 → 〈5〉

⇒ D⊃ = ∅, Ccalc = {〈5〉 , 〈2, 7〉}

Q = [[5, 2], [5, 7]], Qdup = []

〉

1©
〈
�A2, 5
〉C

3©X(D2) 6©〈2, 7〉C

5©X(D2) 10©×(⊃D2) 11©X(D4)

9©X(D2) 12©? 12©?

12©×

_
2

��
5

**

Q1

��
2

��
7

$$

Q2

��
Q3

��
Q3

��

Q3

��

Updated Tree

〉

1©〈5〉C

6©〈2, 7〉C

10©×(⊃D2) 11©X(D4)

13©X(D5) 14©X(D4)

5

**

2

��
7

$$

Q3

��
Q3

��

Iteration 4

〉
Dcalc = {D4,D5} = {[5, 7], [5, 2]}

Q = []

Ccalc = {〈5〉 , 〈2, 7〉}

D⊃ = ∅

Qdup = []

〈Q4,P(Q4)〉 = 〈{E → Z} , 〈{D4} , {D5} , ∅〉〉

u(Q4) = true

DX = {D4}, D× = {D5}

〉

UPDATETREE:

QRC (D5):

QX(〈{7} ,B,P ∪ {Q4} ,N ∪ {Q1, Q2, Q3}〉) = 〈7〉

⇒ PRUNE: 〈2, 7〉 → 〈7〉

⇒ D⊃ = ∅, Ccalc = {〈5〉 , 〈7〉}

Q = [[5, 7]], Qdup = []

〉

1©〈5〉C

6©
〈
�A2, 7
〉C

10©×(⊃D2) 11©X(D4)

13©X(D5) 14©X(D4)

15©× 15©?

5

**

_
2

��
7

$$

Q3

��
Q3

��

Q4

��
Q4

��

Updated Tree

〉

1©〈5〉C

6©〈7〉C

11©X(D4)

14©X(D4)

16©X(D4)

5

**

7

$$

Q3

��

Q4

��

Iteration 5

〉
Dcalc = {D4} = {[5, 7]}

Q = []

Ccalc = {〈5〉 , 〈7〉}

D⊃ = ∅

Qdup = []

pD(D4) = 1

⇒ return the solution KB (K \ D4) ∪Q4

Figure 12.2: (Example 12.1 continued) Solving the problem of Interactive Dynamic KB Debugging (Problem Definition 6.1) for
the example DPI given by Table 15.3 by means of Algorithm 5 and DYNAMICHS.

188 CHAPTER 12. DYNAMIC DIAGNOSIS COMPUTATION ALGORITHM

Example 12.2 Let us now consider the (admissible) DPI 〈K,B,P ,N 〉R given by Table 4.2. We assume
an expert (called user throughout this example) in the domain Dom modeled by K who wants to find a
solution to Interactive Dynamic KB Debugging for the given DPI 〈K,B,P ,N 〉R by means of Algorithm 5
with mode = dynamic. Further, the same scenario and parameter settings as in Example 11.2 are
supposed. That is, nmin = nmax = 3 (notice that the time limit t is irrelevant in this case), q := 1 (cf.
Chapter 8), qsm() is equal to any query selection measure described in Section 9.3, pK̃∪K : K̃∪K → [0, 1]
is given such that pK(ax) for ax ∈ K resulting from the application of GETAXIOMSPROBS is as given
by Table 11.1 and σ := 0.

The tree constructed and parameters computed and used by Algorithm 5 using DYNAMICHS are
visualized by Figures 12.3 and 12.4. We use the same notation as in Figures 4.2, 4.3, 11.1, 11.2, 11.3,
12.1 and 12.2 which is described in Examples 4.8, 4.9, 11.1, 11.2 and 12.1.

After the initialization of variables, Algorithm 5 calls the function GETFORMULAPROBS in line 5
which exploits pK̃∪K() to calculate the function pK() giving the fault probabilities of formulas in K (cf.
Sections 4.6.1, 9.2 and Example 4.7).

Then, DYNAMICHS is called for the first time, resulting in the hitting set tree given in the first picture
in Figure 12.3. As outlined by the numbers i© indicating at which point in time a node is labeled, the
root node (initially the empty set) is labeled first by C1 := 〈1, 2, 5〉 and three successor nodes, namely
nd1 := [1], nd2 := [2] as well as nd3 := [5] with nd1.cs = nd2.cs = nd3.cs = [〈1, 2, 5〉], are added to the
queue of open nodes Q. Contrary to Example 12.1, where the tree was built up in breadth-first order, in
this example the formula probabilities p() := pK() given by Table 11.1 are used to assign a probability
pnodes(n) to each path n in the tree starting from the root node (cf. Formula 4.6 and Definition 4.9).
In this vein, the node corresponding to the outgoing edge of C1 labeled by the formula with the largest
fault probability among all formulas in C1 is processed next. That is, the node [1] with pnodes([1]) =
0.41 (as opposed to the nodes [2] and [5] with 0.25 each) is labeled next. The DLABEL procedure,
after checking whether [1] is a non-minimal diagnosis w.r.t. 〈K,B,P ,N 〉R (check is negative), computes
another minimal conflict set C2 := 〈2, 4, 6〉 such that [1] ∩ C2 = ∅ (C2 is not hit by the node [1]) to
constitute a label for node [1]. The successor nodes [1, 2], [1, 4] and [1, 6] of [1] are generated and added
to the list Q in a way that the sorting of Q in descending order of pnodes() is maintained.

Since [1, 4] (0.28) as well as [1, 6] (0.27) have a larger probability (as per pnodes()) than the nodes [2]
(0.25) and [5] (0.25), Q is given by [[1, 4], [1, 6], [2], [5], [1, 2]] when it comes to the processing of the next
node. Since DYNAMICHS always treats the first node of Q next, it identifies the first minimal diagnoses
D1 := [1, 4] andD2 := [1, 6] w.r.t. 〈K,B,P ,N 〉R at steps 3© and 4©, respectively. At step 5©, when node
[2] is processed, a minimal conflict set C3 := 〈1, 3, 4〉 is computed and set as a label for [2], giving rise to
the generation of three further nodes [2, 1], [2, 3] and [2, 4], all with ndi.cs = [〈1, 2, 5〉 , 〈1, 3, 4〉].

However, notice that not all of these new nodes are added to Q, contrary to STATICHS (cf. Ex-
ample 11.2). For, there is already a node [1, 2] corresponding to the set {1, 2} in Q. Due to the test
performed in line 20, this duplicate node [2, 1] is assigned to the list Qdup which is expressed in the
figure by dup. Since diagnoses are sets, not lists, [1, 2, ax 1, . . . , axk] and [2, 1, ax 1, . . . , axk] constitute
one and the same diagnosis and it is irrelevant whether the one or the other is found. Hence, the nodes
[1, 2] and [2, 1] are regarded as duplicates. Nevertheless, ndi := [2, 1] (with ndi.cs = [〈1, 2, 5〉 , 〈1, 3, 4〉])
must not be completely deleted as it might be the case that (some successor node of) ndj := [1, 2] (with
ndj .cs = [〈1, 2, 5〉 , 〈2, 4, 6〉]) becomes redundant due to the eventual addition of some test case. For
example, in case the reason for the redundancy of ndj is given (only) by a witness of redundancy that is
a subset of 〈2, 4, 6〉, ndj is pruned and replaced by the node ndi which is still non-redundant.

Thence, only [2, 3] and [2, 4] are added to Q as successor nodes of the processed node [2]. Next,
the minimal conflict set C2 = 〈2, 4, 6〉 is reused (lines 30-40 in DLABEL) as a label for node [5] with
pnodes([5]) = 0.25 and the three new nodes [5, 2], [5, 4] as well as [5, 6] are generated and assigned to Q
at step 7©. Then, the fourth minimal conflict set C4 := 〈1, 5, 6, 8〉 is computed to label the node [2, 4] with
pnodes([2, 4]) = 0.18 and the four new nodes [2, 4, 1], [2, 4, 5], [2, 4, 6] as well as [2, 4, 8] are generated

12.3. EXAMPLES 189

and assigned to Q st step 8©. At step 9©, the third minimal diagnosis D3 := [5, 4] w.r.t. 〈K,B,P ,N 〉R
is eventually found and added to Dcalc which now has reached a cardinality of 3 = nmin = nmax

wherefore DYNAMICHS stops and returns i.a. the set of leading diagnoses Dcalc = {[1, 4], [1, 6], [5, 4]}.
The returned values are given in the lefthand column in Figure 12.3.

As in Example 11.2, where a debugging session for the same DPI using STATICHS is presented, the
first query Q1 is computed as {B v K} and answered by true by the user. The assignment of Q1 to the
positive test cases of the DPI 〈K,B,P ,N 〉R brings the opportunity to perform some significant pruning
actions (within the function UPDATETREE called at the beginning of the second call of DYNAMICHS).
These are shown in the tree with the caption ’Updated Tree’ and in the righthand column in Figure 12.3.

As a first step within UPDATETREE, a redundancy check is performed for each diagnosis in D×. In
this case D× = {D3} = {[5, 4]} since D3 is the only minimal diagnosis that has been ruled out by the
most recently added positive test case Q1. The purpose of the redundancy check is to figure out whether
D3 is redundant w.r.t. the current DPI and must be pruned or whether it might be extended to become a
minimal diagnosis w.r.t. the current DPI.

First, the Quick Redundancy Check (QRC) QX(〈{1, 2, 6} ,B,P ∪ {Q1} ,N 〉) = 〈1〉 (line 50 in DY-
NAMICHS) is executed for D3 where the KB {1, 2, 6} used in this call of QX is obtained by deletion of
node := D3 from the union of all conflict sets (the elements of node.cs) along the path that corresponds
to D3, i.e. {1, 2, 6} = (〈1, 2, 5〉 ∪ 〈2, 4, 6〉) \ [5, 4]. By means of the QRC it is figured out (line 52 in DY-
NAMICHS) that D3 (and possibly some further nodes) is redundant and can be pruned. This holds since
the minimal conflict set 〈1, 2, 5〉 w.r.t. the last-but-one DPI 〈K,B,P ,N 〉R is not a minimal conflict set
w.r.t. the current DPI 〈K,B,P∪{Q1} ,N 〉R because 〈1〉 returned by QX is already a minimal conflict set
w.r.t. the current DPI (cf. Proposition 4.9). We call this minimal conflict set 〈1〉 a witness of redundancy
for D3. Hence, all branches in the hitting set tree starting from an outgoing edge of 〈1, 2, 5〉 labeled by 2
or by 5 can be safely deleted from all collections storing nodes in DYNAMICHS.

An illustration why 〈1〉 “replaces” 〈1, 2, 5〉 as a minimal conflict set w.r.t. the current DPI can be given
as follows: First, 〈1, 2, 5〉 is a minimal conflict set w.r.t. 〈K,B,P ,N 〉R as it is a set-minimal subset of K
that entails {A v K} = n1 ∈ N and there is no proper subset C′ of 〈1, 2, 5〉 where C′ ∪ B ∪ UP violates
any r ∈ R or entails any n ∈ N (see example 4.3 for a detailed explanation). Second, considering
the current DPI 〈K,B,P ∪ {Q1} ,N 〉R, we have that 〈1, 2, 5〉 ∪ B ∪ UP∪{Q1} |= n1, too. However,
{2, 5} = {B v G,G v K} |= {B v K} = Q1 implies that B ∪ UP∪{Q1} ⊇ Q1 can replace the subset
{2, 5} of the conflict set 〈1, 2, 5〉. For, formula 1 (A v B) along with Q1 (B v K) already entails
n1. Further, B ∪ UP∪{Q1} cannot violate any negative test case ni ∈ N or requirement rj ∈ R by the
admissibility of the input DPI 〈K,B,P ,N 〉R, the fact that Q1 is a query, Corollary 7.3, Definition 3.6
and Proposition 3.4. Thus, by Definition 4.1, 〈1〉 is in fact a minimal conflict set w.r.t. the current DPI
〈K,B,P ∪ {Q1} ,N 〉R.

Now, the first nice thing at this point is that 〈1〉 is not only a witness of redundancy of nodes nd where
〈1, 2, 5〉 ∈ nd.cs, but of each nd (in the tree or in the set Qdup of duplicate nodes) where nd.cs contains
a conflict set that is a proper superset of 〈1〉. That is, 〈1〉 also replaces 〈1, 3, 4〉 as well as 〈1, 5, 6, 8〉.
This implicates that two outgoing edges (those labeled by 2 or 5) of 〈1, 2, 5〉, two outgoing edges (those
labeled by 3 or 4) of 〈1, 3, 4〉 and three outgoing edges (those labeled by 5, 6 or 8) of 〈1, 5, 6, 8〉 can be
pruned.

The second nice thing that has an even more significant bearing on tree pruning than the first thing is
that 〈1〉 is a witness of redundancy of the conflict set that labels the root node. That is, pruning can take
place at the very top of the tree and two of three subtrees rooted at successor nodes of the root node can
be pruned. That is, for instance, within the rightmost subtree of the root node in the picture with caption
’Updated Tree’ in Figure 12.3 no pruning is possible at all since the conflict set 〈2, 4, 6〉 labels the root
node of this subtree and 〈1〉 is not a subset of 〈2, 4, 6〉. However, this subtree is still redundant since it is
connected with the root node by a “redundant” edge labeled by 5. As a consequence, we can observe the
pruning of a total of 9 nodes (of altogether 12 nodes in the tree) in only one execution of UPDATETREE.

190 CHAPTER 12. DYNAMIC DIAGNOSIS COMPUTATION ALGORITHM

Now, to receive an impression of the power of tree pruning in DYNAMICHS, the reader is invited to
compare the trees used in iterations 2 and 3 in the current example (the bottom left pictures in Figure 12.3
and Figure 12.4) with the trees used in iterations 2 and 3 in Example 11.2 (the bottom picture in Fig-
ure 11.2 and the picture in Figure 11.3) which deals with the debugging of the same DPI (just by means
of STATICHS instead of DYNAMICHS), uses the same sets of leading diagnoses in each iteration, thus the
same queries, and of course the same user (that gives the same answers in both examples).

After all diagnoses of DX are added to Q as a final action within UPDATETREE, the repeat-loop of the
second iteration of DYNAMICHS is entered. Here, the minimal diagnoses D1 (pnodes(D1) = 0.28, step
11©), D2 (0.27, 12©) and D4 (0.09, 13©) are found and assigned to the empty set Dcalc before DYNAMICHS
terminates again. Notice that only one call of the DLABEL procedure is required in the second iteration
(for node [1, 2]) due to the test in line 8 of DYNAMICHS which is positive forD1 andD2 (sinceD1,D2 ∈
DX).

Once the second query Q2 = {B v ∃r.F} is added to the positive test cases resulting in the DPI
〈K,B,P ∪ {Q1, Q2} ,N 〉R, the UPDATETREE function causes the pruning of two further nodes (D2 =
[1, 6] and D4 = [1, 2]) leading to the continuance of only a single node (D1 = [1, 4]) in the memory of
DYNAMICHS (see the picture with caption ’Updated Tree’ in Figure 12.4). The reason for this is that
Q2 can “replace” the part {2, 6} = {B v G,G v ∃r.F} (which entails Q2) of the minimal conflict set
〈2, 4, 6〉 w.r.t. the last-but-one DPI 〈K,B,P ∪ {Q1} ,N 〉R such that 〈2, 4, 6〉 \ {2, 6} = 〈4〉 is already
a minimal conflict set w.r.t. the current DPI 〈K,B,P ∪ {Q1, Q2} ,N 〉R (cf. the analysis of the minimal
conflict set C2 = 〈2, 4, 6〉 in Example 4.3).

Since, by now, all minimal conflict sets 〈1, 2, 5〉, 〈2, 4, 6〉, 〈1, 5, 6, 8〉 as well as 〈1, 3, 4〉w.r.t. the input
DPI 〈K,B,P ,N 〉R have “shrunk” as much as to constitute only two different set-minimal sets 〈1〉 and
〈4〉, it is clear by Proposition 4.6 that there can be only a single minimal diagnosis [1, 4] w.r.t. the current
DPI 〈K,B,P ∪ {Q1, Q2} ,N 〉R. Therefore, the third iteration of DYNAMICHS terminates due to Q = []
and returns the singleton set Dcalc = {[1, 4]}. Consequently, the probability pD([1, 4]) = 1 wherefore
Algorithm 5 also stops executing and returns (K \ [1, 4]) ∪ p1 ∪ Q1 ∪ Q2 as the (exact) solution to the
Interactive Dynamic KB Debugging problem for the DPI 〈K,B,P ,N 〉R.

The advantage of DYNAMICHS in this example over STATICHS in Example 11.2 in iterations 2 and 3
is that the pruning of nodes lets the algorithm automatically focus on the still relevant (i.e. non-redundant)
parts of the tree. STATICHS, on the other hand, is doomed to spend most of the execution time for
investigating nodes that turn out to be already invalidated by some specified test case(s). As already
mentioned in Example 11.2, the inability of STATICHS to “early-prune” incomplete branches of the tree
is especially unfavorable in the last iteration of STATICHS in case σ = 0 since all irrelevant minimal
diagnoses w.r.t. the input DPI must first be computed before they can be ruled out.

This immense upside of DYNAMICHS over STATICHS (see the analysis in the end of Example 11.2)
also finds expression in the quantitative analysis of this example given next. All in all, the execution of
Algorithm 5 in this example performs

• 4 full QX calls, i.e. calls of QX using the KBK\node for a node node that actually return a minimal
conflict set (there are four minimal conflict sets labeled by C in Figures 12.3 and 12.4 which do not
result from QRC, CRC or the minimality test of a conflict set in line 32 of DYNAMICHS),

• 2 fast QX calls, i.e. executions of QX within the scope of the QRC (one call of QX each for the
QRC of D3 and D2),

• 4 validity checks, i.e. calls of QX that return ’no conflict’ (one check for each of the four found
minimal diagnoses where the identification of diagnosesD1 at step 11©,D2 at step 12© andD1 at step
15© does not require any call to a reasoning service by means of DX, see line 8 in DYNAMICHS;

notice that QX does only perform a single KB validity check by ISKBVALID in case it returns ’no
conflict’, see Algorithm 1) and

12.3. EXAMPLES 191

• 2 tree update processes involving 11 pruned nodes (9 nodes during the first update between steps
10© and 11© and 2 nodes during the second between steps 14© and 15©),

computes

• 4 minimal diagnoses (D1, D2, D3 and D4, all w.r.t. the input DPI),

• 6 minimal conflict sets (〈1, 2, 5〉, 〈2, 4, 6〉, 〈1, 3, 4〉 and 〈1, 5, 6, 8〉 w.r.t. the input DPI and the
subsets thereof 〈1〉 and 〈4〉 w.r.t. some DPI resulting from the input DPI by addition of new test
cases) and

• 2 queries and asks the user 2 logical formulas (1 per query)

and stores

• a maximum of 12 nodes (where node refers to the internal representation of a node nd in DY-
NAMICHS as a list of edge labels (nd) and a list of node labels (nd.cs) along a path from the root
node to a leaf node).

Finally, we want to emphasize that, in all executions of UPDATETREE throughout this example, the usu-
ally very efficient QRC was successful right off and the usually more time-consuming CRC was never
required.

192 CHAPTER 12. DYNAMIC DIAGNOSIS COMPUTATION ALGORITHM

1©〈1, 2, 5〉C

2©〈2, 4, 6〉C 5©〈1, 3, 4〉C 7©〈2, 4, 6〉R

? 3©X(D1) 4©X(D2) 6© dup ? 8©〈1, 5, 6, 8〉C ? 9©X(D3) ?

? ? ? ?

1

0.41
rr

2 0.25�� 5 0.25
,,

2

0.09ww
4 0.28�� 6 0.27''

1

0.09ww 3 0.07�� 4 0.18''
2

0.06ww
4 0.18�� 6 0.17

''

1

0.06ww

5

0.04��

6

0.11��

8

0.04��

Iteration 1

〉

Dcalc = {D1,D2,D3} = {[1, 4], [1, 6], [5, 4]}

Q = [[5, 6], [2, 4, 6], [1, 2], [2, 3], [5, 2],

[2, 4, 1], [2, 4, 5], [2, 4, 8]]

Ccalc = {〈1, 2, 5〉 , 〈2, 4, 6〉 , 〈1, 3, 4〉 , 〈1, 5, 6, 8〉}

D⊃ = ∅

Qdup = [[2, 1]]

〈Q1,P(Q1)〉 = 〈{B v K} , 〈{D1,D2} , {D3} , ∅〉〉

u(Q1) = true

DX = {D1,D2}, D× = {D3}

〉

UPDATETREE:

QRC (D3): QX(〈{1, 2, 6} ,B,P ∪ {Q1} ,N 〉) = 〈1〉

⇒ PRUNEQDUP/PRUNE: 〈1, 2, 5〉 → 〈1〉, 〈1, 3, 4〉 → 〈1〉

• prune all subtrees starting from nodes 〈1, 2, 5〉

by an outgoing edge with label 2 or 5

• prune all subtrees starting from nodes 〈1, 3, 4〉

by an outgoing edge with label 3 or 4

• replace by 〈1〉 all node labels in the tree

that are proper supersets of 〈1〉

⇒ D⊃ = ∅, Ccalc = {〈1〉 , 〈2, 4, 6〉},

Q = [[1, 4], [1, 6], [1, 2]], Qdup = []

〉

1©
〈
1,�A2,�A5

〉C
2©〈2, 4, 6〉C 5©

〈
1,�A3,�A4

〉C
7©〈2, 4, 6〉R

? 3©X(D1) 4©X(D2) 6© dup ? 8©
〈
1,�A5,�A6,�A8

〉C
? 9©X(D3) ?

10©? 10©? 10©×

? ? ? ?

1

0.41
rr

_
2 0.25��

�

5 0.25
,,

2

0.09ww
4 0.28�� 6 0.27''

1

0.09ww
_

3 0.07��
�

4 0.18''
2

0.06ww
4 0.18�� 6 0.17

''

Q1��
Q1��

Q1��
1

0.06ww

?

5

0.04��

_

6

0.11��

�

8

0.04��

Updated Tree

〉

1©〈1〉C

2©〈2, 4, 6〉C

13©X(D4) 3©X(D1) 4©X(D2)

11©X(D1) 12©X(D2)

1

0.41ss

2

0.09
ww 4 0.28�� 6 0.27''

Q1�� Q1��

Iteration 2

〉
Dcalc = {D1,D2,D4} = {[1, 4], [1, 6], [1, 2]}

Q = []

Ccalc = {〈1〉 , 〈2, 4, 6〉}

D⊃ = ∅

Qdup = []

〈Q2,P(Q2)〉 = 〈{B v ∃r.F} , 〈{D1} , {D2,D4} , ∅〉〉

u(Q2) = true

DX = {D1}, D× = {D2,D4}

〉

Figure 12.3: (Example 12.2) Solving the problem of Interactive Dynamic KB Debugging (Problem Definition 6.1) for the example
DPI given by Table 4.2 by means of Algorithm 5 and DYNAMICHS.

12.3. EXAMPLES 193

UPDATETREE:

QRC (D2): QX(〈{2, 4} ,B,P ∪ {Q1, Q2} ,N 〉) = 〈4〉

⇒ PRUNE: 〈2, 4, 6〉 → 〈4〉

⇒ D⊃ = ∅, Ccalc = {〈1〉 , 〈4〉}

Q = [[1, 4]], Qdup = []

〉
1©〈1〉C

2©
〈
�A2, 4,�A6

〉C
13©X(D4) 3©X(D1) 4©X(D2)

11©X(D1) 12©X(D2)14©×

14©? 14©×

1

0.41ss

/
2

0.09
ww 4 0.28��

�
6 0.27''

Q1�� Q1��Q2��

Q2��
Q2��

Updated Tree

〉

1©〈1〉C

2©〈4〉C

3©X(D1)

11©X(D1)

15©X(D1)

1

0.41ss

4 0.28��

Q1��

Q2��

Iteration 3

〉
Dcalc = {D1} = {[1, 4]}

Q = []

Ccalc = {〈1〉 , 〈4〉}

D⊃ = ∅

Qdup = []

pD(D1) = 1

⇒ return the solution KB (K \ D1) ∪ p1 ∪Q1 ∪Q2

(p1: cf. Table 4.2)

Figure 12.4: (Example 12.2 continued) Solving the problem of Interactive Dynamic KB Debugging (Problem Definition 6.1) for
the example DPI given by Table 4.2 by means of Algorithm 5 and DYNAMICHS.

194 CHAPTER 12. DYNAMIC DIAGNOSIS COMPUTATION ALGORITHM

12.4 Algorithm Details and Correctness
In this section we will discuss DYNAMICHS in a detailed way and give proofs of its completeness and
soundness. To this end, we first give some definitions and some hints regarding the notation used in this
section.

12.4.1 Definitions and Notation
The DYNAMICHS algorithm will require a different storage of nodes than STATICHS and Algorithm 2
since it will not interpret different branches with the same set of edge labels in the hitting set tree to be
equivalent. So, DYNAMICHS, as opposed to STATICHS and Algorithm 2, will not discard any branch
that is a duplicate branch in terms of its edge labels. Instead, a set storing these duplicate branches will
be consulted each time a branch is found to be “redundant” and thus needs to be pruned. This strategy
enables the substitution of a “redundant” branch by a “non-redundant” branch featuring an equal set of
edge labels.

That is why a node nd in (the hitting set tree produced by) DYNAMICHS corresponds to the ordered
list of edge labels visited when traversing a path from the root node to some leaf node. As an attribute of
nd, nd.cs corresponds to the ordered list of node labels visited when traversing a path from the root node
to some leaf node.

Definition 12.1. Let 〈K,B,P ,N 〉R be the DPI and P ′ and N ′ the sets of positively and negatively
answered queries given as an input to DYNAMICHS. Let further P ′′1 , . . . ,P

′′
k and N ′′1 , . . . ,N

′′
k such that

P ′′j ⊆ P ′ and N ′′j ⊆ N ′ for j ∈ {1, . . . , k}. Then we define in DYNAMICHS

• a node nd = [ax 1, . . . , axk] to be an (ordered) list of elements ax j ∈ K

where each node nd stores as an attribute

• the (ordered) list nd.cs = [C1, . . . , Ck] such that Cj is a minimal conflict set w.r.t. 〈K,B,P∪P ′′j ,N∪
N ′′j 〉R and ax j ∈ Cj for all j ∈ {1, . . . , k} corresponding to the set of node labels on the path from
the root node to nd.

Further, nd[i] refers to the i-th element in nd, i.e. to ax i, and nd.cs[i] refers to the i-th element in nd.cs,
i.e. to Ci. Notice that conflict sets nd.cs[i] itself are (non-ordered) sets.

Moreover, we define

• |nd| and |nd.cs| to denote the number of elements in the lists nd and nd.cs,

• nd[i..k] := [nd[i], . . . , nd[k]] for i ≤ k and |nd| ≥ k,

• nd.cs[i..k] := [nd.cs[i], . . . , nd.cs[k]] for i ≤ k and |nd.cs| ≥ k,

• nodes nd and nd[i..k] appearing on the left or right side of expressions using the following set
operators to be considered as (non-ordered) sets: ⊃,⊇,⊂,⊆,=, \

We call

• nd[1..k] where (k < |nd|) k ≤ |nd| a (proper) subnode of nd and

• nd′′ a successor (node) of nd′ iff nd′ is a proper subnode of nd′′.

• nd the same node as nd′ iff

– |nd| = |nd′| and

12.4. ALGORITHM DETAILS AND CORRECTNESS 195

– nd[i] = nd′[i] for i ∈ {1, . . . , |nd|} and

– nd.cs[i] = nd′.cs[i] for i ∈ {1, . . . , |nd|}.

Example 12.3 For instance, in line 20 of Algorithm 8, the test nodee ∈ Q checks whether there is
some set nd in Q such that nodee and nd interpreted as sets are equal. That is, nodee := {1, 3, 2} is equal
to nd := {2, 1, 3} although the order of formulas is different and the ordered sets of conflict sets nodee.cs
and nd.cs might be different as well. Another example of this interpretation of nodes as sets can be found
in line 50 where Und.cs \ nd refers to the set difference of the union of all sets in nd.cs and the set nd.
If, e.g. Und.cs := {1, 2, 3, 4} and nd := {4, 2}, the result of this set difference is {1, 3} or, equivalently,
{3, 1}.

On the other hand, if the operator is not one of those listed above, then node is interpreted as an
ordered set. For example, consider line 19 where the ADD operator is used to append a logical formula e
to the end of the ordered set of formulas node. Suppose, e.g. node := [3, 1, 2] and e := 4, then the result
is [3, 1, 2, 4] which is not equal to [1, 2, 3, 4].

The following definition characterizes alternative paths in a hitting set tree produced by DYNAMICHS,
i.e. different paths leading to the same (leaf) node in the tree.

Definition 12.2. Let nd and nd′ be nodes in DYNAMICHS such that

• |nd′| ≤ |nd|,

• nd′ = nd[1..|nd′|] and

• there is some j ∈
{

1, . . . , |nd′|
}

with the property that nd′[j] 6= nd[j] or nd′.cs[j] 6= nd.cs[j].

Further, let ADD(L1, L2) be the function that outputs the list [a1, . . . , an, b1, . . . , bm] given two lists
L1 := [a1, . . . , an] and L2 := [b1, . . . , bm].

Then we call

• nd′ an alternative subnode of nd,

• nd′ a proper alternative subnode of nd if |nd′| < |nd| and

• node where

– node := ADD(nd′, nd[|nd′|+ 1..|nd|]) and

– node.cs := ADD(nd′.cs, nd.cs[|nd′.cs|+ 1..|nd.cs|])

an alternative equal node of nd.

• In a context where nd′ is relevant, we call node the alternative equal node of nd constructed from
nd′.

Regarded as a set, an alternative equal node node of some node nd is equal to nd. There is just at least
one difference between node and nd with regard to the order of elements in nd as opposed to the order of
elements in node or with regard to the (order of) elements in nd.cs as opposed to the (order of) elements
in node.cs.

Example 12.4 Let nd := [1, 2, 3, 4] with nd.cs := [〈1, 2, 3〉 , 〈2, 6〉 , 〈3, 6, 7〉 , 〈4, 5〉]. Then, nd1 :=
[2, 1] with nd1.cs := [〈1, 2, 3〉 , 〈1, 4〉] as well as nd2 := [3, 2, 1] with nd2.cs := [〈1, 2, 3〉 , 〈2, 6〉 , 〈1, 4〉]
are alternative subnodes of nd. To see that nd1 is an alternative subnode of nd, observe that the set-
equality between nd1 = [2, 1] and nd[1..|nd1|] = [1, 2] holds and 2 = nd1[j] 6= nd[j] = 1 for j := 1

196 CHAPTER 12. DYNAMIC DIAGNOSIS COMPUTATION ALGORITHM

holds. Similarly, for nd2, we have that the set equality between [1, 2, 3] and [3, 2, 1] holds and the elements
on the j-th position for, e.g. j := 1, are different, i.e. 1 6= 3.

These alternative subnodes of nd can be used to construct the following alternative equal nodes of nd:
The one obtained from nd1 is node1 := [2, 1, 3, 4] with node1.cs := [〈1, 2, 3〉 , 〈1, 4〉 , 〈3, 6, 7〉 , 〈4, 5〉] and
the one obtained from nd2 is node2 := [3, 2, 1, 4] with node1.cs := [〈1, 2, 3〉 , 〈2, 6〉 , 〈1, 4〉 , 〈4, 5〉].

The following definition introduces the terminology that will be used throughout this section to refer
to nodes in DYNAMICHS with certain properties.

Definition 12.3. In DYNAMICHS, a node nd with nd.cs is called

• generated iff it is built in lines 18 and 19,

• processed iff lines 6-15 have been executed for node := nd,

• pruned iff

– it is found to be redundant in line 91 and no node nd′′ = nd is added to S′ in line 100 or

– it is found to be redundant in line 112 and no node nd′′ = nd is added to Dupnew in line 121

• replaced iff it is found to be redundant in line 91 and some node ndrep = nd is added to S′ in
line 100

• combined-replaced iff it is found to be redundant in line 112 and some node ndcomb,rep = nd is
added to Dupnew in line 121

at any point in time during the execution of DYNAMICHS at any call to DYNAMICHS during the execution
of Algorithm 5.

The node ndrep is referred to as replacement node (of nd) and the node ndcomb,rep is referred to as
combined replacement node (of nd).

12.4.2 The Labeling Function in DYNAMICHS
The following two lemmata provide an analysis of the DLABEL function and characterize the output given
by this function independently of when it is called during the execution of Algorithm 5.

The first one analyzes the case where DLABEL returns valid or nonmin which means that the node
for which DLABEL was called is a diagnosis or a non-minimal diagnosis w.r.t. the current DPI, respec-
tively. Further on, it states that only diagnoses w.r.t. the current DPI can be stored in the set Dcalc and
only diagnoses for whose non-minimality there is evidence in terms of a diagnosis in Dcalc can be labeled
by nonmin.

Lemma 12.1. Let the DLABEL procedure be called at any point in time during the execution of DY-
NAMICHS given i.a. some node node, some DPI 〈K,B,P ,N 〉R, some set of positive test cases P ′ and
some set of negative test cases N ′ as argument. Then the following holds:

(1) If DLABEL returns valid, node is a diagnosis w.r.t. the current DPI 〈K,B,P ∪ P ′,N ∪N ′〉R.

(2) During this execution of DYNAMICHS, Dcalc comprises only diagnoses w.r.t. the current DPI 〈K,B,
P ∪ P ′,N ∪N ′〉R.

(3) If DLABEL returns nonmin, node is a non-minimal diagnosis w.r.t. the current DPI 〈K, B, P ∪
P ′,N ∪N ′〉R.

(4) At the time the label nonmin is returned for node, there is some diagnosis D′ w.r.t. the current DPI
〈K,B,P ∪ P ′,N ∪N ′〉R such that D′ ∈ Dcalc and node ⊃ D′.

12.4. ALGORITHM DETAILS AND CORRECTNESS 197

Proof. (1): Assume that DLABEL returns valid for node. Then, by Proposition 4.9, Remark 4.3, Corol-
lary 3.3, Corollary 7.3 and the fact that the DPI 〈K,B,P ,N 〉R used in DYNAMICHS as an input to DLA-
BEL is the same DPI as the admissible one given as an input to Algorithm 5, node must be a diagnosis
w.r.t. 〈K,B,P ∪ P ′,N ∪N ′〉R. This proves proposition (1).

(2): This is a direct conclusion from proposition (1) and the facts that nodes labeled by valid are added
to the set Dcalc in line 13, at the beginning of the execution of DYNAMICHS, Dcalc = ∅ holds (line 3)
and Dcalc is modified only in line 13 throughout DYNAMICHS.

(3): At the beginning of the execution of DYNAMICHS, Dcalc = ∅ (line 3) and Dcalc is modified
only in line 13 throughout DYNAMICHS. In line 13, exactly those nodes are added to Dcalc for which the
DLABEL function returns valid. By the correctness of proposition (1), only diagnoses w.r.t. the current
DPI 〈K,B,P ∪ P ′,N ∪N ′〉R can be added to Dcalc.

Now, assume DLABEL returns nonmin for node. Then, due to the fact that Dcalc can only comprise
diagnoses w.r.t. the current DPI 〈K,B,P ∪ P ′,N ∪N ′〉R and node ⊃ D′ for some D′ ∈ Dcalc by
line 27, node must be a non-minimal diagnosis w.r.t. the current DPI 〈K,B,P ∪ P ′,N ∪N ′〉R.

(4): This is a direct consequence of proposition (3).

The following lemma states that the set Ccalc given as an input to DLABEL must include only minimal
conflict sets, each w.r.t. the current DPI or some DPI including only a subset of the test cases the current
DPI comprises. Moreover, it provides evidence that, in case DLABEL returns a set, this set is a minimal
conflict set w.r.t. the current DPI which is not hit by the node given as input to DLABEL.

Lemma 12.2. Let the DLABEL procedure be called at any point in time during the execution of DY-
NAMICHS given i.a. some node node, a set of sets Ccalc, some DPI 〈K,B,P ,N 〉R, some set of positive
test cases P ′ and some set of negative test cases N ′ as argument. Then,

(1) each element in Ccalc is a minimal conflict set w.r.t. some DPI 〈K,B,P ∪ P ′′,N ∪N ′′〉R where
P ′′ ⊆ P ′ and N ′′ ⊆ N ′ and

(2) if DLABEL returns a set L, then this set L is a minimal conflict set w.r.t. the current DPI 〈K, B,
P ∪ P ′,N ∪N ′〉R and node ∩ L = ∅.

Proof. (1): At the first call to DYNAMICHS, Ccalc = ∅ is given as an input argument to DYNAMICHS
(lines 1 and 10 in Algorithm 5). The only places throughout DYNAMICHS where Ccalc is modified are
lines 39, 45 and 66. However, modifications to Ccalc in lines 39 and 66 can only take place in case there
is already some element in Ccalc. That is, the first element must be added to Ccalc in line 45.

In line 45, only minimal conflict sets w.r.t. some DPI 〈K,B,P ∪ P ′′,N ∪N ′′〉R are added to Ccalc

where P ′′ ⊆ P ′ and N ′′ ⊆ N ′ since the call to DLABEL might have taken place during some prior
execution of DYNAMICHS during the execution of Algorithm 5. In order to reach line 45, QX called with
the DPI 〈K \ node,B,P ∪ P ′′,N ∪N ′′〉R as argument must not return ’no conflict’ (line 41). That is, a
minimal conflict set L 6= ∅ w.r.t. 〈K,B,P ∪ P ′′,N ∪N ′′〉R is computed in line 41 by Propostition 4.9,
Remark 4.3, Corollary 7.3 and the fact that the DPI 〈K,B,P ,N 〉R used in DYNAMICHS as an input to
DLABEL is the same DPI as the admissible one given as an input to Algorithm 5.

In lines 39 and 66, the following is true: (*) Only minimal conflict sets that are proper subsets of
elements already in Ccalc can be added to Ccalc. In the case of line 39, (*) is true due to the following
reasons: In order to reach line 39, QX(〈C,B,P ∪ P ′′,N ∪N ′′〉R) = X 6= C must hold for some
element C ∈ Ccalc. Since Ccalc is never changed in Algorithm 5 between two calls to DYNAMICHS,
Ccalc comprises only conflict sets w.r.t. the current DPI or previous DPIs (including fewer test cases
than the current one). Moreover, a minimal conflict set C can only shrink after the addition of new test
cases to the DPI for which it was computed by Proposition 12.1. Hence, the newly added element X
must be a proper subset of the existing element C in Ccalc. That X is a minimal conflict set w.r.t. the
DPI 〈K,B,P ∪ P ′′,N ∪N ′′〉R follows from QX(〈C,B,P ∪ P ′′,N ∪N ′′〉R) = X , Propostition 4.9,

198 CHAPTER 12. DYNAMIC DIAGNOSIS COMPUTATION ALGORITHM

Remark 4.3, Corollary 7.3 and the fact that the DPI 〈K,B,P ,N 〉R used in DYNAMICHS as an input to
DLABEL is the same DPI as the admissible one given as an input to Algorithm 5.

In the case of line 66, (*) is true due to the following reasons: Due to Lemmata 12.6 and 12.7,
quickPC = true or completePC = true can only hold if X is a witness of redundancy of nd. By
Definition 12.4, a witness of redundancy is a conflict set w.r.t. the current DPI which is a proper subset of
some conflict set that has been used as a label in nd.cs. However, each label in nd.cs must be an element
of Ccalc due to lines 30, 45 and 19.

(2): That, in case DLABEL returns a set L, it returns a minimal conflict set w.r.t. the current DPI is a
consequence from the inference in the proof of proposition (1). We still need to show that L∩ node = ∅.

If DLABEL returns in line 46, we can derive from the fact that L is the output of the call QX(〈K\
node, B,P ∪ P ′,N ∪ N ′〉R), Proposition 4.9 and Definition 4.1 that L ⊆ K \ node which implies that
L ∩ node = ∅.

If DLABEL returns in line 34 or line 40, then the return can be executed only if the check C∩node = ∅
is true in line 31. By the argumentation in the proof of proposition (1), for the returned set L it must hold
that L ⊆ C. Hence, L ∩ node = ∅ is satisfied.

As a simple conclusion from Lemma 12.2, we have that the argumentX passed to the PRUNE function
called within DLABEL is a minimal conflict set w.r.t. the current DPI:

Corollary 12.1. Assume the execution of some call to DYNAMICHS during the execution of Algorithm 5
using the current DPI DPI . Anytime PRUNE is called within DLABEL, the input X given to it is a
minimal conflict set w.r.t. DPI .

Proof. Assume the execution of some call to DYNAMICHS during the execution of Algorithm 5 using
the current DPI DPI . Then, Lemma 12.2 says that the set X returned in line 40 is a minimal conflict
set w.r.t. DPI . Since X is not modified by any of the functions PRUNE and ADDSETDELSUPSETS, we
obtain the proposition of this corollary.

From this we derive that the inputX passed to PRUNEQDUP called within DLABEL must be a minimal
conflict set w.r.t. the current DPI:

Corollary 12.2. Assume the execution of some call to DYNAMICHS during the execution of Algorithm 5
using the current DPI DPI . Anytime PRUNEQDUP is called within DLABEL, the input X given to it is a
minimal conflict set w.r.t. DPI .

Proof. This corollary is a direct consequence of Corollary 12.1 and the fact that the argument X given
to PRUNEQDUP is the same argument X that is given to PRUNEQDUP (none of these functions modifies
X).

12.4.3 Impact of Answered Queries on Conflict Sets
After one call to DYNAMICHS in Algorithm 5 returns, the set Dcalc (called DX in Algorithm 5) returned
by DYNAMICHS is used as a set of leading diagnoses w.r.t. the current DPI in order to compute a query.
After the answered query is incorporated into the DPI, a new call to DYNAMICHS for this new current
DPI is made.

As we have learned from Lemmata 12.1 and 12.2, the new call to DYNAMICHS considers only mini-
mal diagnoses and minimal conflict sets w.r.t. the new current DPI. Therefore, the next proposition inves-
tigates the impact of the addition of the answered query as a new test case on the set of minimal conflict
sets w.r.t. the new current DPI. Concretely, it claims that the transition from a DPI to a new DPI extended
by a test case does change the set of minimal conflict sets, that each (minimal) conflict set remains a (not
necessarily minimal) conflict set and that minimal conflict sets cannot grow in size.

12.4. ALGORITHM DETAILS AND CORRECTNESS 199

It is however important to notice that some “new” minimal conflict set might emerge in the course of
this DPI-transition which is not in a subset-relationship with any existing minimal conflict set.

Proposition 12.1. Let D be a set of minimal diagnoses w.r.t. 〈K,B,P ,N 〉R and Q ∈ QD,〈K,B,P,N 〉R .
Further, let either P ′ = P ∪ {Q} or N ′ = N ∪ {Q}. Then it holds that

(1) mC〈K,B,P,N 〉R 6= mC〈K,B,P ′,N ′〉R ,

(2) each conflict set w.r.t. 〈K,B,P ,N 〉R is a conflict set w.r.t. 〈K,B,P ′,N ′〉R,

(3) each minimal conflict set w.r.t. 〈K,B,P ,N 〉R is a conflict set w.r.t. 〈K,B,P ′,N ′〉R,

(4) there are no C ∈mC〈K,B,P,N 〉R and C′ ∈mC〈K,B,P ′,N ′〉R such that C ⊂ C′,

(5) if there is a subset-relationship between C ∈mC〈K,B,P,N 〉R and C′ ∈mC〈K,B,P ′,N ′〉R , then C′ = C
or C′ ⊂ C.

Proof. (1): Assume the opposite, namely that mC〈K,B,P,N 〉R = mC〈K,B,P ′,N ′〉R . Then, by Proposi-
tion 4.6, mD〈K,B,P,N 〉R = mD〈K,B,P ′,N ′〉R must be true. This however is a contradiction to Defini-
tion 7.1 and the fact that Q is a query.

(2): Let C be a conflict set w.r.t. 〈K,B,P ,N 〉R. Then C ∪ B ∪ UP violates some x ∈ R ∪ N . If
P ′ = P ∪ {Q} holds, then, by monotonicity of L, C ∪ B ∪ UP∪{Q} violates some x ∈ R ∪N , i.e. C is a
conflict set w.r.t. 〈K,B,P ′,N ′〉R. Otherwise, if N ′ = N ∪ {Q} is given, then C ∪ B ∪UP violates some
x ∈ R ∪N ⊂ R ∪N ′, i.e. C is a conflict set w.r.t. 〈K,B,P ′,N ′〉R.

(3): This is a direct consequence of (2), since each minimal conflict set w.r.t. 〈K,B,P ,N 〉R is a
conflict set w.r.t. 〈K,B,P ,N 〉R.

(4): Since, by (3), each minimal conflict set w.r.t. 〈K, B, P ,N 〉R is also a conflict set w.r.t. 〈K,
B,P ′,N ′〉R, there cannot be a minimal conflict set C′ w.r.t. 〈K,B,P ′,N ′〉R which is a proper su-
perset of a minimal conflict set w.r.t. 〈K,B,P ,N 〉R as this would imply non-minimality of C′ w.r.t.
〈K,B,P ′,N ′〉R.

(5): This proposition is a direct consequence of (4).

Given the existence of some non-empty minimal conflict set w.r.t. an admissible DPI DPI , the ex-
tension of the test cases of DPI by a query yields a new DPI DPI ′ for which all minimal conflict sets
are non-empty:

Proposition 12.2. Let 〈K,B,P ,N 〉R and 〈K,B,P ′,N ′〉R be two DPIs such that 〈K,B,P ,N 〉R is ad-
missible and P ′ ⊇ P and N ′ ⊇ N and |P ′ ∪N ′| = |P ∪N |+ 1. Let further C 6= ∅ be a minimal conflict
set w.r.t. 〈K,B,P ,N 〉R and Q ∈ (P ′ ∪ N ′) \ (P ∪ N) be a query w.r.t. some D ⊆ mD〈K,B,P,N 〉R and
〈K,B,P ,N 〉R. Then, for each minimal conflict set C′ w.r.t. 〈K,B,P ′,N ′〉R it holds that C′ 6= ∅.

Proof. Assume there is some minimal conflict set C′ w.r.t. 〈K,B,P ′,N ′〉R such that C′ = ∅. This implies
that there cannot be a minimal conflict set C′′ w.r.t. 〈K,B,P ′,N ′〉R which is not the empty set because
C′ would be a proper subset of C′′, which would be a contradiction to the minimality of C′′.

Due to Corollary 7.3 and the fact that a query Q w.r.t. some D ⊆mD〈K,B,P,N 〉R and 〈K,B,P ,N 〉R
is added to 〈K,B,P ,N 〉R in order to obtain 〈K,B,P ′,N ′〉R, we have that 〈K,B,P ′,N ′〉R must be
admissible.

By Corollary 3.3, K cannot be valid w.r.t. 〈·,B,P ,N 〉R since ∅ cannot be a diagnosis w.r.t. 〈K,
B,P ,N 〉R by Proposition 4.6 and the fact that C is a non-empty minimal conflict set w.r.t. 〈K,B,P ,N 〉R.
From this we can infer that K cannot be valid w.r.t. 〈·,B,P ′,N ′〉R as P ′ ⊇ P and N ′ ⊇ N .

Now, by Proposition 4.2, there must be some minimal conflict set w.r.t. 〈K,B,P ′,N ′〉R which is not
the empty set, contradiction.

200 CHAPTER 12. DYNAMIC DIAGNOSIS COMPUTATION ALGORITHM

12.4.4 Impact of Answered Queries on Diagnoses
Next, we analyze what influence answered queries that are added as new test cases to the current DPI
have on the (minimal) diagnoses w.r.t. this DPI. The first lemma assures that each DPI constructed during
the execution of Algorithm 5 must be admissible as a consequence of the postulated admissibility of the
DPI given as an initial input to Algorithm 5.

Lemma 12.3. Let 〈K,B,P ,N 〉R be the DPI and P ′ and N ′ the sets of positively and negatively answered
queries given as an input to DYNAMICHS. Then, the DPI 〈K,B,P ∪ P ′,N ∪N ′〉R is admissible.

Proof. The admissibility of 〈K,B,P ∪ P ′,N ∪ N ′〉R follows from the fact that 〈K,B,P ,N 〉R is the
(coercively) admissible input DPI of Algorithm 5, Corollary 7.3 which reveals that admissibility of a DPI
is preserved under the addition of a query to the test cases of the DPI and the fact that P ′ as well as N ′

are sets of queries. The latter holds because CALCQUERY (Algorithm 5, line 16) computes only queries
and the only place where P ′ and N ′ are modified is lines 24-26 where only sets returned by CALCQUERY
are added to P ′ and N ′.

The next proposition confirms the restrictive character of test cases. That is, any extension of a current
DPI through the addition of a test case cannot lead to a set of (all) diagnoses w.r.t. the new DPI that is a
superset of the set of (all) diagnoses w.r.t. the current DPI. We want to point out that this is not necessarily
true for the set of minimal diagnoses.

Proposition 12.3. Let 〈K,B,P ,N 〉R and 〈K,B,P ′,N ′〉R be two DPIs such that P ′ ⊇ P and N ′ ⊇ N .
Then, each diagnosis w.r.t. 〈K,B,P ′,N ′〉R is also a diagnosis w.r.t. 〈K,B,P ,N 〉R.

Proof. Let D′ ∈ aD〈K,B,P ′,N ′〉R . Then, by Corollary 3.3 and Definition 3.2, (K \ D′) ∪ B ∪ UP ′ does
not violate any x ∈ R ∪ N ′. Since however formulas, in particular those in UP ′\P , that are added to
a KB cannot invalidate any (unwanted) entailments, in particular those in N ′, and cannot resolve any
inconsistencies or incoherencies by the monotonicity of L, we can conclude that (K\D′)∪B ∪UP does
not violate any x ∈ R ∪ N ′ either. Since N ′ ⊇ N , non-violation of any test case in N ′ implies non
violation of any test case in N also. Consequently, (K\D′)∪B∪UP does not violate any x ∈ R∪N and
entails all p ∈ P (due to UP) whereforeD′ ∈ aD〈K,B,P,N 〉R due to Corollary 3.3 and Definition 3.2.

As a consequence of this, each minimal diagnosis w.r.t. the new DPI is a diagnosis w.r.t. the current
DPI, i.e. either a minimal or a non-minimal diagnosis w.r.t. the current DPI.

Corollary 12.3. Let 〈K,B,P ,N 〉R and 〈K,B,P ′,N ′〉R be two DPIs such that P ′ ⊇ P and N ′ ⊇ N .
Then, each minimal diagnosis w.r.t. 〈K,B,P ′,N ′〉R is also a diagnosis w.r.t. 〈K,B,P ,N 〉R.

Proof. Since Proposition 12.3 holds for all diagnoses w.r.t. 〈K,B,P ′,N ′〉R, it also holds for all minimal
diagnoses w.r.t. 〈K,B,P ′,N ′〉R since each minimal diagnosis is a diagnosis.

Adding a test case to a DPI cannot make minimal diagnoses shrink:

Proposition 12.4. Let 〈K,B,P ,N 〉R and 〈K,B,P ′,N ′〉R be two DPIs such that P ′ ⊇ P and N ′ ⊇ N
and let D ∈mD〈K,B,P,N 〉R . Then, for all D′ ∈mD〈K,B,P ′,N ′〉R , it holds that D′ 6⊂ D.

Proof. Let D ∈ mD〈K,B,P,N 〉R and let D′ ∈ mD〈K,B,P ′,N ′〉R such that P ′ ⊇ P ,N ′ ⊇ N and suppose
D′ ⊂ D. By Proposition 12.3, D′ must be a diagnosis w.r.t. 〈K,B,P ,N 〉R. By D′ ⊂ D, this is a
contradiction to the premise that D ∈mD〈K,B,P,N 〉R , i.e. that D is minimal.

In fact, it even holds that each “new” minimal diagnosis (which is not a minimal diagnosis w.r.t. the
current DPI) resulting from the addition of a test case to the current DPI must be a proper superset of
some minimal diagnosis w.r.t. the current DPI. In other words, a minimal diagnosis w.r.t. the new DPI is
either a minimal diagnosis w.r.t. the current DPI or a proper superset of some minimal diagnosis w.r.t. the
current DPI.

12.4. ALGORITHM DETAILS AND CORRECTNESS 201

Proposition 12.5. Let 〈K,B,P ,N 〉R and 〈K,B,P ′,N ′〉R be two DPIs such that P ′ ⊇ P and N ′ ⊇ N
and let D′ ∈ mD〈K,B,P ′,N ′〉R and D′ /∈ mD〈K,B,P,N 〉R . Then, there is some D ∈ mD〈K,B,P,N 〉R such
that D ⊂ D′.

Proof. By Corollary 12.3, we know that D′ ∈mD〈K,B,P ′,N ′〉R is a diagnosis w.r.t. 〈K,B,P ,N 〉R. If D′
is already a minimal diagnosis w.r.t. 〈K,B,P ,N 〉R, then the proposition holds. Otherwise, there must be
some D ⊂ D′ such that D is a minimal diagnosis w.r.t. 〈K,B,P ,N 〉R.

Addition of a query to whatever test case set of a DPI DPI implies that the set of all diagnoses w.r.t.
the new DPI is a proper subset of all diagnoses w.r.t. DPI:

Corollary 12.4. Let 〈K,B,P ,N 〉R and 〈K,B,P ′,N ′〉R be two DPIs such that

• P ′ ⊇ P and N ′ ⊇ N ,

• |P ′| = |P |+ 1 or |N ′| = |N |+ 1, but not both, and

• (P ′ ∪ N ′) \ (P ∪ N) = {Q} where Q is a query w.r.t. some set D ⊆ mD〈K,B,P,N 〉R and
〈K,B,P ,N 〉R.

Then, aD〈K,B,P ′,N ′〉R ⊂ aD〈K,B,P,N 〉R holds.

Proof. By Proposition 12.3 we have that aD〈K,B,P ′,N ′〉R ⊆ aD〈K,B,P,N 〉R . Since 〈K,B,P ′,N ′〉R re-
sults from 〈K,B,P ,N 〉R by the addition of the query Q w.r.t. some set D and 〈K,B,P ,N 〉R to ei-
ther P or N , we conclude by Definition 7.1 that at least one minimal diagnosis D w.r.t. 〈K,B,P ,N 〉R
in D is not a minimal diagnosis w.r.t. 〈K,B,P ′,N ′〉R. Assume, D is a non-minimal diagnosis w.r.t.
〈K,B,P ′,N ′〉R. In this case, there must be some D′ ⊂ D such that D′ is a minimal diagnosis w.r.t.
〈K,B,P ′,N ′〉R. This is a contradiction to Proposition 12.4. Consequently,D /∈ aD〈K,B,P ′,N ′〉R . Hence,
D ∈ aD〈K,B,P,N 〉R \aD〈K,B,P ′,N ′〉R . By aD〈K,B,P ′,N ′〉R ⊆ aD〈K,B,P,N 〉R , the proposition of the corol-
lary follows.

12.4.5 Redundant Nodes in DYNAMICHS
The following result constitutes the basis for the definition of a redundant node we give in the next section.
It is already stated in [Rei87], but without a proof. It testifies that the set of all minimal hitting sets of a
collection F of sets remains steady if elements that are not set-minimal sets in F are deleted from F . By
Proposition 4.6, the same must hold for the set of all minimal diagnoses of the collection of all minimal
conflict sets w.r.t. some DPI DPI . That is, considering only minimal hitting sets of minimal conflict
sets w.r.t. DPI is sufficient for completeness of a hitting set tree algorithm concerning the finding of all
minimal diagnoses w.r.t. DPI .

However, we proved by Proposition 12.1 that existing conflict sets will tend to shrink gradually
through the specification of new test cases. This implicates that more and more nodes ndi stored by
DYNAMICHS will have the property that ndi.cs will include non-minimal conflict sets w.r.t. the current
DPI which constitutes the first of two criteria that are together sufficient for a safe pruning of ndi. By
safe pruning we mean the deletion of a node without eliminating any minimal diagnoses w.r.t. the current
DPI.

Proposition 12.6. If F is a collection of sets, and if S ∈ F and S′ ∈ F such that S ⊂ S′, then
Fsub := F \ {S′} has the same minimal hitting sets as F .

Proof. Let D be a minimal hitting set of Fsub, then D is a hitting set of F since D ∩ S 6= ∅ holds which
implies by S ⊂ S′ that D ∩ S′ 6= ∅. Assume that D is a non-minimal hitting set of F , i.e. that a subset
D′ ⊂ D is a hitting set of F . Then, however, by minimality of D w.r.t. Fsub we have that not all sets in

202 CHAPTER 12. DYNAMIC DIAGNOSIS COMPUTATION ALGORITHM

Fsub are hit by D′ and thus, by Fsub ⊂ F , that not all sets in F can be hit by D′, contradiction. Thus,
each minimal hitting set of Fsub is also a minimal hitting set of F .

Let D be a minimal hitting set of F , then D is clearly a hitting set of Fsub ⊂ F . Suppose that D is a
non-minimal hitting set of Fsub, i.e. that a proper subset of D is a hitting set of Fsub. Let D′ ⊂ D be a
subset-minimal such subset ofD. That is,D′ is a minimal hitting set of Fsub. SinceD is a minimal hitting
set of F , D′ is not a (minimal) hitting set of F , but a minimal hitting set of Fsub. This is a contradiction
to the already proven fact that any minimal hitting set of Fsub is also a minimal hitting set of F .

Assume the first criterion for a safe pruning of a node ndi, namely the existence of some non-minimal
conflict set w.r.t. the current DPI in ndi.cs, is met. Then, we have not yet any evidence that ndi is
obsolete since for each of the non-minimal conflict sets in ndi.cs there must be one (or multiple) proper
subset(s) which is a minimal conflict set w.r.t. the current DPI. Let C¬min be one particular non-minimal
conflict set in ndi.cs and let C be the particular proper subset of C¬min that is the first “witness” found by
DYNAMICHS which documents the non-minimality of C¬min. Then C¬min can be split into two disjoint
parts, namely C and the set of formulas C that C¬min does not share with C.

Now, the second criterion for a safe pruning of ndi is about whether ndi hits C. If so, then ndi is
not a (partial) hitting set of only minimal conflict sets w.r.t. the current DPI. Put another way, this means
that, under the assumption that a wpHS-tree was constructed using only the “static” current DPI, then the
label C¬min would have never been produced and hence the node ndi could have never been generated.
Eventually, by the considerations made in Sections 4.6.3 and 11.4, we know that such a static hitting set
tree algorithm is complete although not taking into account nodes like ndi.

These thoughts motivate the following definition of a redundant node28.

Definition 12.4. Let 〈K,B,P ,N 〉R be the DPI and P ′ and N ′ the sets of positively and negatively
answered queries given as an input to DYNAMICHS. Further, let nd be a node in DYNAMICHS. Then we
call nd a redundant node w.r.t. 〈K,B,P ∪ P ′,N ∪N ′〉R iff there is

• some r ∈ {1, . . . , |nd|} and

• some minimal conflict set C w.r.t. 〈K,B,P ∪ P ′,N ∪N ′〉R

such that

• C ⊂ nd.cs[r] and

• nd[r] ∈ nd.cs[r] \ C.

Moreover, C is called a witness of redundancy of nd.

A node node in DYNAMICHS can be only redundant w.r.t. a DPI DPI if node.cs comprises some
non-minimal conflict set w.r.t. DPI:

Corollary 12.5. Let 〈K,B,P ,N 〉R be the DPI and P ′ and N ′ the sets of positively and negatively
answered queries given as an input to DYNAMICHS. Further, let nd be a node in DYNAMICHS such
that nd[i] ∈ mC〈K,B,P∪P ′,N∪N ′〉R for all i ∈ {1, . . . , |nd|}. Then nd is not a redundant node w.r.t.
〈K,B,P ∪ P ′,N ∪N ′〉R.

Proof. Since nd.cs comprises only minimal conflict sets w.r.t. 〈K,B,P ,N 〉R, there cannot be any C ∈
mC〈K,B,P,N 〉R such that C ⊂ nd.cs[i] for some i.

A node that is redundant w.r.t. some DPI DPI remains redundant w.r.t. any DPI ′ that includes a
superset of the test cases DPI includes:

28We adopt the term “redundant” from [Rei87] where is was informally used in the same context.

12.4. ALGORITHM DETAILS AND CORRECTNESS 203

Lemma 12.4. Let 〈K,B,P ,N 〉R and 〈K,B,P ′,N ′〉R be two DPIs such that P ′ ⊇ P and N ′ ⊇ N . Fur-
ther, let nd be a redundant node w.r.t. 〈K,B,P ,N 〉R. Then, nd is a redundant node w.r.t. 〈K,B,P ′,N ′〉R.

Proof. By Proposition 12.1, if 〈K,B,P ′,N ′〉R results from the addition of a single new positive or
negative test case to 〈K,B,P ,N 〉R, there cannot be any minimal conflict set w.r.t. 〈K,B,P ′,N ′〉R that
is a proper superset of a minimal conflict w.r.t. 〈K,B,P ,N 〉R. By Definition 12.4, we can derive that any
redundant node w.r.t. 〈K,B,P ,N 〉R must be a redundant node w.r.t. 〈K,B,P ′,N ′〉R. The proposition of
this lemma is a consequence of further applications of Proposition 12.1.

This implies that a redundant node that is deleted during the execution of DYNAMICHS using the cur-
rent DPIDPI cannot become non-redundant throughout the entire remaining execution of the interactive
debugging session, i.e. the execution of Algorithm 5. Reason for this is that the sets of test cases in a DPI
can only be extended and not reduced in the course of debugging.

Remark 12.7 Note that this has consequences on the way how “mind-changes” of a user might be
handled by the interactive algorithm. It implies that the current state of DYNAMICHS (stored in the
output variables of DYNAMICHS) cannot be exploited in case a user decides to discard some already
answered query or to switch the already submitted answer of some query, resulting in some modified DPI
DPI ′. In such a situation a new construction of a hitting set tree by DYNAMICHS using the DPI DPI ′ is
indicated. Otherwise, some already pruned redundant node w.r.t. DPI might become a relevant node for
DPI ′ which would lead to a violation of the postulated completeness of DYNAMICHS w.r.t. each current
DPI, in this case the DPI DPI ′.

The following result is straightforward and claims that each successor node of a redundant node ndi
w.r.t. DPI is a redundant node w.r.t. DPI . So, if r is the minimal value such that both criteria of
Definition 12.4 hold for ndi, all successor nodes of the subnode ndi[1..r] of ndi can be deleted. In other
words, the entire subtree (of the hitting set tree produced by DYNAMICHS) rooted at an outgoing edge
e of a non-minimal conflict set where e is labeled by an element ax which is not an element of a given
witness of redundancy is obsolete.

Lemma 12.5. Let 〈K,B,P ,N 〉R be a DPI, nd be a redundant node w.r.t. 〈K,B,P ,N 〉R and nd′ be a
successor node of nd. Then, nd′ is a redundant node w.r.t. 〈K,B,P ,N 〉R.

Proof. The proposition of this lemma is a direct consequence of Definition 12.4.

12.4.6 Hitting Set Tree Pruning in DYNAMICHS
The main pruning operations performed by DYNAMICHS take place in the scope of the UPDATETREE
function which is called right at the beginning of the execution of each call to DYNAMICHS. Assume a
call to DYNAMICHS during Algorithm 5 given i.a. the DPI 〈K,B,P ,N 〉R and the test cases P ′ and N ′

as arguments and suppose the last-but-one call to DYNAMICHS was given P ′′ and N ′′ as arguments. The
job of UPDATETREE is to restore the parameters that store the state of DYNAMICHS (for DPI 〈K,B,P ∪
P ′′,N ∪ N ′′〉R) in a way that they include at least all nodes that would be included by the respective
parameters produced by a call to DYNAMICHS for the static DPI 〈K,B,P ∪ P ′,N ∪N ′〉R.

Roughly speaking, this involves the following actions:

• Pruning: That is, only nodes that are definitely redundant w.r.t. 〈K,B,P ∪ P ′,N ∪ N ′〉R are
deleted. A node is definitely redundant if a witness of redundancy of it is known.

• Replacement: A deleted redundant node is replaced by an alternative equal node of it which is
non-redundant w.r.t. 〈K,B,P ∪ P ′,N ∪ N ′〉R, if there is such a one. Alternative equal nodes are
constructed from the list of duplicate nodes Qdup.

204 CHAPTER 12. DYNAMIC DIAGNOSIS COMPUTATION ALGORITHM

• Rearrangement: the reassignation of nodes to Q that “survived” all pruning steps or were intro-
duced in the course of a replacement step and for which no evidence w.r.t. 〈K,B,P ∪P ′,N ∪N ′〉R
is given that it should be assigned to any other set.

More concretely, UPDATETREE has the following effect on the collections Q, D×, D⊃, Qdup which
are, together with DX, the only node-storing collections of DYNAMICHS at the beginning of the execution
of each call to DYNAMICHS:

(a) If nd is in Qdup, then nd is removed from Qdup only if there is a known witness of redundancy of nd
w.r.t. 〈K,B,P ∪ P ′,N ∪ N ′〉R. If there is an alternative equal replacement node nd′ of nd which is
constructable from some node in Qdup, then nd′ is added to Qdup.

(b) If nd is in Q, then nd is removed from Q only if there is a known witness of redundancy of nd
w.r.t. 〈K,B,P ∪ P ′,N ∪ N ′〉R. If there is an alternative equal replacement node nd′ of nd which is
constructable from some node in Qdup, then nd′ is added to Q.

(c) If nd is in D× and there is no known witness of redundancy of nd w.r.t. 〈K,B,P ∪ P ′,N ∪ N ′〉R,
then nd is added to Q.

(d) If nd is in D× and nd is redundant w.r.t. 〈K,B,P ∪ P ′,N ∪ N ′〉R, then, if there is some alternative
equal replacement node nd′ of nd which is constructable from some node in Qdup, then nd′ is added
to Q.

(e) If nd is in D⊃, there is no known witness of redundancy of nd w.r.t. 〈K,B,P ∪ P ′,N ∪ N ′〉R and
there is no known minimal diagnosis w.r.t. 〈K,B,P ∪ P ′,N ∪ N ′〉R which is a proper subset of nd,
then nd is added to Q.

(f) All nodes nd in DX are added to Q.

Some comments: Step (a) is conducted by PRUNEQDUP before PRUNE is called, for each witness of
redundancy X of some node detected during the execution of UPDATETREE. PRUNE is the function that
prunes or replaces nodes that are elements of any other collection than Qdup, i.e. Q, D× or D⊃, and for
whichX is a witness of redundancy. In this vein, the PRUNE function just needs to perform a test whether
there is any node in Qdup that enables the construction of a replacement node of a deleted node. No
check for redundancy of nodes in Qdup is necessary at this stage since Qdup has already been processed
and cleaned from all redundant nodes w.r.t. 〈K,B,P ∪ P ′,N ∪N ′〉R.

Under the assumption that the deletion of a node redundant w.r.t. 〈K,B,P ∪ P ′,N ∪N ′〉R is safe in
terms of completeness of DYNAMICHS as to finding all minimal diagnoses w.r.t. 〈K,B,P∪P ′,N ∪N ′〉R
(which we will prove throughout this section), UPDATETREE acts safely. That is, deletion actions are
performed just on the basis of given evidence in the form of a witness of redundancy. However, it must be
accentuated that this does not necessarily imply the pruning or replacement of all redundant nodes w.r.t.
〈K,B,P ∪ P ′,N ∪ N ′〉R. This is quite desired as guaranteeing complete pruning might be very costly
concerning execution time since it would involve the precomputation of all not-yet-computed minimal
conflict sets w.r.t. the current DPI at once. In the bad case, since these computations would take place
online, i.e. between two successive queries shown to the user, this would be anything but beneficial for
an interactive algorithm whose usability and usefulness depends greatly on its timeliness. Apart from
that, a single newly added test case can be expected to lead to the introduction of only a small number of
minimal conflict sets w.r.t. the current DPI that are no minimal conflict sets w.r.t. the last-but-one DPI.

Which nodes are pruned throughout UPDATETREE depends on which witnesses of redundancy are
found, i.e. which minimal conflict sets are computed. The UPDATETREE function is implemented to
search targeted for witnesses of redundancy of stored nodes. That is, instead of just computing any
minimal conflict set w.r.t. 〈K,B,P ∪ P ′,N ∪ N ′〉R, it focuses on the set of nodes D× which includes

12.4. ALGORITHM DETAILS AND CORRECTNESS 205

the subset of all minimal diagnoses Dcalc computed in the last-but-one iteration of DYNAMICHS w.r.t.
the last-but-one DPI 〈K,B,P ∪P ′′,N ∪N ′′〉R, which are no diagnoses w.r.t. the current DPI 〈K,B,P ∪
P ′,N ∪ N ′〉R. Note that we will prove later in this section that Dcalc, and thus D× and DX which are
subsets thereof, will indeed comprise only minimal diagnoses. So, UPDATETREE looks for witnesses of
redundancy by means of exactly these minimal diagnoses that have been invalidated through the addition
of the most recent answered query to the test cases of the DPI. Each diagnosis nd w.r.t. the last-but-one
DPI can be invalidated only because it does not hit some minimal conflict set w.r.t. the current DPI and
not because it is a non-minimal hitting set of all minimal conflict sets w.r.t. the current DPI. This can
be directly inferred from Proposition 12.4 which manifests that minimal diagnoses cannot shrink by the
addition of a new test case i.e. there cannot be any minimal diagnosis w.r.t. the current DPI which is a
proper subset of nd.

Now, two cases can be identified for a minimal conflict set C w.r.t. the current DPI that is not hit by
nd:

C1: C is not in a subset-relationship with any minimal conflict set in nd.cs. That is, C is definitely not a
witness of redundancy of nd.

C2: C is in a subset-relationship with some minimal conflict set in nd.cs. That is, C satisfies the first
criterion of a witness of redundancy of nd (cf. Definition 12.4). Thence, C might be a witness of
redundancy of nd.

Now, the idea is to try to figure out very fast some C for a node nd ∈ D× such that C is a witness of
redundancy of nd. This idea is implemented in the so-called Quick Redundancy Check (QRC) which

• calls QX just once given the DPI 〈Und.cs \ nd,B,P ,N 〉R with the usually very small KB Und.cs \
nd ⊆ K in order to calculate just one minimal conflict set C w.r.t. the current DPI

• and then verifies whether C is a witness of redundancy of nd by conducting at most |nd| subset-
relationship checks.

The following lemma confirms that QRC (lines 50-54 in Algorithm 9), if successful, indeed computes a
witness of redundancy of nd and thus gives evidence that nd is redundant w.r.t. the current DPI.

Lemma 12.6 (Quick Redundancy Check – QRC). Let 〈K,B,P ,N 〉R be the DPI and P ′ and N ′ the sets
of positively and negatively answered queries given as an input to DYNAMICHS. Further, let nd be some
node in DYNAMICHS. Then the following holds:

If QX(〈Und.cs \ nd,B,P ∪ P ′,N ∪ N ′〉R) returns a set C such that C ⊂ nd.cs[i] for some i ∈
{1, . . . , |nd.cs|}, then

• nd is a redundant node w.r.t. 〈K,B,P ∪ P ′,N ∪N ′〉R and

• C is a witness of redundancy of nd.

Proof. First, Und.cs \ nd includes all elements in the union of all conflict sets in nd.cs except for the
elements occurring in nd. So, if QX(〈Und.cs \ nd,B,P ∪ P ′,N ∪ N ′〉R) returns a set C, then C is a
minimal conflict set w.r.t. 〈Und.cs \ nd,B,P ∪ P ′,N ∪N ′〉R by Proposition 4.9.

By Definition 4.1, C ⊆ Und.cs \ nd holds wherefore C ∩ nd = ∅. By K ⊇ Und.cs \ nd and Remark 4.3,
C is a minimal conflict set w.r.t. 〈K,B,P ∪ P ′,N ∪N ′〉R.

If C ⊂ nd.cs[i] for some i ∈ {1, . . . , |nd.cs|}, then we have that C is a minimal conflict set w.r.t.
〈K,B,P ∪P ′,N ∪N ′〉R which is a proper subset of nd.cs[i]. Since C ∩nd = ∅ implies that nd[i] /∈ C for
all i ∈ {1, . . . , |nd|}, we conclude that nd[i] ∈ nd.cs[i] \ C. Now, by Definition 12.4, nd is a redundant
node w.r.t. 〈K,B,P ∪ P ′,N ∪N ′〉R and C is a witness of redundancy of nd.

206 CHAPTER 12. DYNAMIC DIAGNOSIS COMPUTATION ALGORITHM

Remark 12.8 Please notice that the opposite direction does not necessarily hold. That is, if the node nd
is redundant w.r.t. 〈K,B,P ∪ P ′,N ∪N ′〉R, QX(〈Und.cs \ nd,B,P ∪ P ′,N ∪N ′〉R) might return

• some C which is not a subset of any conflict set in nd.cs or

• ’no conflict’.

As an illustration of that remark, we give the following example:

Example 12.5 For instance, assume a node nd = [1, 2] with nd.cs = [〈1, 2, 3〉 , 〈2, 4, 5〉] and that 〈2, 3〉
is a minimal conflict set w.r.t. the current DPI 〈K,B,P ∪ P ′,N ∪ N ′〉R wherefore nd is redundant by
Definition 12.4. Then Und.cs \ nd = {3, 4, 5}.

Suppose that 〈3, 5〉 is a minimal conflict set w.r.t. the current DPI as well. So, in this case, QX(〈{3, 4,
5}, B,P ∪P ′,N ∪N ′〉R) might return 〈3, 5〉. However, 〈3, 5〉 is neither a subset of 〈1, 2, 3〉 nor a subset
of 〈2, 4, 5〉 wherefore 〈3, 5〉 is no witness of redundancy of nd.

On the other hand, if we suppose that 〈2, 3〉 and 〈2, 4, 5〉 are the only minimal conflict sets w.r.t. the
current DPI that are subsets of Und.cs = {1, 2, 3, 4, 5}, then ’no conflict’ is the output of the call to QX.
This holds since nd[2] = 2 is an element of both 〈2, 3〉 and 〈2, 4, 5〉 and hence not an element of Und.cs \
nd = {3, 4, 5}. Therefore, neither 〈2, 3〉 nor 〈2, 4, 5〉 is returned by QX since QX(〈{3, 4, 5} ,B,P ∪
P ′,N ∪N ′〉R) can only return a set that is a subset of {3, 4, 5} by Proposition 4.9 and Definition 4.1.

In both cases of the previous example, an existing witness of redundancy of nd is not detected by QRC.
In this situation, i.e. when QRC is negative, a Complete Redundancy Check (CRC) is performed which
involves QX investigating all the DPIs 〈nd.cs[i] \ nd[i],B,P ∪ P ′,N ∪N ′〉R for i ∈ {1, . . . , |nd|} sep-
arately. CRC, as substantiated by the following lemma, does find a witness of redundancy if the node nd
is redundant w.r.t. the current DPI; and, if CRC does not find a witness of redundancy w.r.t. the current
DPI, then nd is non-redundant w.r.t. the current DPI.

Lemma 12.7 (Complete Redundancy Check – CRC). Let 〈K,B,P ,N 〉R be the DPI and P ′ and N ′ the
sets of positively and negatively answered queries given as an input to DYNAMICHS. Further, let nd be
some node in DYNAMICHS. Then, the following holds:

(1) nd is redundant w.r.t. 〈K,B,P ∪ P ′,N ∪N ′〉R iff there is some i ∈ {1, . . . , |nd|} such that
QX(〈nd.cs[i] \ {nd[i]} ,B,P ∪ P ′,N ∪N ′〉R) = X where X 6= ’no conflict’.

(2) If there is some i ∈ {1, . . . , |nd|} such that QX(〈nd.cs[i] \ {nd[i]} ,B,P ∪ P ′,N ∪ N ′〉R) = X
where X 6= ’no conflict’, then X is a witness of redundancy of nd.

Proof. (1): “⇐”: Assume there is some i ∈ {1, . . . , |nd|} such that QX(〈nd.cs[i]\{nd[i]} ,B,P∪P ′,N∪
N ′〉R) = X where X 6= ’no conflict’. Then, by Proposition 4.9, we have that X is a minimal conflict
set w.r.t. 〈nd.cs[i] \ {nd[i]} ,B,P ∪ P ′,N ∪ N ′〉R such that X ⊆ nd.cs[i] \ {nd[i]}. By Definition 4.1,
X is a minimal conflict set w.r.t. 〈K,B,P ∪ P ′,N ∪ N ′〉R. Hence, we can conclude that nd[i] /∈ X . By
Definition 12.1 and since nd is a node in DYNAMICHS, it holds that nd[i] ∈ nd.cs[i]. As a consequence,
nd[i] ∈ nd.cs[i] \X holds. By Definition 12.4, nd is redundant w.r.t. 〈K,B,P ∪P ′,N ∪N ′〉R (and X is
a witness of redundancy of nd).

“⇒”: Suppose nd is a redundant node w.r.t. 〈K,B,P ∪ P ′,N ∪ N ′〉R. Then, by Definition 12.4,
there must be some r ∈ {1, . . . , |nd|} and some minimal conflict set X w.r.t. 〈K,B,P ∪ P ′,N ∪ N ′〉R
such that (i) X ⊂ nd.cs[r] and (ii) nd[r] ∈ nd.cs[r] \ X . By (ii), nd[r] /∈ X . By Definition 12.1
and the fact that nd is a node in DYNAMICHS, we obtain that nd[r] ∈ nd.cs[r] must be true. Hence,
by (i), we derive that X ⊆ nd.cs[r] \ {nd[r]}. By Proposition 4.9, QX given some DPI DPI outputs
a minimal conflict set w.r.t. DPI iff there is a minimal conflict set w.r.t. DPI . Therefore and since
QX(〈nd.cs[i] \ {nd[i]} ,B,P ∪P ′,N ∪N ′〉R) is called for each i ∈ {1, . . . , |nd|}, it must also be called

12.4. ALGORITHM DETAILS AND CORRECTNESS 207

for i := r since r ∈ {1, . . . , |nd|}. So, some minimal conflict set X ′, and not ’no conflict’, must be
returned by QX(〈nd.cs[r] \ {nd[r]} ,B,P ∪ P ′,N ∪ N ′〉R) since there is at least one minimal conflict
set w.r.t. 〈nd.cs[r] \ {nd[r]} ,B,P ∪ P ′,N ∪N ′〉R, namely X .

(2): This proposition follows directly from (1) (“⇐”).

At the point where some witness of redundancy X of some node nd ∈ D× is found by QRC or
CRC in UPDATETREE, the next steps (lines 62-65) involve the pruning of Qdup, Q, D× and D⊃. As
already mentioned, Qdup is the first collection to be cleaned from redundant nodes (w.r.t. the witness X)
in PRUNEQDUP in order to constitute an input to the PRUNE function that does not include any redundant
nodes (w.r.t. the witnessX) and can be used “blindly” to construct replacement nodes of redundant nodes
(w.r.t. the witness X) deleted from Q, D× or D⊃.

Before any pruning steps have ever been executed during the execution of Algorithm 5, Qdup com-
prises all generated nodes nddup for which, at generation time, there was one node nd ∈ Q such that
nddup = nd. That means, nddup is stored in Qdup in order to be available as an alternative equal node of
nd or as an alternative subnode of some successor of nd in case nd is found to be redundant w.r.t. some
current DPI.

If some node nddup in Qdup is found to be redundant w.r.t. the current DPI, there might be other
nodes in Qdup from which a non-redundant alternative equal node nd′dup of nddup w.r.t. the current DPI
can be constructed. By Definition 12.3, we call such a node nd′dup a combined replacement node of
nddup. The name stems from the fact that nd′dup is generated as a combination of existing nodes in Qdup.
Combining two nodes nd1, nd2 ∈ Qdup such that nd1 is a proper alternative subnode of nd2 yields nd3

with nd2 = nd3. nd3 is constructed in that the first (redundant) part of nd2 (and nd2.cs) is replaced by
the (non-redundant) part nd1 (and nd1.cs).

Such a combination is “legitimate” since it gives a node nd3 that would have been constructed if all
duplicate nodes would have been added to Q and processed regularly instead of being added to Qdup.
The strategy to store duplicate nodes (where “duplicate” refers to the set a node represents) in a separate
collection Qdup as soon as they are found is part of the space-saving policy the DYNAMICHS algorithm
pursues. For, in general, this prevents the algorithm to generate and store exponentially many nodes
corresponding to equal sets. Since diagnoses are sets and not lists like nodes, it suffices to find only one
node corresponding to a diagnosis. Only if some active node (one that is not in Qdup) becomes redundant,
some other set-equal node, if available, is constructed from the stored duplicate nodes. This idea is very
similar to the way pruning is handled in the directed acyclic graph described in [GSW89].

The idea of node combination is formalized by the following definition.

Definition 12.5. Let S be a collection of nodes in DYNAMICHS and let Si be the set of nodes of cardi-
nality i in S. Further, let the set Comb1(S) := S1 and let Combi(S) comprise

• all nodes in Si and

• all nodes nd such that nd is an alternative equal node of some node in Si constructed from some
node in

⋃i−1
j=1 Combj(S).

Then, Comb(S) :=
⋃∞

i=1 Combi(S) is called the set of combined nodes of S and a node in Combi(S)
is called a combined node of cardinality i in S.

Further, let node be a node in DYNAMICHS and X be a minimal conflict set w.r.t. the current DPI.
Then,

• Combnode(S) := {nd | nd ∈ Comb(S), nd = node} is the set of combined equal nodes of nd of S
and

• Combnode,X(S) ⊆ Combnode(S) is the set of combined equal nodes of nd of S for which X is not
a witness of redundancy.

208 CHAPTER 12. DYNAMIC DIAGNOSIS COMPUTATION ALGORITHM

The following corollary summarizes some simple consequences of Definition 12.5.

Corollary 12.6. Let S be a set of nodes in DYNAMICHS and let Si be the set of nodes of cardinality i in
S. Then:

(1) Combi(S) = ∅ iff Si = ∅.

(2) Combi(S) includes only nodes of cardinality i.

(3) Combnode(S) = ∅ iff there is no node nd ∈ S such that nd = node.

(4) If nd ∈ Combi(S) and nd /∈ S, then

• there is some nd′ ∈ Combj(S) for some j ∈ {1, . . . , i− 1} and

• some nd′′ ∈ Si

such that

• nd′ is an alternative subnode of nd′′ and

• nd = ADD(nd′, nd′′[j + 1..i]) and

• nd.cs = ADD(nd′.cs, nd′′.cs[j + 1..i]).

The example we give next illustrates Definition 12.5.

Example 12.6 Recall the nodes nd, nd1, nd2, node1 and node2 of Example 12.4 and let nd3 :=
[1, 2, 6, 4] with nd3.cs := [〈1, 2, 3〉 , 〈2, 6〉 , 〈3, 6, 7〉 , 〈4, 5〉] and S := {nd, nd1, nd2, nd3}. Then,

S1 = ∅
S2 = {nd1}
S3 = {nd2}
S4 = {nd, nd3}
Si = ∅ ∀i > 4

Comb1(S) = ∅
Comb2(S) = {nd1}
Comb3(S) = {nd2}
Comb4(S) = {nd, node1, node2, nd3, nd4}
Combi(S) = ∅ ∀i > 4

Combnd(S) = {nd, node1, node2}
Combnode1(S) = Combnode2(S) = Combnd(S)

Combnd3(S) = {nd3, nd4}
Combnd4(S) = Combnd3(S)

where

nd4 := [2, 1, 6, 4]

nd4.cs := [〈1, 2, 3〉 , 〈1, 4〉 , 〈3, 6, 7〉 , 〈4, 5〉]

is the alternative equal node of nd3 constructed from nd1.

12.4. ALGORITHM DETAILS AND CORRECTNESS 209

The PRUNEQDUP function is always called given the current list Qdup which is anytime sorted in
ascending order by node cardinality. This holds by lines 21, 121 and 124 which are the only places where
nodes are added to Qdup throughout DYNAMICHS and where nodes are inserted into Qdup such that the
order by node cardinality is preserved. Now, the next lemma substantiates that PRUNEQDUP, given some
minimal conflict set X w.r.t. the current DPI, updates Qdup in a way that all redundant nodes w.r.t. the
witness X are deleted, each deleted node is replaced by one non-redundant combined replacement node
w.r.t. the witness X if such a one is constructable (cf. Definition 12.5), and for each remaining node nd,
i.e. nd is a non-deleted node or a combined replacement node of some deleted node, each superset of X
in nd.cs is replaced by X .

This leads to a new list Qdup returned by PRUNEQDUP which includes only non-redundant nodes
w.r.t. the witness X . Furthermore, the new list Qdup contains a node corresponding to each set (path) S
for which there was a corresponding node in the old list Qdup if there would be a non-redundant (w.r.t.
X) node corresponding to S in a hitting set tree equal to the one produced by DYNAMICHS except that
all duplicate nodes corresponding to equal sets (paths) would be regularly processed and expanded.

Lemma 12.8. Let 〈K,B,P ,N 〉R be a DPI and let the input parameters to the PRUNEQDUP function be:

• X is a minimal conflict set w.r.t. 〈K,B,P ,N 〉R,

• Dup is a set of nodes sorted ascending by node cardinality.

Then, PRUNEQDUP returns Dupnew where Dupnew includes

(1) all nodes in Dup for which X is not a witness of redundancy,

(2) at least one node in Combnd,X(Dup) for each node nd ∈ Dup for which X is a witness of redun-
dancy, if Combnd,X(Dup) 6= ∅ and

(3) only nodes nd such that there is no r ∈ {1, . . . , |nd|} for which nd.cs[r] ⊃ X .

Proof. The function PRUNEQDUP walks through all nodes ndi in the set Dup. If X is not a witness of
redundancy of ndi, tested in lines 111 and 112 exactly as prescribed by Definition 12.4, then k = 0 must
hold in line 116 by lines 109-115. Thus, line 124 is executed and ndi added to Dupnew. Since no nodes
are removed from Dupnew throughout PRUNEQDUP, proposition (1) is valid.

Otherwise, i.e. if X is a witness of redundancy of ndi, then line 113 must have been executed at least
once before line 116 is reached. This implies that k > 0 must hold in line 116. At this point, k stores
the maximum position in (the list) ndi at which the redundancy criterion of lines 111 and 112 is satisfied.
So, in line 117, nodes in Dupnew are tested successively until some ndj ∈ Dupnew meets |ndj| ≥ k
and ndi[1..|ndj|] = ndj. This means that the subnode ndi[1..|ndj|] of ndi can be replaced by ndj (and
ndi.cs[1..|ndj|] by ndj.cs) to yield an alternative equal node ndinew of ndi (lines 119 and 120).

We still have to show that X cannot be a witness of redundancy of ndinew. For this to hold it is
sufficient that X is not a witness of redundancy of ndj by |ndj| ≥ k. So, we must verify that Dupnew can
comprise only nodes of which X is not a witness of redundancy. We prove this by induction.

Since Dupnew is initialized to be the empty set when the function PRUNEQDUP starts executing, we
just need to investigate which nodes are added to Dupnew within PRUNEQDUP. Addition of nodes to
Dupnew happens at lines 121 and 124.

Base case: When line 121 executed for the first time during the execution of PRUNEQDUP, Dupnew
can only comprise nodes which have been added to it in line 124. By the argumentation used to prove
proposition (1) of this lemma, it holds thatX is not a witness of redundancy of any node added toDupnew
in line 124. Thus, there cannot be a witness of redundancy of the very first node added to Dupnew in
line 121.

Induction step: Let us assume that Dupnew comprises only nodes such that X is not a witness of
redundancy of any of them. Further, suppose that ndinew is added to Dupnew when line 121 is executed

210 CHAPTER 12. DYNAMIC DIAGNOSIS COMPUTATION ALGORITHM

for the k-th time where k > 1. Then, by the same line of argument as in the base case, we can conclude
that X is not a witness of redundancy of ndinew.

Each node ndinew added to Dupnew in line 121 is an element of Combndi,X(Dup). Namely, ndj
satisfies the criterion in line 118 and thus ndinew is an element ofCombndi(Dup) by Definition 12.5. And,
as shown before, X is not a witness of redundancy of ndinew, wherefore ndinew ∈ Combndi,X(Dup) by
the definition of Combndi,X(Dup) (Definition 12.5).

Thence, if Combndi,X(Dup) 6= ∅, there must be at least one node nd added to Dupnew such that
nd ∈ Combndi,X(Dup) andX is not a witness of redundancy of nd. Consequently, proposition (2) holds.

Proposition (3): First, observe that each node in Dup is definitely processed as ndi by the for-loop
in line 107 and the fact that there is no criterion that can cause a preliminary break of this for-loop.
Each time the first part of the redundancy check (line 111) is successful for ndi, we know that some
conflict set ndi.cs[m] is non-minimal w.r.t. 〈K,B,P ,N 〉R. If the second part of the redundancy check
(line 112) is negative, then ndi[m] ∈ X , wherefore there is – at least so far – no evidence that ndi is
redundant w.r.t. 〈K,B,P ,N 〉R. In this case, ndi might later be inserted to Dupnew (in case X is not a
witness of redundancy of ndi) and hence the set ndi.cs[m] is replaced by the minimal conflict set X w.r.t.
〈K,B,P ,N 〉R in line 115. If the second part of the redundancy check in line 112 is positive, then it is
guaranteed that ndi is either combined-replaced or pruned. This holds due to lines 116-122 and since
k > 0 must be true due to line 113. That a combined replacement node that might be found for some
redundant ndi throughout lines 116-122 meets proposition (3) can be shown by induction in a very similar
way as proposition (2) was shown.

The following corollary is a direct consequence of Lemma 12.8 and states that the updated list Qdup

(if interpreted as a set) is a subset of the set of combined nodes of the old list Qdup. In other words,
no nodes corresponding to sets (paths) that are not represented by a node in the old list Qdup can be
introduced throughout PRUNEQDUP. The introduction of such nodes corresponding to “new” sets (paths)
can only take place in line 21 where newly generated nodes are added to Qdup.

Corollary 12.7. Given the same preconditions as in Lemma 12.8, PRUNEQDUP returns Dupnew where
Dupnew ⊆ Comb(Dup).

The following result provides sufficient and necessary criteria for a node nd to be a combined node of
Qdup. Roughly, these criteria involve the existence of a sequence of nodes nd1, . . . , ndk ∈ Qdup where
each node in this sequence is a proper alternative subnode of the next node and nd is constructed from this
sequence of nodes in that nd is an alternative equal node of ndk constructed from nd′k−1. nd′k−1 in turn
is an alternative equal node of ndk−1 constructed from nd′k−2, and so on. Finally, nd′2 is an alternative
equal node of nd2 constructed from nd1 and nd1 ∈ Qdup.

Lemma 12.9. Let nd be a node in DYNAMICHS. Then, nd ∈ Comb(Qdup) iff there are nodes nd1, . . . ,
ndk ∈ Qdup for k ≥ 1 such that

(1) |nd1| < · · · < |ndk| = |nd|,

(2) it holds that

nd[i1] = nd1[i1] for i1 ∈ {1, . . . , |nd1|}
nd[i2] = nd2[i2] for i2 ∈ {|nd1|+ 1, . . . , |nd2|}

. . .

nd[ik] = ndk[ik] for ik ∈ {|ndk−1|+ 1, . . . , |ndk|}

and

(3) ndi is an alternative subnode of ndi+1 for i ∈ {1, . . . , k − 1}.

12.4. ALGORITHM DETAILS AND CORRECTNESS 211

Proof. “⇒”: Suppose nd ∈ Comb(Qdup) and that |nd| = i. Then, there are two cases, either nd ∈ Qdup

or nd /∈ Qdup.
In the former case, we can define nd1 as nd and the proposition of the lemma holds.
In the latter case, by proposition 2 of Corollary 12.6, Definition 12.5 and |nd| = i, it holds that

nd ∈ Combi(Qdup). By proposition 4 of Corollary 12.6 and the fact that nd ∈ Combi(Qdup), there is
some nd′ ∈ Combj(Qdup) for some j ∈ {1, . . . , i− 1} and some nd′′ ∈ Qdup with |nd′′| = i such that
nd = ADD(nd′, nd′′[j + 1..i]) and nd.cs = ADD(nd′.cs, nd′′.cs[j + 1..i]). Moreover, proposition 4 of
Corollary 12.6 states that nd′ is an alternative subnode of nd′′.

So, set ndk to nd′′ and ndk−1 to nd′. Then, we obtain that |ndk−1| < |ndk| by j < i, that ndk−1 is
an alternative subnode of ndk and that nd[ik] = ndk[ik] for ik ∈ {|ndk−1|+ 1, . . . , |ndk|} must be true.
That is, propositions (1), (2) and (3) hold for ndk and ndk−1.

Now, again, there are two cases for ndk−1, i.e. either ndk−1 ∈ Qdup or ndk−1 /∈ Qdup.
In the former case, we can define nd1 as ndk−1 and the proposition of the lemma holds.
In the latter case, the same argumentation as for nd can be applied to show the existence of some

ndk−2 that meets propositions (1), (2) and (3). Due to the fact that the cardinality of ndk−i−1 is strictly
smaller than the cardinality of ndk−i for all i and the fact that Comb1(Qdup) = Qdup, the case ndk−m ∈
Qdup must finally arise for some m.

“⇐”: Suppose there are nodes nd1, . . . , ndk ∈ Qdup such that propositions (1)-(3) are satisfied. Let
k = 1. Then, by propositions (1) and (2) of this lemma, we have that nd is the same node as nd1. Since
nd1 ∈ Qdup and by Definition 12.5, we have that nd ∈ Comb(Qdup). So, the lemma holds for k = 1.

Now, assume that the lemma holds for k = m for some natural number m. That is, assume that there
is a node nd ∈ Comb(Qdup) if there are nodes nd1, . . . , ndm ∈ Qdup such that |nd1| < · · · < |ndm| =
|nd|,

nd[i1] = nd1[i1] for i1 ∈ {1, . . . , |nd1|}
nd[i2] = nd2[i2] for i2 ∈ {|nd1|+ 1, . . . , |nd2|}

. . .

nd[im] = ndm[im] for im ∈ {|ndm−1|+ 1, . . . , |ndm|}

and ndi is an alternative subnode of ndi+1 for i ∈ {1, . . . ,m− 1}.
Let now k = m + 1. That is, assume that there are nodes nd1, . . . , ndm+1 ∈ Qdup such that

|nd1| < · · · < |ndm+1| = |nd|,

nd′[i1] = nd1[i1] for i1 ∈ {1, . . . , |nd1|}
nd′[i2] = nd2[i2] for i2 ∈ {|nd1|+ 1, . . . , |nd2|}

. . .

nd′[im+1] = ndm+1[im+1] for im+1 ∈ {|ndm|+ 1, . . . , |ndm+1|}

and ndi is an alternative subnode of ndi+1 for i ∈ {1, . . . ,m}. What we need to show is that nd′ ∈
Comb(Qdup).

If nd′ ∈ Qdup, then, by Definition 12.5, the lemma is true. So suppose nd′ /∈ Qdup.
By the definition of an alternative subnode (Definition 12.2), nodesub ⊆ node in case nodesub is an

alternative subnode of node. So, because ndi is an alternative subnode of ndi+1 and |ndi| < |ndi+1|
for i ∈ {1, . . . ,m}, we have that ndi ⊂ ndi+1 for i ∈ {1, . . . ,m}. Consequently, ndi ⊆ nd′ for
i ∈ {1, . . . ,m+ 1} and ndi ⊆ nd for i ∈ {1, . . . ,m} must hold. Due to |ndm| = |nd| we obtain the
set-equality between ndm and nd. This result along with ndm ⊆ nd′ and |ndm| < |ndm+1| = |nd′|

212 CHAPTER 12. DYNAMIC DIAGNOSIS COMPUTATION ALGORITHM

implies that nd ⊂ nd′. However, since

ndx[i1] = nd1[i1] for i1 ∈ {1, . . . , |nd1|}
ndx[i2] = nd2[i2] for i2 ∈ {|nd1|+ 1, . . . , |nd2|}

. . .

ndx[im] = ndm[im] for im ∈ {|ndm−1|+ 1, . . . , |ndm|}

is met for ndx being the same node as nd as well as for ndx being the same node as nd′, we can conclude
that nd[i] = nd′[i] for i ∈ {1, . . . , |nd|}.

Moreover, we have that nd′[im+1] = ndm+1[im+1] for im+1 ∈
{
|nd|+ 1, . . . , |nd′|

}
since |nd| =

|ndm| and |nd′| = |ndm+1|.
Since nd′ /∈ Qdup and ndm+1 ∈ Qdup by assumption, we have that ndm+1 which is set-equal to

nd′ (as argued before) must be an alternative equal node of nd′. That is, there must be some j such that
ndm+1[j] 6= nd′[j] or ndm+1.cs[j] 6= nd′.cs[j] for some j ∈ {1, . . . , |nd|}. Hence, ndm+1[j] 6= nd[j]
or ndm+1.cs[j] 6= nd.cs[j] wherefore nd must be an alternative subnode of ndm+1. Because nd ∈
Comb(Qdup) and ndm+1 ∈ Qdup, we infer by Definition 12.5 that nd′ ∈ Comb(Qdup).

The PRUNE function (lines 63-65) is called given a collection S ∈ {Q,D×,D⊃}, a minimal conflict
set X w.r.t. the current DPI and Qdup which has already been updated and cleaned from redundant nodes
(w.r.t. the witness X) by the PRUNEQDUP function. So, let nddup ∈ Qdup be a (not necessarily proper)
alternative subnode of some node node that is stored in S. AssumeX is a witness of redundancy of node.
By Lemma 12.8 and since nddup ∈ Qdup, X cannot be a witness of redundancy of nddup. Further, let
r ∈ {1, . . . , |node|} be the highest number such that X ⊂ node.cs[r] and node[r] ∈ node.cs[r] \ X .
Now, in case r ≤ |nddup| holds, nddup (and nddup.cs) can be used to replace the first |nddup| elements
of node (and node.cs). The result is an alternative equal node of node which is non-redundant w.r.t. the
current DPI and which can be added to S after deletion of node as a representative of the set (path) node
has represented.

Now, the next lemma substantiates that PRUNE updates S in a way that all redundant nodes w.r.t. the
witness X are deleted, each deleted node is replaced by one non-redundant replacement node w.r.t. the
witness X if such a one is constructable from Qdup and for each remaining node nd, i.e. nd is a non-
deleted node or a replacement node of some deleted node, each superset of X in nd.cs is replaced by
X .

This leads to a new set S returned by PRUNE which includes only non-redundant nodes w.r.t. the
witnessX . Furthermore, the new set S contains a node corresponding to each set (path) Y for which there
was a corresponding node in the old set S if there would be a non-redundant (w.r.t.X) node corresponding
to Y in a hitting set tree equal to the one produced by DYNAMICHS except that all duplicate nodes
corresponding to equal sets (paths) would be regularly processed and expanded.

Lemma 12.10. Let 〈K,B,P ,N 〉R be a DPI and let the following be the input parameters to the PRUNE
function:

• X is a minimal conflict set w.r.t. 〈K,B,P ,N 〉R,

• S is a set of nodes in DYNAMICHS,

• Dup is a set of nodes where

– X is not a witness of redundancy of any node in Dup and

– for each nd ∈ S there might be some nd′ ∈ Dup such that nd′ is an alternative subnode of
nd and

12.4. ALGORITHM DETAILS AND CORRECTNESS 213

– for each node nd ∈ Dup there is no r ∈ {1, . . . , |nd|} for which nd.cs[r] ⊃ X .

• pnodes is as defined by Definition 4.9.

Then, PRUNE returns S′ where the following holds:

(1) S′ is a set such that S \ S′ includes exactly these nodes in S for which X is a witness of redundancy
and S ∩ S′ includes exactly these nodes in S for which X is not a witness of redundancy.

(2) Each element nd ∈ S′ \S is an alternative equal node of some node in S \S′ constructed from some
node in Dup such that X is not a witness of redundancy of nd.

(3) Let nd ∈ S \ S′ and Altnd denote the set of all alternative equal nodes of nd, each of which can be
constructed from some node in Dup and for each of which X is not a witness of redundancy. Then
there is some nd′ ∈ Altnd such that nd′ ∈ S′ \ S.

(4) S′ includes only nodes nd such that there is no r ∈ {1, . . . , |nd|} for which nd.cs[r] ⊃ X .

Proof. The PRUNE procedure runs through all nodes nd ∈ S and for each nd runs through all sets in
nd.cs (lines 87 and 89). Lines 90 and 91 perform a check whether X is a witness of redundancy of
nd, implementing exactly the criteria given by Definition 12.4. If the check is not successful for any
i ∈ {1, . . . , |nd|}, i.e. X is not a witness of redundancy of nd, then k = 0 must hold when line 95 is
reached. Hence, nd is added to S′ in line 103 in this case. As only nodes different from nd can be added
to S′ in line 100 and as there are no other ways nodes might be added to S′, we have that S \ S′ includes
exactly these nodes in S for which X is a witness of redundancy and S ∩S′ includes exactly these nodes
in S for which X is not a witness of redundancy. So, proposition (1) is true.

The truth of proposition (2) can be derived as follows: By the proof of proposition (1), line 100
is the only place where nodes that are not elements of S are added to S′. Hence, each node in S′ \
S must be added to S′ in line 100. Thus, only nodes nodenew := ADD(node, nd[|node| + 1..|nd|])
with nodenew.cs := ADD(node.cs, nd.cs[|node| + 1..|nd|]) constructed exactly as per Definition 12.2 in
lines 98 and 99 where nd ∈ S can be added to S′.

Now, we still have to show that node is an alternative subnode of nd. From the precondition that
X is not a witness of redundancy of any node in Dup, X cannot be a witness of redundancy of node.
Moreover, |node| ≥ k must hold as line 97 has been passed. So, we have that X must be a witness of
redundancy for nd[1..|node|] since k > 0 (line 95) and by the way k is constructed (lines 88-92). Hence,
there must be some j ∈ {1, . . . , |node|} with the property that node[j] 6= nd[j] or node.cs[j] 6= nd.cs[j]
wherefore node is indeed an alternative subnode of nd. Thus, nodenew is an alternative equal node of nd
by Definition 12.2.

That nd ∈ S \ S′ must be true can be explained as follows. By the argumentation to prove proposi-
tion (1) and (2) so far, we know that only nodes can be added to S′ in line 100 and line 103 for which
X is not a witness of redundancy. Moreover, we have shown that line 100 can only be reached for some
node nd ∈ S for which X is a witness of redundancy. Consequently, nd /∈ S′ must hold.

That X is not a witness of redundancy of nodenew can be derived as follows: From the precondi-
tion that X is not a witness of redundancy of any node in Dup, X cannot be a witness of redundancy
of nodenew[1..|node|] with nodenew.cs[1..|node|] since nodenew[j] = node[j] and nodenew.cs[j] =
node.cs[j] for all j ∈ {1, . . . , |node|}. k is the maximum index such that X ⊂ nd.cs[k] and nd[k] ∈
nd.cs[k]\X by lines 88-92. Since |node| ≥ k,X cannot be a witness of redundancy of nodenew[|node|+
1..|nd|] with nodenew.cs[|node|+ 1..|nd|] either since nodenew[j] = nd[j] and nodenew.cs[j] = nd.cs[j]
for all j ∈ {|node|+ 1, . . . , |nd|}. Therefore, X cannot be a witness of redundancy of nodenew.

Proposition (3): As already argued, for each node nd ∈ S \ S′, line 96 must be reached. Then, in
line 96, all nodes inDup are investigated in order to find an alternative subnode of nd. So, if there is such
a one, then it must be found.

214 CHAPTER 12. DYNAMIC DIAGNOSIS COMPUTATION ALGORITHM

Proposition (4): For a node nd that is added to S′ in line 103, the for-loop in line 89 must have been
executed. Since, as already shown, line 92 cannot be executed for a node that is added to S′ in line 103,
line 94 must have been executed for all i ∈ {1, . . . , |nd|}. Hence, proposition (4) holds for all nodes
inserted into S′ in line 103.

For nodes

nodenew := ADD(node, nd[|node|+ 1..|nd|])
nodenew.cs := ADD(node.cs, nd.cs[|node|+ 1..|nd|])

inserted into S′ in line 100, proposition (4) follows from the precondition that Dup includes only nodes
n such that there is no r ∈ {1, . . . , |n|} for which n.cs[r] ⊃ X , from the fact that node ∈ Dup and the
fact that line 94 must have been executed for all indices i > k.

12.4.7 De-Facto Non-Redundant Nodes in DYNAMICHS
The following definition introduces a notion that is of rather theoretical use for the proof of completeness
of DYNAMICHS we will give later. The definition assumes a fixed DPI and characterizes as active
sublabel of a particular conflict set nd.cs[r] in nd.cs the subset of nd.cs[r] that “survives” all the pruning
steps, i.e. PRUNEQDUP and PRUNE calls, during all executions of DYNAMICHS up to the one with a
current DPI DPI . Notice that the shape of the active sublabel can never be known in advance as we do
not know which witnesses of redundancy might be found. This makes up the theoretical nature of this
definition. However, we will be able to show that no active sublabel of a node can be the empty set under
certain preconditions that are met for DYNAMICHS.

Definition 12.6. Let

• nd be a node in DYNAMICHS,

• r ∈ {1, . . . , |nd|} fixed,

• DPI1, . . . , DPIn be a sequence of DPIs where DPIj includes a proper subset of the test cases
DPIj+1 includes for j ∈ {1, . . . , n− 1},

• DPIn is equal to DPI or includes a proper subset of the test cases DPI includes,

• C1, . . . , Cn be the chronological sequence of all sets X given as an argument to PRUNE and
PRUNEQDUP during all executions of DYNAMICHS up to and including the one with current DPI
DPI where

– each Ci is a minimal conflict set w.r.t. DPIi for i ∈ {1, . . . , n}
– Ck ⊃ Ck+1 for k ∈ {1, . . . , n− 1},
– nd.cs[r] ⊃ C1.

Then, we call Cn the active sublabel of nd.cs[r] w.r.t. DPI .

The next definition of a de-facto non-redundant node is based on Definition 12.6. A de-facto non-
redundant node w.r.t. DPI includes at each position an element that hits the active sublabel w.r.t. DPI
at this position. Again, this definition is of theoretical rather than practical use, but crucial for the proof
of completeness of DYNAMICHS. In fact, we will be able to show that for each minimal diagnosis w.r.t.
DPI there must be – anytime during any execution of DYNAMICHS with a current DPI including a subset
of the test cases in DPI – a de-facto non-redundant node corresponding to a subset of this diagnosis. In
further consequence, this will allow us to derive the algorithm’s completeness concerning the detection
of all minimal diagnoses w.r.t. DPI .

12.4. ALGORITHM DETAILS AND CORRECTNESS 215

Definition 12.7. We call a node nd in DYNAMICHS de-facto non-redundant w.r.t. DPI iff nd[r] is an
element of an active sublabel w.r.t. DPI for all r ∈ {1, . . . , |nd|}.

A de-facto non-redundant node w.r.t. a DPI DPI “survives” all pruning steps at least until the execu-
tion of DYNAMICHS with current DPI DPI:

Proposition 12.7. Let nd be a node which is de-facto non-redundant w.r.t. DPI . Then, nd cannot be
pruned or replaced during any execution of DYNAMICHS up to and including the one with current DPI
DPI .

Proof. By Definitions 12.6 and 12.7, PRUNE and PRUNEQDUP cannot be called given a witness of redun-
dancy of nd during any execution of DYNAMICHS up to and including the one with current DPI DPI .
By Lemmata 12.8 and 12.10, only nodes can be pruned or replaced for which the input set X given to
PRUNE and PRUNEQDUP is a witness of redundancy.

Example 12.7 Let K = {1, . . . , 10} be the KB of the (admissible) input DPI DPI0 to Algorithm 5 and
let nd := [1, 2, 3, 4] with nd.cs := [〈1, 5, 7〉 , 〈2, 4, 6〉 , 〈3, 6, 7〉 , 〈4, 5〉] be a node stored by DYNAMICHS
during the execution of some call to DYNAMICHS during Algorithm 5. Moreover, let DPI be a fixed
DPI constructed during the execution Algorithm 5 that includes a (not necessarily proper) superset of the
test cases in DPI0. Assume that the chronological sequence of all inputs X to PRUNE and PRUNEQDUP
throughout all executions of DYNAMICHS up to and including the one with current DPI DPI during
Algorithm 5 and after nd has been generated is given by 〈1, 6〉 , 〈3, 7〉 , 〈1, 3, 8〉 , 〈2〉 , 〈4〉 , 〈1, 5〉.

Then nd.cs undergoes the transition depicted by Table 12.1 induced by this sequence of X arguments
to PRUNE/PRUNEQDUP. We can observe in Table 12.1 that each proper superset of some argument X of

X nd.cs after PRUNE/PRUNEQDUP with argument X

〈1, 6〉 [〈1, 5, 7〉,〈2, 4, 6〉,〈3, 6, 7〉,〈4, 5〉]
〈3, 7〉 [〈1, 5, 7〉,〈2, 4, 6〉,〈3, 7〉,〈4, 5〉]
〈1, 3, 8〉 [〈1, 5, 7〉,〈2, 4, 6〉,〈3, 7〉,〈4, 5〉]
〈2〉 [〈1, 5, 7〉,〈2〉,〈3, 7〉,〈4, 5〉]
〈4〉 [〈1, 5, 7〉,〈2〉,〈3, 7〉,〈4〉]
〈1, 5〉 [〈1, 5〉,〈2〉,〈3, 7〉,〈4〉]

Table 12.1: Transition of nd.cs induced by multiple calls to PRUNE.

PRUNE/PRUNEQDUP that occurs in nd.cs is replaced byX (cf. Lemmata 12.8 and 12.10). This is the case,
for instance, for X = 〈3, 7〉 in the second row of the table which replaces nd.cs[3] = 〈3, 6, 7〉. Similar
situations can be found in rows 4-6. No changes to nd.cs are triggered for X = 〈1, 6〉 or X = 〈1, 3, 8〉 in
rows 1 and 3, respectively, because at this stage nd.cs does not include any superset of X .

We learn from the last row of the table that nd is de-facto non-redundant w.r.t. DPI . This holds, first,
since we considered the chronological sequence of all inputs X to PRUNE and PRUNEQDUP throughout
all executions of DYNAMICHS up to and including the one with current DPI DPI during Algorithm 5.
Second, we have that

nd[1] = 1 ∈ 〈1, 5〉 = nd.cs′[1]

nd[2] = 2 ∈ 〈2〉 = nd.cs′[2]

nd[3] = 3 ∈ 〈3, 7〉 = nd.cs′[3]

nd[4] = 4 ∈ 〈4〉 = nd.cs′[4]

216 CHAPTER 12. DYNAMIC DIAGNOSIS COMPUTATION ALGORITHM

where nd.cs′ is the value of nd.cs given by the last row of the table which is the “current” value of nd.cs
during the execution of DYNAMICHS with current DPI DPI . By Definition 12.6, nd.cs′[i] is the active
sublabel of nd.cs[i] w.r.t. DPI for i ∈ {1, . . . , 4}. That is, for example, 〈3, 7〉 is the active sublabel of
nd.cs[3]. As we realized that each element of nd is an element of an active sublabel w.r.t.DPI , we obtain
the de-facto non-redundancy of nd w.r.t. DPI as per Definition 12.7.

Notice that the sole definition of redundancy of a node w.r.t.DPI (Definition 12.4) does not perfectly
serve our purposes as it does not take into account the order in which new conflict sets emerge and are
used for pruning.

For instance, consider nd.cs[2] = 〈2, 4, 6〉which includes 2 as well as 4. Both values 〈2〉 and 〈4〉 ofX
in rows 4 and 5 of Table 12.1 must be conflict sets w.r.t.DPI by Proposition 12.1, which says that conflict
sets cannot grow after the addition of a test case to a DPI, and the fact that each X must be a minimal
conflict set w.r.t. some DPI including a subset of the test cases in DPI . In fact, by Proposition 12.2
and the admissibility of DPI0, 〈2〉 and 〈4〉 are even minimal conflict sets w.r.t. DPI . Thus, application
of Definition 12.4 yields that nd is redundant w.r.t. DPI because 〈4〉 ⊂ 〈2, 4, 6〉 and nd[2] = 2 ∈
〈2, 4, 6〉 \ 〈4〉 (cf. Definition 12.4). However, bearing in mind that 〈2〉 was known to the algorithm before
〈4〉, or, 〈2〉 was used for pruning before 〈4〉, we have that the set nd.cs[2], after being modified by PRUNE
or PRUNEQDUP, is not redundant w.r.t. DPI . This is true since the new set nd.cs[2] = 〈2〉 which is not a
superset of 〈4〉.

So, to summarize, a node is (theoretically) redundant w.r.t. DPI as per Definition 12.4 iff there is a
minimal conflict set w.r.t. DPI which is a witness of redundancy of this node. As however the example
above has shown, whether a node is found to be redundant or not depends on the order of conflict sets
used for pruning. This fact is also mentioned in [GSW89]. And, a (theoretically) redundant node w.r.t.
DPI does not necessarily need to be discovered by DYNAMICHS and might be modified by PRUNE or
PRUNEQDUP in a way that it becomes non-redundant w.r.t. DPI .

On the other hand, the definition of de-facto non-redundancy w.r.t. DPI (Definition 12.7) incorpo-
rates exactly these thoughts and declares only nodes as de-facto non-redundant w.r.t. DPI which are
actually not found to be redundant w.r.t. DPI .

The criteria for a node nd to be a combined node of Qdup given by Lemma 12.9 will facilitate the proof
of the next lemma. This lemma states that a combined node of Qdup which is non-redundant w.r.t. some
DPI 〈K,B,P∪P ′,N ∪N ′〉R cannot be pruned during DYNAMICHS given i.a. the DPI 〈K,B,P ,N 〉R and
sets of positively and negatively answered queries P ′′ and N ′′ as input where P ′′ ⊆ P ′ and N ′′ ⊆ N ′.
This result will constitute an essential prerequisite for the proof of completeness of DYNAMICHS.

Lemma 12.11. Let nd ∈ Comb(Qdup) be some node that is de-facto non-redundant w.r.t. the DPI DPI
and letDPI ′ be some DPI that is either equal toDPI or includes only a subset of the test cases ofDPI .
Then, throughout any execution of DYNAMICHS using the current DPIDPI ′, nd ∈ Comb(Qdup) holds.

Proof. First, we show that there cannot be a minimal conflict set C w.r.t. DPI ′ such that PRUNEQDUP
is called with X := C and there is some q ∈ {1, . . . , |nd|} with the property that C ⊂ nd.cs[q] and
nd[q] ∈ nd.cs[q] \ C.

So, assume that PRUNEQDUP is called with X := C and there is some C w.r.t. DPI ′ such that there
is some q ∈ {1, . . . , |nd|} with the property that C ⊂ nd.cs[q] and nd[q] ∈ nd.cs[q] \ C. Let now
C1, . . . , Cn be the (arbitrary actual) chronological sequence of all sets X given as an argument to PRUNE
and PRUNEQDUP during all executions of DYNAMICHS up to and including the one with current DPI
DPI where

• nd.cs[q] ⊃ C1,

• each Ci is a minimal conflict set w.r.t. DPIi for i ∈ {1, . . . , n}

• Ck ⊃ Ck+1 for k ∈ {1, . . . , n− 1},

12.4. ALGORITHM DETAILS AND CORRECTNESS 217

• DPIj includes a proper subset of the test cases DPIj+1 includes for j ∈ {1, . . . , n− 1},

• DPIn is equal to DPI or includes a proper subset of the test cases DPI includes.

Then, Cn is the active sublabel of nd.cs[q] w.r.t. DPI . Since C ⊂ nd.cs[q] and X := C is an argument
of PRUNEQDUP during DPI ′, we have that C must be equal to some set Cj in the sequence C1, . . . , Cn.
By Definition 12.7 and the de-facto non-redundancy of nd w.r.t. DPI , nd.cs[q] ∈ Cn must hold. By
Cn ⊆ Cj = C, we finally obtain nd.cs[q] ∈ C, which is a contradiction to nd[q] ∈ nd.cs[q] \ C.

Lemma 12.9 and nd ∈ Comb(Qdup) guarantee the existence of nodes nd1, . . . , ndk ∈ Qdup for
k ≥ 1 such that

(1) |nd1| < · · · < |ndk| = |nd|,

(2) it holds that

nd[i1] = nd1[i1] for i1 ∈ {1, . . . , |nd1|}
nd[i2] = nd2[i2] for i2 ∈ {|nd1|+ 1, . . . , |nd2|}

. . .

nd[ik] = ndk[ik] for ik ∈ {|ndk−1|+ 1, . . . , |ndk|}

and

(3) ndi is an alternative subnode of ndi+1 for i ∈ {1, . . . , k − 1}.

So, let us assume that nd /∈ Comb(Qdup) at some point in time during the execution of DYNAMICHS
using the current DPI DPI ′. That is, some node ndj for some j ∈ {1, . . . , k} must have been deleted
from Qdup. Nodes can only be deleted from Qdup in the scope of the function PRUNEQDUP. By
Lemma 12.8 and Corollary 12.2, only nodes for which X is a witness of redundancy can be deleted
from Qdup by the function PRUNEQDUP where X is the minimal conflict set given to PRUNEQDUP.

Thus, assume that ndj for some j ∈ {1, . . . , k} is the first node among nd1, . . . , ndk ∈ Qdup deleted
from Qdup by PRUNEQDUP given the minimal conflict set X w.r.t. DPI ′ as an argument. Then, as
X must be a witness of redundancy of ndj , we have that there is some m ∈ {1, . . . , |ndj |} such that
X ⊂ ndj .cs[m] and ndj [m] ∈ ndj .cs[m] \X .

Since Lemma 12.9 holds also for j ≤ k and ndj is the first node among nd1, . . . , ndk ∈ Qdup deleted
from Qdup, we deduce that there is some node node ∈ Comb(Qdup) such that |node| = |ndj | and
node[r] = nd[r] for r ∈ {1, . . . , |ndj |} where |ndj | ≤ |nd|. As pointed out before, there cannot be any
q ∈ {1, . . . , |nd|} such that X ⊂ nd.cs[q] and nd[q] ∈ nd.cs[q] \X . This, however, is a contradiction that
there is some m ∈ {1, . . . , |ndj |} such that X ⊂ ndj .cs[m] and ndj [m] ∈ ndj .cs[m] \X .

Hence, none of the nodes nd1, . . . , ndk ∈ Qdup can be deleted throughout the execution of DY-
NAMICHS using the current DPI DPI ′. Consequently, by Lemma 12.9, nd ∈ Comb(Qdup) must be
preserved.

The finding of the next lemma is that a node nd in DYNAMICHS cannot be processed before all nodes
that are set-equal to nd or proper subsets of nd have been generated.

Lemma 12.12. Let GenNodes be the set of all nodes generated throughout the execution of all calls
to DYNAMICHS during the execution of Algorithm 5. Then, a node nd cannot be processed before each
node nd′ ∈ GenNodes where nd′ ⊆ nd is generated.

Proof. Let nd′ ∈ GenNodes such that nd′ ⊆ nd. Assume that nd is processed, but nd′ has not yet been
generated. In order to be processed, nd must be an element of Q. By the fact that nd′ ∈ GenNodes, nd′
must be generated at some point in time. In order for nd′ to be generated, some node nd′′ with nd′′ ⊂ nd′

must be an element of Q. This follows from

218 CHAPTER 12. DYNAMIC DIAGNOSIS COMPUTATION ALGORITHM

• the fact that each generated node is a superset of some node in Q (cf. lines 6, 18 and 23 and
Definition 12.3),

• the fact that Q can only be modified by (a) deleting from Q some node and adding a set of successor
nodes of it to Q (lines 6, 7 and 23) or by (b) deleting from Q some node and possibly adding to Q
a replacement node of it in the function PRUNE and

• the fact that for any replacement node ndrep of nd it holds that ndrep = nd.

By Lemma 4.14, each node which is a proper subset of another node has a higher probability as per
pnodes(). Since nd is processed before nd′ is generated and nodes in Q are processed in descending order
of pnodes() (lines 23 and 6), pnodes(nd) > pnodes(nd

′′) where nd′′ ⊂ nd′ ⊆ nd, contradiction.

The purpose of the following definition is to refer to a node that results from another node nd by
several replacements conducted by PRUNE as a node in a transitive replaces-relation with nd. This will
simplify the notation used in the following two lemmata.

Definition 12.8. Let ndi ∼Rep ndj iff ndi is a replacement node of ndj computed so far by PRUNE at
any time during the execution of any call to DYNAMICHS during the execution of Algorithm 5. Further,
let the set Rep := {〈ndi, ndj〉 | ndi ∼Rep ndj}. Then we say that nd1 is in a transitive replaces-relation
with ndk iff there is a sequence of nodes nd1, nd2, . . . , ndk−1, ndk such that 〈ndi, ndi+1〉 ∈ Rep for all
i ∈ {1, . . . , k − 1}.

12.4.8 Completeness of DYNAMICHS
Lemmata 12.13 and 12.14 constitute the key results towards proving the completeness of DYNAMICHS in
terms of finding the complete set of minimal diagnoses w.r.t. any current DPI DPI in case the execution
of DYNAMICHS with current DPI DPI terminates on account of Q = []. In other words, if there are no
more open nodes in the hitting set tree constructed by DYNAMICHS with current DPI DPI , all minimal
diagnoses w.r.t. DPI have been labeled by valid and are thus elements of the set Dcalc.

The completeness proof (Lemma 12.8) will be a proof by induction where Lemma 12.13 will serve to
derive the base case of the induction, whereas Lemma 12.14 will be exploited to establish the induction
step.

Lemma 12.13 assumes an arbitrary fixed “current” DPI DPI such that DYNAMICHS with this “cur-
rent” DPI DPI returns due to Q = []. Further on, it assumes an arbitrary minimal diagnosis D w.r.t.
DPI and a de-facto non-redundant node nd w.r.t. DPI which is a proper subset of D generated anytime
throughout all executions of DYNAMICHS during the execution of Algorithm 5 up to the one with the
current DPI DPI .

Given these preconditions, the lemma establishes the existence of a node ndsuc that corresponds to a
superset of nd and to a subset of D, includes one element more than the set nd and is generated anytime
throughout all executions of DYNAMICHS during the execution of Algorithm 5 up to the one with the
current DPI DPI . Moreover, it states that the node nd′suc set-equal to this generated node that is an
element of Q cannot be pruned. However, it might be replaced. In case there is only one potential
replacement node of nd′suc constructable from (the combined nodes of) Qdup, this replacement node
is de-facto non-redundant w.r.t. DPI . Any node nd′suc,rep in a transitive replaces relation with nd′suc
cannot be pruned either. It might again be replaced. In case there is only one potential replacement
node of nd′suc,rep constructable from (the combined nodes of) Qdup, this replacement node is de-facto
non-redundant w.r.t. DPI .

Figuratively, with respect to the hitting set tree constructed by DYNAMICHS, this lemma predicates the
following: Let the hitting set tree produced by DYNAMICHS be completely constructed for an arbitrary
DPI DPI . In case there is any tree branch whose edge labels correspond to a part of the minimal

12.4. ALGORITHM DETAILS AND CORRECTNESS 219

diagnosisD w.r.t. DPI and which is known to be definitely not pruned during this tree construction, then
this branch must be extended by one edge labeled by an element of D and this extended path is known to
be definitely not pruned during this tree construction.

Notice that during this tree construction, in practice, we will generally never be able to say that a
concrete branch corresponding to a partial minimal diagnosis will definitely not be pruned. For, this
depends on the answers to queries submitted by the interacting user. Nevertheless, for the proof of
completeness of DYNAMICHS, it suffices to just know that there is any such branch in the tree.

Lemma 12.13. Assume the execution of DYNAMICHS with the current DPI DPI and assume that the
execution stops due to Q = []. Let

• GenNodes be the set of all nodes generated throughout the execution of all calls to DYNAMICHS
during the execution of Algorithm 5,

• D be some minimal diagnosis w.r.t. DPI ,

• nd ∈ GenNodes such that nd is de-facto non-redundant w.r.t. DPI and nd ⊂ D and

Then there are nodes ndsuc and nd′suc such that the following holds:

(1) nd ⊂ ndsuc ⊆ D.

(2) |ndsuc| = |nd|+ 1.

(3) ndsuc ∈ GenNodes.

(4) nd′suc = ndsuc is an element of Q immediately after ndsuc has been generated.

(5) If PRUNE is called given a witness of redundancy of nd′suc, then some replacement node of nd′suc
is found. If only one replacement node of nd′suc is found, then this replacement node is de-facto
non-redundant w.r.t. DPI .

(6) Let nd′suc,rep be in a transitive replaces-relation with nd′suc. If PRUNE is called given a witness of
redundancy of nd′suc,rep, then some replacement node of nd′suc,rep is found. If only one replacement
node of nd′suc,rep is found, then this replacement node is de-facto non-redundant w.r.t. DPI .

Proof. Now, since nd ∈ GenNodes, we know that nd must be generated at some point in time during
the execution of any call to DYNAMICHS during the execution of Algorithm 5. As the execution Excurr
of the call to DYNAMICHS using DPI is assumed to terminate due to Q = [] and no more nodes can
be generated after Q = [] (each generated node is constructed by extending a node in Q), nd must be
generated the latest during Excurr.

So, let us consider exactly the point in time when nd is generated. Since this point in time might
not arise during the execution Excurr of DYNAMICHS, but during some execution Exprev taking place
before Excurr which uses some “current” DPI which includes fewer test cases than the current DPIDPI
of Excurr, we call the “current” DPI in Exprev in the following DPIprev . That is, DPIprev might be
equal to DPI or comprise a subset of the test cases DPI includes.

First, we observe that immediately after nd has been generated, there is some node nd′ ∈ Q such that
nd′ = nd. If nd′ is not the same node as nd, then nd ∈ Qdup. This follows from lines 20-23.

Second, we have that nd′ ∈ Q cannot be pruned before it is processed. In case nd′ is the same node as
nd, this follows from Proposition 12.7 and the precondition that nd is de-facto non-redundant w.r.t. DPI .
Notice that in this case nd ∈ Q cannot even be replaced (also by Proposition 12.7).

Otherwise, if nd′ is not the same node as nd, we argue as follows: Assume that nd′ is redundant w.r.t.
DPIprev and that the PRUNE function is called with arguments Q, Qdup and some minimal conflict set

220 CHAPTER 12. DYNAMIC DIAGNOSIS COMPUTATION ALGORITHM

X w.r.t. DPIprev which is a witness of redundancy of nd′. Then, since nd is de-facto non-redundant
w.r.t. DPI , since DPIprev includes a subset of the test cases DPI comprises and by Proposition 12.7,
nd cannot have been deleted from Qdup during any pruning step. Thence, by Lemma 12.10, nd (or some
other node set-equal to nd′ for which X is not a witness of redundancy) must be constructed and added
to Q in lines 96-101 during the execution of the PRUNE function.

That is, before any node set-equal to nd is processed, any number of calls to PRUNE with arguments
Q, Qdup and some minimal conflict set X w.r.t. any DPI DPIprev imply that Q includes some node that
is set-equal to nd. Let us denote by node the node set-equal to nd that is finally processed.

There must be some execution of DYNAMICHS with some DPI (which might be equal to DPI or
include a subset of the test cases in DPI) during which node is processed. This holds as the execution
of DYNAMICHS with DPI is assumed to stop because of Q = [], since not all nodes set-equal to node
can be pruned, as just argued before, and because the only alternative way, except for pruning, to achieve
the deletion of a node from Q (line 7) is to process it. Let DPIprev now be the “current” DPI of the
execution of DYNAMICHS during which node is processed. Further, we denote the DPI considered by
the immediate subsequent execution of DYNAMICHS by DPIprev+1, and so on.

When node is processed, it is either

• (a) labeled by a set (DLABEL returns in line 40, 46 or 34) or

• (b) not labeled by a set (DLABEL returns in line 29 or 43).

Case (b): In this case, DLABEL returns either

• (i) nonmin or

• (ii) valid.

Case (i): By Lemma 12.1, node must be a non-minimal diagnosis w.r.t. DPIprev . By line 15, node
is then added to the set D⊃. D⊃ is never modified throughout Algorithm 5 and is given as an input
argument to each subsequent call to DYNAMICHS by line 10 in Algorithm 5. During the execution of
some subsequent call to DYNAMICHS using the DPI DPIprev+i for i ≥ 1, the set D⊃ might be modified
by the UPDATETREE function (line 65 and lines 70-78) or in the DLABEL function (line 38) called for
DPIprev+i. Because node = nd and nd is de-facto non-redundant w.r.t. DPI , we infer by the same
argumentation as used above that node ∈ D⊃ cannot be pruned, i.e. node considered as a set cannot be
deleted from D⊃ in line 65 or line 38. The truth of this is supported by Corollary 12.1 and Lemmata 12.6
and 12.7 which say that PRUNE can only be called given some minimal conflict set X w.r.t. DPIprev+i.
So, after any number of calls to PRUNE, we have that either node ∈ D⊃ or, otherwise, there is some
node in D⊃ which is set-equal to node and which is in a transitive replaces-relation with node. We keep
calling this (possibly replacement) node node in the following.

By Lemma 12.1, at the time node was processed, there must be some diagnosis D′ w.r.t. DPIprev
such that D′ ∈ Dcalc and node ⊃ D′. Additionally, by Lemma 12.1, the set Dcalc computed dur-
ing DYNAMICHS for some “current” DPI DPIj comprises only diagnoses w.r.t. DPIj . Now, we have
node ⊂ D since nd ⊂ D and node = nd, and D′ ⊂ node. That is, D′ ⊂ D. By the precondition that D
is a minimal diagnosis w.r.t. DPI , D′ cannot be a diagnosis w.r.t. DPI . Thus, there cannot be any such
D′ in Dcalc computed during DYNAMICHS for DPI .

All nodes in Dcalc returned by some call to DYNAMICHS using DPI DPI1 that are no diagnoses
w.r.t. DPI2, the extension of DPI1 by a new query added as a positive or negative test case, are added to
the set D× (and not to DX) in line 22 of Algorithm 5 and are thus no elements of the set DX given as an
argument to DYNAMICHS at the next call to DYNAMICHS. The elements of DX given as an argument to

12.4. ALGORITHM DETAILS AND CORRECTNESS 221

DYNAMICHS at the next call to DYNAMICHS using DPI2 are definitely added to Q again in lines 79-80
as DX is not modified elsewhere in DYNAMICHS before lines 79-80 are reached.

Therefore, we need to differentiate between two cases: Either

• (x1) D′ ∈ D× never holds for the input argument D× to any call to DYNAMICHS or

• (x2) D′ ∈ D× holds at least once for the input argument D× to some call to DYNAMICHS.

Case (x1): Since D′ ∈ Dcalc holds after the execution of DYNAMICHS using DPIprev stops, we
have that D′ ∈ DX must hold for the argument DX given to DYNAMICHS using DPIprev+1. After
UPDATETREE returns during DYNAMICHS using DPIprev+1, D′ ∈ Q holds as argued. Subsequently,
D′ might be added again to Dcalc and then to DX again in line 21 of Algorithm 5 and to Q again in
line 80 during DYNAMICHS using DPIprev+2, and so forth. But, when a test case is added to some DPI
DPIprev+i in Algorithm 5 that invalidates the diagnosisD′ (yielding the DPIDPIprev+i+1),D′ /∈ Dcalc

is assumed to hold (otherwise it would be an element of D× against our assumption). Such a test case
must be added sometime as argued above. By Proposition 12.3, D′ cannot be a (minimal) diagnosis w.r.t.
any DPI including a superset of the test cases inDPIprev+i+1 either. Notice that the caseD′ /∈ Dcalc can
emerge in spite of the fact thatD′ is a minimal diagnosis w.r.t. DPIprev+i because there may be minimal
diagnoses w.r.t. DPIprev+i that have a higher probability as per pnodes() than D′. For DPIprev+i+1

and all DPIs including more test cases than DPIprev+i+1, D′ cannot be added to Dcalc anymore due to
Lemma 12.1 since only diagnoses w.r.t. the currently used DPI can be added to Dcalc.

Case (x2): Here, D′ ∈ D× holds at least once for the input argument D× to some call to DYNAMICHS
using the DPI DPIprev+i. Then, DYNAMICHS using the DPI DPIprev+i−1 must have returned a set
Dcalc including D′ as otherwise D′ cannot be added to D×. Hence, D′ must be a diagnosis w.r.t.
DPIprev+i−1 by Lemma 12.1. Since D′ is added to D×, it cannot be a diagnosis w.r.t. DPIprev+i.
This must hold

• by Remark 7.4,

• since the set added to D× in Algorithm 5 is exactly the set Dout returned by GETINVALIDDIAGS
in line 19 of Algorithm 5 and

• Dout = D+(Q) in case the user answer u(Q) to the query Q w.r.t. Dcalc and DPIprev+i−1 is
false and Dout = D−(Q) otherwise (notice that Dcalc is called DX in Algorithm 5).

So, by Proposition 12.3, D′ cannot be a (minimal) diagnosis w.r.t. any DPI including more test cases than
DPIprev+i either.

Each element in D× is processed by the UPDATETREE function (lines 48-69) called for the DPI
DPIprev+i. In lines 48-69, each node ndx in D× can only be pruned or either ndx or a node in a
transitive replaces-relation with ndx is added to Q in line 68. Dcalc is not modified by UPDATETREE and
Dcalc = ∅ holds at the beginning of the execution of each call to DYNAMICHS. (A node set-equal to) D′
cannot ever be readded to Dcalc by Lemma 12.1 and since D′ is not a diagnosis w.r.t any DPI including
more test cases than DPIprev+i. Hence, D′ ∈ Dcalc can never hold for any DPI including more test
cases than DPIprev+i.

Hence, there must be some DPI DPIprev+k such that DX given as input to the DYNAMICHS-call
for DPIprev+k does not include any diagnosis D′ ⊂ node. So, during the execution of the call to
DYNAMICHS using DPIDPIprev+k, node must be deleted from D⊃ and be reinserted into Q by lines 70-
78 in UPDATETREE which is called at the beginning of the execution of DYNAMICHS at any call to
DYNAMICHS. This must hold since all nodes ndx in D⊃ that have not yet been pruned and for which
there is no diagnosis in DX which is a proper subset of ndx, are added to Q throughout lines 70-78.

222 CHAPTER 12. DYNAMIC DIAGNOSIS COMPUTATION ALGORITHM

As shown, both criteria are met for node during the execution of the call to DYNAMICHS using DPI
DPIprev+k.

Case (ii): By Lemma 12.1, we know that node is a diagnosis w.r.t. DPIprev and that node is added to
Dcalc. Since node ⊂ D and D is a minimal diagnosis w.r.t. DPI , we obtain, by the same argumentation
as in (i), that there must be some DPI DPIprev+k such that DX given as input to the DYNAMICHS-call
for DPIprev+k does not include node.

If node /∈ D×, then it cannot ever be added to Dcalc again, as argued in case (i). Otherwise, during the
execution of UPDATETREE which is called at the beginning of the execution of each call to DYNAMICHS,
D× is modified in lines 48-69.

Now, we differentiate between two cases, namely node is either

• (¬r) non-redundant w.r.t. DPI or

• (r) redundant w.r.t. DPI .

Case (¬r): Due to the non-redundancy of node w.r.t. DPI , Lemma 12.4, Lemma 12.10 and Corol-
lary 12.1, node cannot be replaced or pruned throughout lines 48-66. Thus, node is reinserted into Q in
line 68.

Case (r): Since node is redundant w.r.t. DPI , it may or may not be redundant w.r.t.DPIprev+k+1. So,
during the UPDATETREE function called in DYNAMICHS for DPIprev+k+1, there may or may not be
some call to PRUNE given some X as argument which is a witness of redundancy of node. In the latter
case, node will not be replaced or pruned during any PRUNE execution and will be reinserted into Q in
line 68. In the former case, node might be replaced, but it cannot be pruned due to the same reasoning as
given above in case (i). So, either node or some node in a transitive replaces-relation with node must be
in D× at the time line 67 is reached. This node is then added to Q in line 68.

Now, both cases (i) and (ii) identified for case (b) lead to the reinsertion of node or some node set-
equal to node into Q. Notice that this node has the same properties as node before one of the cases (i) or
(ii) emerged. That is, if PRUNE is called given a witness of redundancy of node, then a replacement node
of node is found. And, if only one replacement node of node is found, this replacement node is de-facto
non-redundant w.r.t. DPI .

If node is the same node as nd, this holds since there cannot be a witness of redundancy of nd
due to the de-facto non-redundancy of nd w.r.t. DPI and Proposition 12.7. Otherwise, this holds by
Lemma 12.10 and since node = nd and nd ∈ Qdup must hold due the de-facto non-redundancy of nd
w.r.t. DPI and Proposition 12.7. So, we call this reinserted node again node.

Furthermore, node can be neither labeled by valid nor by nonmin during the execution of DY-
NAMICHS for DPI . This holds by Lemma 12.1 and since node can be neither a diagnosis nor a non-
minimal diagnosis w.r.t.DPI due to node ⊂ D and the fact thatD is a minimal diagnosis w.r.t.DPI . As
a consequence of this and the assumption that the DYNAMICHS-call for DPI terminates due to Q = [],
case (a) must arise at some point in time for node during some execution of DYNAMICHS for some
(previous) DPI not-necessarily equal to DPI .

Case (a): In this case, by Lemma 12.2, DLABEL returns a minimal conflict set L w.r.t. DPIprev as a
label for node where L has the property that L ∩ node = ∅.

It must hold that L 6= ∅. Otherwise, by Proposition 4.2, either

• (v1) K is valid w.r.t. 〈·,B,Pprev,Nprev〉R where DPIprev = 〈K,B,Pprev,Nprev〉R or

• (v2) DPIprev is non-admissible.

12.4. ALGORITHM DETAILS AND CORRECTNESS 223

In the former case (v1), we know by Corollary 3.3 that the only (minimal) diagnosis w.r.t. DPIprev
is ∅. If DPIprev is equal to DPI , this is a contradiction to the existence of some minimal diagnosis w.r.t.
DPI , namely D, which is not the empty set. D ⊃ ∅ must hold since, by precondition, there is a node nd
such that nd ⊂ D and since ∅ ⊆ nd.

Otherwise, if DPIprev includes a proper subset of the test cases DPI includes, DPI can never be
a current DPI during any execution of DYNAMICHS during the same execution of Algorithm 5 during
which there is an execution of DYNAMICHS using DPIprev as a current DPI. This holds as there must be
at least two diagnoses in DX (which is the set Dcalc returned by DYNAMICHS for DPIprev) in line 13
of Algorithm 5 in order for DYNAMICHS to be called again with an extended DPI. For, in case there is
only one diagnosis, i.e. ∅, then the probability of this diagnosis is 1 which is greater or equal 1 − σ for
any choice of σ due to σ ≥ 0. Consequently, Algorithm 5 would return in line 14. This is a contradiction
to the assumption that there is an execution of DYNAMICHS using DPI as a current DPI.

In the latter case (v2), we can infer by Corollary 7.3, which states that adding queries as test cases to
an admissible DPI can never yield a non-admissible DPI, that the DPI given as an input to Algorithm 5
must be non-admissible, contradiction.

Thence,L 6= ∅ and DYNAMICHS will execute lines 17-23 and generate one node nodee := ADD(node,
e) with nodee.cs := ADD(node.cs, L) for each e ∈ L (cf. Definition 12.2 for an explanation of the func-
tion ADD).

Now, we have that there must be some non-empty active sublabel of L = nodee.cs[r] w.r.t. DPI
where r := |nodee| by Definition 12.6. This holds by the following argumentation:

The first observation is that nodee.cs[r] cannot be reduced twice during one and the same execution
of DYNAMICHS using one and the same DPI DPIprev+j which results from DPIprev by addition of test
cases. For, by Corollaries 12.1 and 12.2 and Lemmata 12.6 and 12.7, PRUNE as well as PRUNEQDUP
can only be called given some minimal conflict set X w.r.t. DPIprev+j . By Lemmata 12.10 and 12.8,
all nodes ndx that are in the set returned by PRUNE and PRUNEQDUP, respectively, have the property
that there are no proper supersets of X in ndx.cs. Moreover, there are no proper subsets of X in ndx.cs.
Because each ndx.cs[m] for m ∈ {1, . . . , |ndx.cs|} must be a minimal conflict set w.r.t. some DPI equal
to DPIprev+j or including a subset of the test cases in DPIprev+j . Otherwise, ndx could not be a node
during the execution of DYNAMICHS where DPIprev+j is the current DPI. By Proposition 12.1, there
cannot be any m ∈ {1, . . . , |ndx.cs|} such that ndx.cs[m] ⊂ X as X is a minimal conflict set w.r.t.
DPIprev+j . As two minimal conflict sets w.r.t. DPIprev+j can never be in a proper subset-relationship
with one another, L = nodee.cs[r] can be modified at most once by PRUNE or PRUNEQDUP for the DPI
DPIprev+j .

Second, by Proposition 12.1, each minimal conflict set w.r.t. DPIprev is a conflict set w.r.t. any DPI
DPIprev+j that results from DPIprev by addition of test cases, that is, in particular, w.r.t. DPI . So,
there must be some minimal conflict set Cj w.r.t. each DPIprev+j such that Cj ⊆ L and there cannot be
any minimal conflict set w.r.t. DPIprev+j that is a proper superset of L.

Third, we have that L 6= ∅, L is a minimal conflict set w.r.t. DPIprev , and DPIprev+j includes
a superset of the test cases in DPIprev . Thus, by Proposition 12.2, each minimal conflict set w.r.t.
DPIprev+j must be non-empty. In particular, this implies that all minimal conflict sets w.r.t. DPI that
are subsets of L must be non-empty.

By these three observations, the criteria of Definition 12.6 can be applied to analyze the active subnode
of nodee.cs[r] w.r.t. DPI . That is, if C1, . . . , Cn is the (arbitrary actual) chronological sequence of all
sets X given as an argument to PRUNE and PRUNEQDUP during all executions of DYNAMICHS from the
one with current DPI DPIprev up to and including the one with current DPI DPI where

• nodee.cs[r] ⊃ C1,

• each Ci is a minimal conflict set w.r.t. DPIi for i ∈ {1, . . . , n}

• Ck ⊃ Ck+1 for k ∈ {1, . . . , n− 1},

224 CHAPTER 12. DYNAMIC DIAGNOSIS COMPUTATION ALGORITHM

• DPIj includes a proper subset of the test cases DPIj+1 includes for j ∈ {1, . . . , n− 1},

• DPIn is equal to DPI or includes a proper subset of the test cases DPI includes and

• DPIprev includes a proper subset of the test cases DPI1 includes,

then Cn is the active sublabel of nodee.cs[r] w.r.t. DPI . However, as argued before, the minimal conflict
set Cn w.r.t. DPIn cannot be the empty set. As a consequence, we obtain that there must be a non-empty
active sublabel of nodee.cs[r] w.r.t. DPI .

By Propositions 12.1 and 12.2, there is a non-empty minimal conflict set C′ w.r.t. DPI such that
C′ ⊆ Cn. Due to Cn ⊂ · · · ⊂ C1 ⊂ nodee.cs[r] = L we conclude that Cn ⊂ L. Therefore, ∅ ⊂ C′ ⊂ L
holds.

By Proposition 4.6, each minimal diagnosis w.r.t. DPI is a minimal hitting set of all minimal conflict
sets w.r.t. DPI . Thence, we have that C′ ∩ D 6= ∅. So, by C′ ⊂ L, we have that ∅ ⊂ C′ ∩ D ⊆
L ∩ D ⊆ L. Consequently, we define ndsuc := nodex = ADD(node, x) with ndsuc.cs := nodex.cs =
ADD(node.cs, L) for some x ∈ C′ ∩ D ⊆ L. Then, ndsuc ⊆ D because node ⊂ D and x ∈ D. It is clear
from the inference so far that nd ⊂ ndsuc, |ndsuc| = |nd| + 1 and ndsuc ∈ GenNodes. This shows the
truth of propositions (1)-(3).

Proposition (4) must hold by lines 20-23.
Now we argue why propositions (5) and (6) must hold. Assume that nd′suc ∈ Q is redundant w.r.t.

some DPI DPI ′′prev which is equal to DPI or includes a subset of the test cases in DPI . Then, there
must be some minimal conflict set C′′ w.r.t.DPI ′′prev which is a witness of redundancy of nd′suc. Suppose
that PRUNE is called given X := C′′ as an argument.

Now, we have to distinguish two cases: Either

• (q1) ndsuc was added to Q after it was generated or

• (q2) ndsuc was added to Qdup after it was generated

(there are no other possibilities, see lines 17-23).
For each of these two cases, there are two more cases to discriminate between:

• (c1) C′′ ⊂ nd′suc.cs[|nd
′
suc|] and nd′suc[|nd

′
suc|] ∈ nd′suc.cs[|nd

′
suc|] \ C′′ or

• (c2) C′′ ⊂ nd′suc.cs[j] and nd′suc[j] ∈ nd′suc.cs[j] \ C′′ for some j ∈
{

1, . . . , |nd′suc| − 1
}

.

Case (q1): Here, we have that nd′suc is the same node as ndsuc since ndsuc was added to Q after
generation and no node replacement can have taken place because nd′suc is defined as the node set-
equal to ndsuc that is an element of Q immediately after ndsuc has been generated. And, only one node
corresponding to one and the same set can be in Q at the same time.

Case (c1): We have that C′′ must be equal to some minimal conflict set Cj in the sequence C1, . . . , Cn.
This must be truesince, first, DPI ′′prev is equal to DPI or includes a subset of the test cases in DPI and
DPIprev includes a proper subset of the test cases in DPI ′′prev .

To understand why the latter must hold, recall that DPIprev is the DPI of the call to DYNAMICHS
where ndsuc was generated and the minimal conflict set L was computed. By assumption, however, there
is some minimal conflict set w.r.t. DPI ′′prev , namely C′′, such that C′′ ⊂ nd′suc.cs[|nd

′
suc|] = L. Hence, it

cannot be truethat both L and C′′ are minimal conflict sets w.r.t. the same DPI. Otherwise, we would have
a contradiction to the minimality of L. By Proposition 12.1, which states that minimal conflict sets cannot
grow by the addition of new test cases to the DPI, we obtain the claimed fact that DPIprev includes a
proper subset of the test cases in DPI ′′prev .

12.4. ALGORITHM DETAILS AND CORRECTNESS 225

Second, the sequence C1, . . . , Cn comprises all setsX given as an argument to PRUNE and PRUNEQDUP
during all executions of DYNAMICHS from the one with current DPI DPIprev up to and including the
one with current DPI DPI where nd′suc.cs[|nd

′
suc|] ⊃ C1 ⊃ · · · ⊃ Cn holds. Reason for this to be valid

is the fact that nd′suc is the same node as ndsuc in the currently considered case (q1).
Now, recall that C′ is a minimal conflict set w.r.t. DPI such that x ∈ C′ ∩ D ⊂ L. Further, by

nd′suc = nodex, we have that nd′suc[|nd
′
suc|] = x. Due to C′ ⊆ Cn and Cn ⊆ Cj , we have that C′ ⊆ Cj .

Therefore, we can infer by C′′ = Cj that C′ ⊆ C′′ is true . Now, x ∈ C′ implies that x ∈ C′′ wherefore
x /∈ nd′suc.cs[|nd

′
suc|] \ C′′. By x = nd′suc[|nd

′
suc|], this is a contradiction to the assumption of case (c1).

Hence, case (c2) must arise.

Case (c2): We have that nd′suc[1..|nd
′
suc| − 1] is the same node as node since nd′suc = nodex. Then,

there are two cases: Either

• (s1) node is the same node as nd or

• (s2) node is not the same node as nd.

Case (s1): If node is the same node as nd, then node is de-facto non-redundant w.r.t. DPI since nd is
de-facto non-redundant w.r.t. DPI by precondition. Moreover, x is an element of the active sublabel of
nd′suc[|nd

′
suc|] w.r.t. DPI , as specified before. Thus, by Definition 12.7, nd′suc is de-facto non-redundant

w.r.t. DPI . Hence, PRUNE cannot be given an argument C′′ which is a witness of redundancy of nd′suc
where C′′ is a minimal conflict set w.r.t. DPI ′′prev . This holds due to

• the fact that DPI ′′prev comprises a (not necessarily proper) subset of the test cases in DPI ,

• Proposition 12.7 which states that a de-facto non-redundant node w.r.t. DPI cannot be pruned or
replaced during any execution of DYNAMICHS with a current DPI that includes a (not necessarily
proper) subset of the test cases in DPI and

• Lemma 12.10 which says that nd′suc would be replaced or pruned in case that PRUNE is called given
a witness of redundancy of nd′suc.

So, we have derived a contradiction to the assumption that PRUNE is called given a minimal conflict set
X := C′′ w.r.t. DPI ′′prev which is a witness of redundancy of nd′suc. Hence, case (s2) must be true .

Case (s2): If node is not the same node as nd, then node may or may not be de-facto non-redundant
w.r.t. DPI . In the former case, the same argumentation as in case (s1) applies and yields a contradiction.
In the latter case, we know that C′′ ⊂ nd′suc.cs[j] as well as nd′suc[j] ∈ nd′suc.cs[j] \ C′′ must be truefor
some j ∈

{
1, . . . , |nd′suc| − 1

}
. So, by Lemma 12.10, nd′suc is not an element of the returned list Q′ of

the call to PRUNE given the arguments Q (which includes nd′suc), X := C′′ and Qdup.
However, at least one replacement node of nd′suc must be found by PRUNE. This must hold by the

following reasoning:
First, nd ∈ Qdup must hold at the time this call to PRUNE is made. This is satisfied since

• the entire (current) list Qdup is browsed for an alternative subnode of nd′suc,

• nd ∈ Qdup holds at some point in time during the execution of DYNAMICHS with the current
DPI DPIprev due to the fact that node is not the same node as nd and the argumentation at the
beginning of this proof,

• DPIprev includes a subset of the test cases in DPI ′′prev ,

226 CHAPTER 12. DYNAMIC DIAGNOSIS COMPUTATION ALGORITHM

• DPI ′′prev includes a subset of the test cases in DPI ,

• Proposition 12.7 states that a de-facto non-redundant node w.r.t.DPI cannot be pruned or replaced
during the execution of DYNAMICHS with a current DPI that includes a subset of the test cases in
DPI ,

• nodes can only be deleted from Qdup by being pruned and

• nd is de-facto non-redundant w.r.t. DPI .

Second, by line 21 and PRUNEQDUP, which are the only places in DYNAMICHS where Qdup is
modified, Qdup is sorted in ascending order by node cardinality at any time during the execution of any
call to DYNAMICHS.

Third, in order to construct a replacement node of nd′suc, PRUNE first determines the maximal k such
that C′′ ⊂ nd′suc.cs[k] and nd′suc[k] ∈ nd′suc.cs[k] \ C′′. As case (c1) was proven to be false, we conclude
that k ≤ |nd′suc| − 1 must hold. Then, in line 96, an alternative subnode of nd′suc

• which has cardinality k + z where z ≥ 0 is minimal and

• from which a replacement node of nd′suc can be constructed

is searched for in Qdup. To see this, observe that elements in Qdup – which is sorted in ascending order
of node cardinality, as argued – are visited in order starting from the lowest cardinality node (line 96).

Fourth, nd ∈ Qdup is an alternative equal node of node. Since nd′suc = nodex, we have that nd is an
alternative subnode of nd′suc such that k ≤ |nd′suc| − 1 = |nd|.

Thus, we have that one replacement node of nd′suc is definitely found by PRUNE. And, in case there
is only one replacement node of nd′suc constructable during PRUNE, then this replacement node is given
by nd′suc,new := ADD(nd, x) with nd′suc,new.cs := ADD(nd.cs, L). By the de-facto non-redundancy
of nd and since x is specified as an element of the active sublabel of nd′suc.cs[|nd

′
suc|] w.r.t. DPI (see

above), we obtain by Definition 12.7 that nd′suc,new is a de-facto non-redundant node w.r.t.DPI . Thence,
proposition (5) is true .

Due to |nd| = |node| = |nd′suc| − 1, the alternative subnode of nd′suc actually found by PRUNE
cannot have a cardinality greater than |nd′suc| − 1. So, let ndalt be the found alternative subnode of
nd′suc. Since |ndalt| ≤ |nd′suc|−1, we obtain that the replacement node nd′suc,new,1 of nd′suc constructed
from ndalt must meet nd′suc,new,1[|nd′suc|] = nd′suc[|nd

′
suc|] = x as well as nd′suc,new,1.cs[|nd

′
suc|] =

nd′suc.cs[|nd
′
suc|] = L. That is, the first |nd| = |node| = |nd′suc| − 1 positions of nd′suc,new,1 as a set

correspond to a node in a transitive replaces-relation with nd.
Therefore, the same line of argument as used for nd′suc can be applied to any node nd′suc,rep in a

transitive replaces-relation with nd′suc. That is, the following must be valid for any node nd′suc,rep in a
transitive replaces-relation with nd′suc:

• nd′suc,rep[|nd′suc|] = x and nd′suc,rep.cs[|nd
′
suc|] = L.

• If PRUNE is called given a witness of redundancy of nd′suc,rep, then some replacement node of
nd′suc,rep is found. And, if only one replacement node of nd′suc,rep is constructable, then this
replacement node is de-facto non-redundant w.r.t. DPI .

After once a replacement node of nd′suc or of some node in a transitive replaces-relation with nd′suc is
found which is de-facto non-redundant w.r.t. DPI , this replacement node cannot be replaced or pruned
by Proposition 12.7. Therefore, by Lemma 12.10, no witness of redundancy of this replacement node
can exist w.r.t. any DPI including a (not necessarily proper) subset of the test cases in DPI . Thence,
proposition (6) is true .

12.4. ALGORITHM DETAILS AND CORRECTNESS 227

Case (q2): Here, we have that nd′suc is not the same node as ndsuc. This must be valid as nd′suc is
defined as the node set-equal to ndsuc that is an element of Q immediately after ndsuc was generated and
ndsuc is assumed to be added to Qdup after being generated.

Now, independently of whether (c1) or (c2) occurs, the following holds: If PRUNE is called given
a witness of redundancy C′′ of nd′suc w.r.t. DPI ′′prev , then a replacement node of nd′suc is found. And,
if only one replacement node of nd′suc is constructable, then this replacement node is de-facto non-
redundant w.r.t. DPI .

To understand why this must hold, first recall that ndsuc is a successor of node, i.e. ndsuc[1..|ndsuc|−
1] is the same node as node. Furthermore, node is the node set-equal to nd that is processed. That is, node
is either the same node as nd or it is in a transitive replaces-relation with nd. Then, the same two cases (s1)
and (s2) can be distinguished as in case (q1)(c2) where (s1) leads to a contradiction. So, case (s2) must
be true . That is, node is not the same node as nd. Hence, by the argumentation in case (q1)(c2)(s2),
nd ∈ Qdup must hold during the execution of any call to DYNAMICHS with a current DPI that comprises
a (not necessarily proper) superset of the test cases in DPIprev – which is the current DPI at the time nd
is generated – and a (not necessarily proper) subset of the test cases in DPI . In particular, this implies
that nd ∈ Qdup at the time PRUNE is called given the witness of redundancy C′′ of nd′suc w.r.t. DPI ′′prev
as an argument.

By assumption, ndsuc has been added to Qdup after being generated. Now, suppose PRUNEQDUP is
called given a witness of redundancy C′ of ndsuc ∈ Qdup w.r.t. some DPIDPI ′prev as an argument. Then
DPI ′prev must comprise a (not necessarily proper) superset of the test cases in DPIprev . This can be
concluded from Lemma 12.12 which implies that ndsuc cannot have been generated during an execution
of DYNAMICHS with a current DPI including a proper subset of the test cases in DPIprev . Hence, the
argumentation before implicates that nd ∈ Qdup at the time PRUNEQDUP is called given the witness of
redundancy C′ of ndsuc w.r.t. DPI ′prev as an argument.

Thus, ndsuc cannot be pruned on account of Lemma 12.8 which says that a node can only be pruned
from Qdup if the set Combndsuc

(Qdup) of combined equal nodes of ndsuc of Qdup (cf. Definition 12.5)
is the empty set.

However, Combndsuc
(Qdup) 6= ∅ must be valid. Because we demonstrated that

• nd ∈ Qdup,

• ndsuc ∈ Qdup,

• ndsuc is the same node as nodex = ADD(node, x) with ndsuc.cs being equal to nodex.cs =
ADD(node.cs, L),

• nd = node and

• x is specified as an element of the active sublabel of ndsuc.cs[|ndsuc|] w.r.t. DPI (see above)
wherefore x /∈ ndsuc.cs[|ndsuc|] \ C′.

Therefore,

ndcomb := ADD(nd, ndsuc[|nd|+ 1..|ndsuc|]) = ADD(nd, x)

ndcomb.cs := ADD(nd.cs, ndsuc.cs[|nd|+ 1..|ndsuc|]) = ADD(nd.cs, L)

is a combined equal node of ndsuc of Qdup, i.e. ndcomb ∈ Combndsuc(Qdup). The node ndcomb is de-
facto non-redundant w.r.t. DPI as nd is de-facto non-redundant w.r.t. DPI and since x is an element of
the active sublabel of ndsuc.cs[|ndsuc|] w.r.t. DPI .

By Definition 12.5, any combined equal node of ndsuc must share the element at the |ndsuc|-th posi-
tion with ndsuc and ndsuc.cs, respectively. Hence, the first |ndsuc|−1 elements of a combined equal node

228 CHAPTER 12. DYNAMIC DIAGNOSIS COMPUTATION ALGORITHM

of ndsuc are set-equal to the first |ndsuc| − 1 elements of ndsuc. So, there exists a combined equal node,
namely ndcomb, of any (redundant) node that results from ndsuc by a set of combined replacements.

By Lemma 12.11, the fact that ndcomb ∈ Combndsuc
(Qdup) ⊆ Comb(Qdup) at some point in time

during the execution of DYNAMICHS with current DPI DPI ′prev and the de-facto non-redundancy of
ndcomb w.r.t. DPI , we conclude that, during any execution of DYNAMICHS with a current DPI that
includes a (not necessarily proper) superset of the test cases in DPI ′prev and includes a (not necessarily
proper) subset of the test cases in DPI , ndcomb ∈ Comb(Qdup) must hold. Because DPI ′prev is an
arbitrary DPI that comprises a (not necessarily proper) superset of the test cases in DPIprev , we derive
that ndcomb ∈ Comb(Qdup) must be trueparticularly during the execution of DYNAMICHS with the
current DPI DPI ′′prev .

If C′′ is a witness of redundancy of ndsuc ∈ Qdup, then the updated list Qdup returned by PRUNEQDUP
must include a combined replacement node of ndsuc, either ndcomb or some other node. Otherwise, i.e.
if C′′ is not a witness of redundancy of ndsuc ∈ Qdup, the updated list Qdup returned by PRUNEQDUP
must include ndsuc.

PRUNE is always called immediately after PRUNEQDUP and thus uses the updated list Qdup which
comprises a node set-equal to ndsuc and thus set-equal to nd′suc. Consequently, we have that one replace-
ment node of nd′suc is definitely found by PRUNE. And, in case there is only one replacement node of
nd′suc constructable during PRUNE, this replacement node is given by ndcomb. Thence, proposition (5) is
true .

Independently of which replacement node of nd′suc is actually found by PRUNE, a set-equality be-
tween this replacement node and ndcomb will hold. This is truesince ndcomb = nd′suc and since each
replacement node, by definition, is set-equal to the node it replaces. Consequently, this set-equality holds
for any node in a transitive replaces-relation with nd′suc. So, we have that one replacement node of any
node nd′suc,rep in a transitive replaces-relation with nd′suc is definitely found by PRUNE. And, in case
there is only one replacement node of nd′suc,rep constructable during PRUNE, this replacement node is
given by ndcomb which is de-facto non-redundant w.r.t. DPI .

That ndcomb, after it has been used as a replacement node of nd′suc or of some node in a transitive
replaces-relation with nd′suc, cannot be pruned or replaced, follows from Proposition 12.7 and the fact
that ndcomb is de-facto non-redundant w.r.t.DPI . Therefore, by Lemma 12.10, no witness of redundancy
of ndcomb can exist w.r.t. any DPI including a (not necessarily proper) subset of the test cases in DPI .
Thence, proposition (6) is true .

The next result, Lemma 12.14, assumes an arbitrary fixed “current” DPIDPI such that DYNAMICHS
with this “current” DPIDPI returns due to Q = []. Further on, it assumes an arbitrary minimal diagnosis
D w.r.t. DPI and a node nd which is a proper subset of D such that nd is an element of Q anytime
throughout all executions of DYNAMICHS during the execution of Algorithm 5 up to the one with the
current DPI DPI . Additionally, nd cannot be pruned. It might be replaced; and in case there is only
one potential replacement node of nd constructable from (the combined nodes of) Qdup, this replacement
node is de-facto non-redundant w.r.t. DPI . Any node nd′ in a transitive replaces relation with nd cannot
be pruned either. It might again be replaced. In case there is only one potential replacement node of nd′

constructable from (the combined nodes of) Qdup, this replacement node is de-facto non-redundant w.r.t.
DPI .

Given these preconditions, the lemma establishes the existence of a node ndsuc that corresponds to a
superset of nd and to a subset of D, includes one element more than the set nd and is generated anytime
throughout all executions of DYNAMICHS during the execution of Algorithm 5 up to the one with the
current DPI DPI . Moreover, it states that the node nd′suc set-equal to this generated node that is an
element of Q cannot be pruned. However, it might be replaced. In case there is only one potential
replacement node of nd′suc constructable from (the combined nodes of) Qdup, this replacement node
is de-facto non-redundant w.r.t. DPI . Any node nd′suc,rep in a transitive replaces relation with nd′suc

12.4. ALGORITHM DETAILS AND CORRECTNESS 229

cannot be pruned either. It might again be replaced. In case there is only one potential replacement
node of nd′suc,rep constructable from (the combined nodes of) Qdup, this replacement node is de-facto
non-redundant w.r.t. DPI .

Pictured, with respect to the hitting set tree constructed by DYNAMICHS, this lemma purports the
following: Let the hitting set tree produced by DYNAMICHS be completely constructed for an arbitrary
DPI DPI . In case there is any tree branch whose edge labels correspond to a part of the minimal
diagnosisD w.r.t. DPI and which is known to be definitely not pruned during this tree construction, then
this branch must be extended by one edge labeled by an element of D and this extended path is known to
be definitely not pruned during this tree construction.

Lemma 12.14. Assume the execution of DYNAMICHS with the current DPI DPI and assume that the
execution stops due to Q = []. Let

• GenNodes be the set of all nodes generated throughout the execution of all calls to DYNAMICHS
during the execution of Algorithm 5,

• D be some minimal diagnosis w.r.t. DPI ,

• DPI ′prev be a DPI which is either equal to DPI or includes fewer test cases than DPI and which
is the current DPI during any particular call to DYNAMICHS,

• nd be some node such that the following holds:

– nd ⊂ D.

– There is some execution of DYNAMICHS with current DPI DPI ′prev during which it holds at
some point in time that nd ∈ Q.

– If PRUNE is called given a witness of redundancy of nd, then some replacement node of nd
is found. If only one replacement node of nd is found, then this replacement node is de-facto
non-redundant w.r.t. DPI .

– Let nd′ be in a transitive replaces-relation with nd. If PRUNE is called given a witness of
redundancy of nd′, then some replacement node of nd′ is found. If only one replacement node
of nd′ is found, then this replacement node is de-facto non-redundant w.r.t. DPI .

Then there are nodes ndsuc and nd′suc such that the following holds:

(1) nd ⊂ ndsuc ⊆ D.

(2) |ndsuc| = |nd|+ 1.

(3) ndsuc ∈ GenNodes.

(4) nd′suc = ndsuc is an element of Q immediately after ndsuc has been generated.

(5) If PRUNE is called given a witness of redundancy of nd′suc, then some replacement node of nd′suc
is found. If only one replacement node of nd′suc is found, then this replacement node is de-facto
non-redundant w.r.t. DPI .

(6) Let nd′suc,rep be in a transitive replaces-relation with nd′suc. If PRUNE is called given a witness of
redundancy of nd′suc,rep, then some replacement node of nd′suc,rep is found. If only one replacement
node of nd′suc,rep is found, then this replacement node is de-facto non-redundant w.r.t. DPI .

230 CHAPTER 12. DYNAMIC DIAGNOSIS COMPUTATION ALGORITHM

Proof. Since nd ∈ Q holds at some point in time during the execution of some call to DYNAMICHS
with current DPI DPI ′prev and since the execution of DYNAMICHS with DPI terminates due to Q = [],
we have that some node set-equal to nd must be processed. This must be satisfied because nodes can
only be deleted from Q in that they are processed or pruned, and nd cannot be pruned from Q. For, by
precondition, if PRUNE is called given a witness of redundancy of nd, then a replacement node of nd is
found. And, if only one replacement node ndrep of nd is found, ndrep is de-facto non-redundant w.r.t.
DPI .

Now, let nd1 be a replacement node of nd found by PRUNE called with some witness of redundancy
of nd. Then, by precondition, what holds for nd also holds for nd1. That is, if PRUNE is called given a
witness of redundancy of nd1, then a replacement node of nd1 is found. And, if only one replacement
node nd1,rep of nd1 is found, nd1,rep is de-facto non-redundant w.r.t. DPI .

The same holds for any ndi which is in a transitive replaces-relation with nd. So, anytime PRUNE is
called for a node set-equal to nd, at least one replacement node is found by PRUNE. And, in case ndi is
de-facto non-redundant w.r.t. DPI – which must be the case sooner or later for some node in a transitive
replaces-relation with nd, by the given preconditions – then, by Proposition 12.7, ndi cannot be pruned
or replaced.

Hence, let us denote by node the node set-equal to nd that is finally processed. Let DPIprev now be
the “current” DPI of the execution of DYNAMICHS during which node is processed. Further, we denote
the DPI of the immediate subsequent execution of DYNAMICHS by DPIprev+1, and so on.

Since node is processed, it is either

• (s) labeled by a set (DLABEL returns in line 40, 46 or 34) or

• (¬s) not labeled by a set (DLABEL returns in line 29 or 43).

Case (¬s): In this case, DLABEL returns

• (i) nonmin or

• (ii) valid.

Case (i): By Lemma 12.1, node must be a non-minimal diagnosis w.r.t. DPIprev. By line 15, node
is then added to the set D⊃. D⊃ is never modified throughout Algorithm 5 and is given as an input
argument to each subsequent call to DYNAMICHS by line 10 in Algorithm 5. During the execution of
some subsequent call to DYNAMICHS using the DPI DPIprev+i for i ≥ 1, the set D⊃ might be modified
by the PRUNE function called during UPDATETREE (line 65 and lines 70-78) or during DLABEL (line 38).

Recall that node is either the same node as nd or in a transitive replaces-relation with nd. Hence, by
the argumentation given before, we have that, if PRUNE is called given a witness of redundancy of node,
then there is a replacement node of node found by PRUNE. And, if there is only one replacement node of
node found by PRUNE, then this replacement node is de-facto non-redundant w.r.t. DPI .

Therefore, node ∈ D⊃ cannot be pruned, i.e. node considered as a set cannot be deleted from D⊃ in
line 65 or line 38. So, after any number of calls to PRUNE, we have that either node ∈ D⊃ or, otherwise,
there is some node in D⊃ which is set-equal to node and which is in a transitive replaces-relation with
node. We keep calling this (possibly replacement) node node in the following.

By Lemma 12.1, at the time node was processed, there must be some diagnosis D′ w.r.t. DPIprev
such that D′ ∈ Dcalc and node ⊃ D′. Additionally, by Lemma 12.1, the set Dcalc computed dur-
ing DYNAMICHS for some “current” DPI DPIj comprises only diagnoses w.r.t. DPIj . Now, we have
node ⊂ D since nd ⊂ D and node = nd, and D′ ⊂ node. That is, D′ ⊂ D. By the precondition that D
is a minimal diagnosis w.r.t. DPI , D′ cannot be a diagnosis w.r.t. DPI . Thus, there cannot be any such
D′ in Dcalc computed during DYNAMICHS for DPI .

12.4. ALGORITHM DETAILS AND CORRECTNESS 231

All nodes in Dcalc returned by some call to DYNAMICHS using DPI DPI1 that are no diagnoses
w.r.t. DPI2, the extension of DPI1 by a new query added as a positive or negative test case, are added to
the set D× (and not to DX) in line 22 of Algorithm 5 and are thus no elements of the set DX given as an
argument to DYNAMICHS at the next call to DYNAMICHS. The elements of DX given as an argument to
DYNAMICHS at the next call to DYNAMICHS using DPI2 are definitely added to Q again in lines 79-80
as DX is not modified elsewhere in DYNAMICHS before lines 79-80 are reached.

Therefore, we need to differentiate between two cases: Either

• (x1) D′ ∈ D× never holds for the input argument D× to any call to DYNAMICHS or

• (x2) D′ ∈ D× holds at least once for the input argument D× to some call to DYNAMICHS.

Case (x1): Since D′ ∈ Dcalc holds after the execution of DYNAMICHS using DPIprev stops, we
have that D′ ∈ DX must hold for the argument DX given to DYNAMICHS using DPIprev+1. After
UPDATETREE returns during DYNAMICHS using DPIprev+1, D′ ∈ Q holds as argued. Subsequently,
D′ might be added again to Dcalc and then to DX again in line 21 of Algorithm 5 and to Q again in
line 80 during DYNAMICHS using DPIprev+2, and so forth. But, when a test case is added to some
DPI DPIprev+i in Algorithm 5 that invalidates the diagnosis D′ (yielding the DPI DPIprev+i+1), D′ /∈
Dcalc is assumed to hold (otherwise it would be an element of D× against our assumption). Such a
test case must be added sometime as argued above. By Proposition 12.3, D′ cannot be a (minimal)
diagnosis w.r.t. any DPI including more test cases than DPIprev+i+1 either. Notice that the case D′ /∈
Dcalc can emerge in spite of the fact that D′ is a minimal diagnosis w.r.t. DPIprev+i because there may
be minimal diagnoses w.r.t. DPIprev+i that have a higher probability than D′. For DPIprev+i+1 and
all DPIs including more test cases than DPIprev+i+1, D′ cannot be added to Dcalc anymore due to
Lemma 12.1 which claims that only diagnoses w.r.t. the currently used DPI can be added to Dcalc.

Case (x2): Here, D′ ∈ D× holds at least once for the input argument D× to some call to DYNAMICHS
using the DPI DPIprev+i. Then, DYNAMICHS using the DPI DPIprev+i−1 must have returned a set
Dcalc including D′ as otherwise D′ cannot be added to D×. Hence, D′ must be a diagnosis w.r.t.
DPIprev+i−1 by Lemma 12.1. Since D′ is added to D×, it cannot be a diagnosis w.r.t. DPIprev+i.
This must hold

• by Remark 7.4,

• since the set added to D× in Algorithm 5 is exactly the set Dout returned by GETINVALIDDIAGS
in line 19 of Algorithm 5 and

• Dout = D+(Q) in case the user answer u(Q) to the query Q w.r.t. Dcalc and DPIprev+i−1 is
false and Dout = D−(Q) otherwise (notice that Dcalc is referred to as DX in Algorithm 5).

So, by Proposition 12.3, D′ cannot be a (minimal) diagnosis w.r.t. any DPI including more test cases than
DPIprev+i either.

Each element in D× is processed by the UPDATETREE function (lines 48-69) called for the DPI
DPIprev+i. In lines 48-69, each node ndx in D× can only be pruned or either ndx or a node in a
transitive replaces-relation with ndx is added to Q in line 68. Dcalc is not modified by UPDATETREE and
Dcalc = ∅ holds at the beginning of the execution of each call to DYNAMICHS. (A node set-equal to) D′
cannot ever be readded to Dcalc by Lemma 12.1 and since D′ is not a diagnosis w.r.t any DPI including
more test cases than DPIprev+i. Hence, D′ ∈ Dcalc can never hold for any DPI including more test
cases than DPIprev+i.

Hence, there must be some DPI DPIprev+k such that DX given as input to the DYNAMICHS-call
for DPIprev+k does not include any diagnosis D′ ⊂ node. So, during the execution of the call to

232 CHAPTER 12. DYNAMIC DIAGNOSIS COMPUTATION ALGORITHM

DYNAMICHS using DPIDPIprev+k, node must be deleted from D⊃ and be reinserted into Q by lines 70-
78 in UPDATETREE which is called at the beginning of the execution of DYNAMICHS at any call to
DYNAMICHS. This must hold since all nodes ndx in D⊃ that have not yet been pruned and for which
there is no diagnosis in DX which is a proper subset of ndx, are added to Q throughout lines 70-78.
As shown, both criteria are met for node during the execution of the call to DYNAMICHS using DPI
DPIprev+k.

Case (ii): By Lemma 12.1, we know that node is a diagnosis w.r.t. DPIprev and that node is added to
Dcalc. Since node ⊂ D and D is a minimal diagnosis w.r.t. DPI , we obtain, by the same argumentation
as in (i), that there must be some DPI DPIprev+k such that DX given as input to the DYNAMICHS-call
for DPIprev+k does not include node.

If node /∈ D×, then it cannot ever be added to Dcalc again, as argued in case (i). Otherwise, during the
execution of UPDATETREE which is called at the beginning of the execution of each call to DYNAMICHS,
D× is modified in lines 48-69.

Now, we differentiate between two cases, namely node is either

• (¬r) non-redundant w.r.t. DPI or

• (r) redundant w.r.t. DPI .

Case (¬r): Due to the non-redundancy of node w.r.t. DPI , Lemma 12.4, Lemma 12.10 and Corol-
lary 12.1, node cannot be replaced or pruned throughout lines 48-66. Thus, node is reinserted into Q in
line 68.

Case (r): Since node is redundant w.r.t. DPI , it may or may not be redundant w.r.t.DPIprev+k+1. So,
during the UPDATETREE function called in DYNAMICHS for DPIprev+k+1, there may or may not be
some call to PRUNE given some X as argument which is a witness of redundancy of node. In the latter
case, node will not be replaced or pruned during any PRUNE execution and will be reinserted into Q in
line 68. In the former case, node might be replaced, but it cannot be pruned due to the same reasoning as
given in the second paragraph of case (i). So, either node or some node in a transitive replaces-relation
with node must be in D× at the time line 67 is reached. This node is then added to Q in line 68.

Now, both cases (i) and (ii) identified for case (¬s) lead to the reinsertion of node or some node in
a transitive replaces-relation with node – which is thus set-equal to nd – into Q. Notice that this node
has the same properties as node before one of the cases (i) or (ii) emerged (by analogue reasoning as
conducted above). That is, if PRUNE is called given a witness of redundancy of node, then a replacement
node of node is found. And, if only one replacement node of node is found, this replacement node is
de-facto non-redundant w.r.t. DPI . So, we call this reinserted node again node.

Furthermore, node can be neither labeled by valid nor by nonmin during the execution of DY-
NAMICHS for DPI . This holds by Lemma 12.1 and since node can be neither a diagnosis nor a non-
minimal diagnosis w.r.t.DPI due to node ⊂ D and the fact thatD is a minimal diagnosis w.r.t.DPI . As
a consequence of this and the assumption that the DYNAMICHS-call for DPI terminates due to Q = [],
case (s) must arise at some point in time for node during some execution of DYNAMICHS for some
(previous) DPI not-necessarily equal to DPI .

Case (s): In this case, by Lemma 12.2, DLABEL returns a minimal conflict set L w.r.t. DPIprev as a
label for node where L has the property that L ∩ node = ∅.

It must hold that L 6= ∅. Otherwise, by Proposition 4.2, either

• (v1) K is valid w.r.t. 〈·,B,Pprev,Nprev〉R where DPIprev = 〈K,B,Pprev,Nprev〉R or

12.4. ALGORITHM DETAILS AND CORRECTNESS 233

• (v2) DPIprev is non-admissible.

In the former case (v1), we know by Corollary 3.3 that the only (minimal) diagnosis w.r.t. DPIprev
is ∅. If DPIprev is equal to DPI , this is a contradiction to the existence of some minimal diagnosis w.r.t.
DPI , namely D, which is not the empty set. D ⊃ ∅ must hold since, by precondition, there is a node nd
such that nd ⊂ D and since ∅ ⊆ nd.

Otherwise, if DPIprev includes a proper subset of the test cases DPI includes, DPI can never be
a current DPI during any execution of DYNAMICHS during the same execution of Algorithm 5 during
which there is an execution of DYNAMICHS where DPIprev is the current DPI. This holds as there must
be at least two diagnoses in DX in line 13 of Algorithm 5 in order for DYNAMICHS to be called again
with a DPI including a proper superset of the test cases inDPIprev (notice that, in Algorithm 5, the name
of the set Dcalc returned by DYNAMICHS for DPIprev is DX). For, in case there is only one diagnosis,
i.e. ∅, then the probability of this diagnosis is 1 which is greater or equal 1− σ for any choice of σ due to
σ ≥ 0. Consequently, Algorithm 5 would return in line 14. This is a contradiction to the assumption that
there is an execution of DYNAMICHS where DPI is the current DPI.

In the latter case (v2), we can infer by Corollary 7.3, which states that adding queries as test cases to
an admissible DPI can never yield a non-admissible DPI, that the DPI given as an input to Algorithm 5
must be non-admissible, contradiction.

Thence,L 6= ∅ and DYNAMICHS will execute lines 17-23 and generate one node nodee := ADD(node,
e) with nodee.cs := ADD(node.cs, L) for each e ∈ L (cf. Definition 12.2 for an explanation of the func-
tion ADD).

Now, we have that there must be some non-empty active sublabel of L = nodee.cs[r] w.r.t. DPI
where r := |nodee| by Definition 12.6. Definition 12.6 is applicable by the following argumentation:

The first observation is that nodee.cs[r] cannot be reduced twice during one and the same execution
of DYNAMICHS using one and the same DPI DPIprev+j which results from DPIprev by addition of test
cases. For, by Corollaries 12.1 and 12.2 and Lemmata 12.6 and 12.7, PRUNE as well as PRUNEQDUP
can only be called given some minimal conflict set X w.r.t. DPIprev+j . By Lemmata 12.10 and 12.8,
all nodes ndx that are in the set returned by PRUNE and PRUNEQDUP, respectively, have the property
that there are no proper supersets of X in ndx.cs. Moreover, there are no proper subsets of X in ndx.cs.
Because each ndx.cs[m] for m ∈ {1, . . . , |ndx.cs|} must be a minimal conflict set w.r.t. some DPI equal
to DPIprev+j or including a subset of the test cases in DPIprev+j . Otherwise, ndx could not be a node
during the execution of DYNAMICHS where DPIprev+j is the current DPI. By Proposition 12.1, there
cannot be any m ∈ {1, . . . , |ndx.cs|} such that ndx.cs[m] ⊂ X as X is a minimal conflict set w.r.t.
DPIprev+j . As two minimal conflict sets w.r.t. DPIprev+j can never be in a proper subset-relationship
with one another, L = nodee.cs[r] can be modified at most once by PRUNE or PRUNEQDUP for the DPI
DPIprev+j .

Second, by Proposition 12.1, each minimal conflict set w.r.t. DPIprev is a conflict set w.r.t. any DPI
DPIprev+j that results from DPIprev by addition of test cases; that is, in particular, w.r.t. DPI . So,
there must be some minimal conflict set Cj w.r.t. each DPIprev+j such that Cj ⊆ L and there cannot be
any minimal conflict set w.r.t. DPIprev+j that is a proper superset of L.

Third, we have that L 6= ∅, L is a minimal conflict set w.r.t. DPIprev , and DPIprev+j includes
a superset of the test cases in DPIprev . Thus, by Proposition 12.2, each minimal conflict set w.r.t.
DPIprev+j must be non-empty. In particular, Proposition 12.2 implies that all minimal conflict sets w.r.t.
DPI that are subsets of L must be non-empty.

By these three observations, the criteria of Definition 12.6 can be applied to analyze the active subnode
of nodee.cs[r] w.r.t. DPI . That is, if C1, . . . , Cn is the (arbitrary actual) chronological sequence of all
sets X given as an argument to PRUNE and PRUNEQDUP during all executions of DYNAMICHS from the
one with current DPI DPIprev up to and including the one with current DPI DPI where

• nodee.cs[r] ⊃ C1,

234 CHAPTER 12. DYNAMIC DIAGNOSIS COMPUTATION ALGORITHM

• each Ci is a minimal conflict set w.r.t. DPIi for i ∈ {1, . . . , n}

• Ck ⊃ Ck+1 for k ∈ {1, . . . , n− 1},

• DPIj includes a proper subset of the test cases DPIj+1 includes for j ∈ {1, . . . , n− 1},

• DPIn is equal to DPI or includes a proper subset of the test cases DPI includes and

• DPIprev includes a proper subset of the test cases DPI1 includes,

then Cn is the active sublabel of nodee.cs[r] w.r.t. DPI . However, as argued before, the minimal conflict
set Cn w.r.t. DPIn cannot be the empty set. As a consequence, we obtain that there must be a non-empty
active sublabel of nodee.cs[r] w.r.t. DPI .

By Propositions 12.1 and 12.2, there is a non-empty minimal conflict set C′ w.r.t. DPI such that
C′ ⊆ Cn. Due to Cn ⊂ · · · ⊂ C1 ⊂ nodee.cs[r] = L we conclude that Cn ⊂ L. Therefore, ∅ ⊂ C′ ⊂ L
holds.

By Proposition 4.6, each minimal diagnosis w.r.t. DPI is a minimal hitting set of all minimal conflict
sets w.r.t. DPI . Thence, we have that C′ ∩ D 6= ∅. So, by C′ ⊂ L, we have that ∅ ⊂ C′ ∩ D ⊆
L ∩ D ⊆ L. Consequently, we define ndsuc := nodex = ADD(node, x) with ndsuc.cs := nodex.cs =
ADD(node.cs, L) for some x ∈ C′ ∩ D ⊆ L. Then, ndsuc ⊆ D because node ⊂ D and x ∈ D. It is clear
from the inference so far that nd ⊂ ndsuc, |ndsuc| = |nd| + 1 and ndsuc ∈ GenNodes. This shows the
truth of propositions (1)-(3).

Proposition (4) must hold by lines 20-23.
Now we argue why propositions (5) and (6) must hold. Assume that nd′suc ∈ Q is redundant w.r.t.

some DPI DPI ′′prev which is equal to DPI or includes fewer test cases than DPI . Then, there must be
some minimal conflict set C′′ w.r.t. DPI ′′prev which is a witness of redundancy of nd′suc. Suppose that
PRUNE is called given X := C′′ as an argument.

Now, we have to distinguish two cases: Either

• (q1) ndsuc was added to Q after it was generated or

• (q2) ndsuc was added to Qdup after it was generated

(there are no other possibilities, see lines 17-23).
For each of these two cases, there are two more cases to discriminate between:

• (c1) C′′ ⊂ nd′suc.cs[|nd
′
suc|] and nd′suc[|nd

′
suc|] ∈ nd′suc.cs[|nd

′
suc|] \ C′′ or

• (c2) C′′ ⊂ nd′suc.cs[j] and nd′suc[j] ∈ nd′suc.cs[j] \ C′′ for some j ∈
{

1, . . . , |nd′suc| − 1
}

.

Case (q1): Here, we have that nd′suc is the same node as ndsuc since ndsuc was added to Q after
generation and no node replacement can have taken place because nd′suc is defined as the node set-
equal to ndsuc that is an element of Q immediately after ndsuc has been generated. And, only one node
corresponding to one and the same set can be in Q at the same time.

Case (c1): We have that C′′ must be equal to some minimal conflict set Cj in the sequence C1, . . . , Cn.
This must be truesince, first, DPI ′′prev is equal to DPI or includes a subset of the test cases in DPI and
DPIprev includes a proper subset of the test cases in DPI ′′prev .

To understand why the latter must hold, recall that DPIprev is the DPI of the call to DYNAMICHS
where ndsuc was generated and the minimal conflict set L was computed. By assumption, however, there
is some minimal conflict set w.r.t. DPI ′′prev, namely C′′, such that C′′ ⊂ nd′suc.cs[|nd

′
suc|] = L. Hence, it

cannot be truethat both L and C′′ are minimal conflict sets w.r.t. the same DPI. Otherwise, we would have

12.4. ALGORITHM DETAILS AND CORRECTNESS 235

a contradiction to the minimality of L. By Proposition 12.1, which states that minimal conflict sets cannot
grow by the addition of new test cases to the DPI, we obtain the claimed fact that DPIprev includes a
proper subset of the test cases in DPI ′′prev .

Second, the sequence C1, . . . , Cn comprises all setsX given as an argument to PRUNE and PRUNEQDUP
during all executions of DYNAMICHS from the one with current DPI DPIprev up to and including the
one with current DPI DPI where L = nd′suc.cs[|nd

′
suc|] ⊃ C1 ⊃ · · · ⊃ Cn holds. Reason for this to be

valid is the fact that nd′suc is the same node as ndsuc in the currently considered case (q1).
Now, recall C′ is a minimal conflict set w.r.t. DPI such that x ∈ C′ ∩ D ⊂ L. Further, by nd′suc =

nodex, we have that nd′suc[|nd
′
suc|] = x. Since C′ ⊆ Cn, we have that C′ ⊆ Cj must hold due to Cn ⊆ Cj .

Therefore, we can infer by C′′ = Cj that C′ ⊆ C′′ is true . Now, x ∈ C′ implies that x ∈ C′′ wherefore
x /∈ nd′suc.cs[|nd

′
suc|] \ C′′. By x = nd′suc[|nd

′
suc|], this is a contradiction to the assumption of case (c1).

Hence, case (c2) must arise.

Case (c2): We have that nd′suc[1..|nd
′
suc|−1] must be redundant w.r.t.DPI ′′prev . The subnode nd′suc[1..

|nd′suc| − 1] of nd′suc is the same node as node by nd′suc = nodex. So, suppose PRUNE is called with
arguments Q (which inlcudes nd′suc), X := C′′ and Qdup during the execution of DYNAMICHS with
current DPI DPI ′′prev .

Recall that node is the node set-equal to nd that is processed. That is, node is either the same node
as nd or it is in a transitive replaces-relation with nd. Therefore, by the preconditions of this lemma, the
following holds: If PRUNE is called given a witness of redundancy of node, then a replacement node of
node is found. And, if only one replacement node noderep of node is found, then noderep is de-facto
non-redundant w.r.t. DPI .

So, at the time PRUNE might be called given a witness of redundancy of node, Comb(Qdup) must
include a (non-necessarily proper) alternative subnode noderep,sub of node from which the de-facto non-
redundant node noderep w.r.t. DPI can be constructed as

noderep := ADD(noderep,sub, node[|noderep,sub|+ 1..|node|])
noderep.cs := ADD(noderep,sub.cs, node.cs[|noderep,sub|+ 1..|node|])

This holds due to

• Corollary 12.7, which says that each call to PRUNEQDUP returns the list Qdup, a subset of
Comb(Qdup),

• the fact that PRUNEQDUP is always called immediately before PRUNE is called and

• the fact that PRUNE searches for alternative subnodes for the construction of a replacement node of
a redundant node exactly in the output set of PRUNEQDUP.

By Definition 12.7, this is implies that noderep,sub must be de-facto non-redundant w.r.t. DPI as other-
wise the de-facto non-redundancy w.r.t. DPI could not hold for noderep.

Consequently, by Lemma 12.11, noderep,sub ∈ Comb(Qdup) must always be satisfied during any
execution of DYNAMICHS using a DPI that is equal to DPI or includes a subset of the test cases in
DPI . Hence, in particular, this must hold for the DPI DPI ′′prev .

By line 21 and PRUNEQDUP, which are the only places in DYNAMICHS where Qdup is modified,
Qdup is sorted in ascending order by node cardinality at any time during the execution of any call to
DYNAMICHS.

In order to construct a replacement node of nd′suc, PRUNE first determines the maximal k such that
C′′ ⊂ nd′suc.cs[k] and nd′suc[k] ∈ nd′suc.cs[k] \ C′′. As case (c1) was proven to be false, we conclude
that k ≤ |nd′suc| − 1 must hold. Due to the fact that nd′suc[1..|nd

′
suc| − 1] is the same node as node, as

reasoned above, and the fact that a de-facto non-redundant alternative equal node noderep (see above)

236 CHAPTER 12. DYNAMIC DIAGNOSIS COMPUTATION ALGORITHM

of node can be constructed from noderep,sub ∈ Comb(Qdup), we obtain that k ≤ |noderep,sub|. This
holds because the truth of both node.cs[m] ⊃ C′′ and node[m] ∈ node.cs[m] \ C′′ for some m ∈
{|noderep,sub|+ 1, . . . , |node|}would be a contradiction to the de-facto non-redundancy of noderep w.r.t.
DPI .

Then, in line 96, an alternative subnode of nd′suc

• which has cardinality k + z where z ≥ 0 is minimal and

• from which a replacement node of nd′suc can be constructed

is searched for in Qdup. To see this, observe that elements in Qdup – which is sorted in ascending order
of node cardinality, as argued – are visited in order starting from the lowest cardinality node (line 96).

However, there is an alternative subnode noderep,sub of node such that k ≤ |noderep,sub| ≤ |node| =
|nd′suc| − 1 and noderep,sub is an element of the argument Qdup given to PRUNE, as shown above. As
nd′suc is the same node as nodex, node is a subnode of nd′suc. Therefore, noderep,sub is an alternative
subnode of nd′suc.

Thus, we have that one replacement node of nd′suc is definitely found by PRUNE. And, in case
there is only one replacement node of nd′suc constructable during PRUNE, then this replacement node is
given by nd′suc,new := ADD(noderep,sub, nodex[|noderep,sub| + 1..|nodex|]) = ADD(noderep, x) with
nd′suc,new.cs := ADD(noderep,sub.cs, nodex.cs[|noderep,sub| + 1..|nodex|]) = ADD(noderep.cs, L). As
it is straightforward from the deductions above, nd′suc,new is de-facto non-redundant w.r.t. DPI . Thence,
proposition (5) is true .

Due to |noderep,sub| ≤ |node| = |nd′suc| − 1, the alternative subnode of nd′suc actually found by
PRUNE cannot have a cardinality greater than |nd′suc|−1. So, let ndalt be the found alternative subnode of
nd′suc. Since |ndalt| ≤ |nd′suc|−1, we obtain that the replacement node nd′suc,new,1 of nd′suc constructed
from ndalt must meet nd′suc,new,1[|nd′suc|] = nd′suc[|nd

′
suc|] = x as well as nd′suc,new,1.cs[|nd

′
suc|] =

nd′suc.cs[|nd
′
suc|] = L. That is, the first |node| = |nd′suc| − 1 positions as a set correspond to a node in a

transitive replaces-relation with nd.
Now, we have the following precondition of this lemma: Let nd′ be in a transitive replaces-relation

with nd. If PRUNE is called given a witness of redundancy of nd′, then some replacement node of nd′ is
found. If only one replacement node of nd′ is found, then this replacement node is de-facto non-redundant
w.r.t. DPI .

Therefore, the same line of argument as used for nd′suc can be applied to any node nd′suc,rep in a
transitive replaces-relation with nd′suc. That is, the following must be valid for any node nd′suc,rep in a
transitive replaces-relation with nd′suc:

• nd′suc,rep[|nd′suc|] = x and nd′suc,rep.cs[|nd
′
suc|] = L.

• If PRUNE is called given a witness of redundancy of nd′suc,rep, then some replacement node of
nd′suc,rep is found. And, if only one replacement node of nd′suc,rep is constructable, then this
replacement node is de-facto non-redundant w.r.t. DPI .

After once a replacement node of nd′suc or of some node in a transitive replaces-relation with nd′suc is
found which is de-facto non-redundant w.r.t. DPI , this replacement node cannot be replaced or pruned
by Proposition 12.7. Therefore, by Lemma 12.10, no witness of redundancy of this replacement node
can exist w.r.t. any DPI including a (not necessarily proper) subset of the test cases in DPI . Thence,
proposition (6) is true .

Case (q2): Here, we have that nd′suc is not the same node as ndsuc. This must be valid as nd′suc is
defined as the node set-equal to ndsuc that is an element of Q immediately after ndsuc was generated and
ndsuc is assumed to be added to Qdup after being generated.

12.4. ALGORITHM DETAILS AND CORRECTNESS 237

Now, independently of whether (c1) or (c2) occurs, the following holds: If PRUNE is called given a
witness of redundancy of nd′suc, then a replacement node of nd′suc is found. And, if only one replacement
node of nd′suc is constructable, then this replacement node is de-facto non-redundant w.r.t. DPI .

To understand why this must hold, first recall that ndsuc is a successor of node, i.e. ndsuc[1..|ndsuc|−
1] is the same node as node. Furthermore, node is the node set-equal to nd that is processed. That is,
node is either the same node as nd or it is in a transitive replaces-relation with nd.

Therefore, by the preconditions of this lemma, the following holds: If PRUNE is called given a witness
of redundancy of node, then a replacement node of node is found. And, if only one replacement node
noderep of node is constructable, then noderep is de-facto non-redundant w.r.t. DPI .

As argued in case (q1)(c2), Comb(Qdup) must include a subnode noderep,sub of noderep that is de-
facto non-redundant w.r.t. DPI and from which noderep is constructed. This must be satisfied during
any execution of DYNAMICHS using a DPI that is equal to DPI or includes a subset of the test cases in
DPI . Hence, in particular, this must hold for the DPI DPI ′′prev .

Since ndsuc has been added to Qdup by assumption, it might be found to be redundant w.r.t. some
DPI (either equal to DPI or including a subset of the test cases in DPI) during some execution of
PRUNEQDUP. If so, ndsuc cannot be pruned on account of Lemma 12.8 which says that a node can
only be pruned from Qdup if the set Combndsuc

(Qdup) of combined equal nodes of ndsuc of Qdup (cf.
Definition 12.5) is the empty set.

However, Combndsuc(Qdup) 6= ∅ must be valid. Because we demonstrated that

• noderep,sub ∈ Comb(Qdup),

• ndsuc ∈ Qdup,

• ndsuc is the same node as nodex = ADD(node, x) with ndsuc.cs being equal to nodex.cs =
ADD(node.cs, L) and

• x /∈ ndsuc.cs[|ndsuc|] \ C′′ (see case (q1)(c1)) wherefore C′′ must be a witness of redundancy of
node.

Therefore, ndcomb := ADD(noderep,sub, nodex[|noderep,sub| + 1..|nodex|]) = ADD(noderep, x) with
ndcomb.cs := ADD(noderep,sub.cs, nodex.cs[|noderep,sub| + 1..|nodex|]) = ADD(noderep.cs, L) is a
combined equal node of ndsuc of Qdup, i.e. ndcomb ∈ Combndsuc

(Qdup). As argued in case (q1)(c2),
this node ndcomb (denoted by nd′suc,new in case (q1)(c2)) is de-facto non-redundant w.r.t. DPI .

Because PRUNE is called immediately after PRUNEQDUP and thus uses the updated list Qdup which
comprises ndcomb and because ndcomb = ndsuc = nd′suc, we have that one replacement node of nd′suc
is definitely found by PRUNE. And, in case there is only one replacement node of nd′suc constructable
during PRUNE, this replacement node is given by ndcomb. Thence, proposition (5) is true .

By Proposition 12.7, the fact that ndcomb ∈ Combndsuc
(Qdup) ⊆ Comb(Qdup) at some point in

time during the execution of DYNAMICHS with current DPI DPI ′′prev and the de-facto non-redundancy
of ndcomb w.r.t. DPI , we conclude that, during any execution of DYNAMICHS with a current DPI that
includes a (not necessarily proper) superset of the test cases in DPI ′′prev and includes a (not necessarily
proper) subset of the test cases in DPI , ndcomb ∈ Comb(Qdup) must hold. Further on, ndcomb = nd′suc
is true .

Hence, independently of which replacement node of nd′suc is actually found by PRUNE, a set-equality
between this replacement node and ndcomb will hold. This is truesince each replacement node, by defini-
tion, is set-equal to the node it replaces. Consequently, this set-equality holds for any node in a transitive
replaces-relation with nd′suc. So, we have that one replacement node of any node nd′suc,rep in a transitive
replaces-relation with nd′suc is definitely found by PRUNE. And, in case there is only one replacement
node of nd′suc,rep constructable during PRUNE, this replacement node is given by ndcomb which is de-
facto non-redundant w.r.t. DPI .

238 CHAPTER 12. DYNAMIC DIAGNOSIS COMPUTATION ALGORITHM

That ndcomb, after it has been used as a replacement node of nd′suc or of some node in a transitive
replaces-relation with nd′suc, cannot be pruned or replaced, follows from Proposition 12.7 and the fact
that ndcomb is de-facto non-redundant w.r.t.DPI . Therefore, by Lemma 12.10, no witness of redundancy
of ndcomb can exist w.r.t. any DPI including a (not necessarily proper) subset of the test cases in DPI .
Thence, proposition (6) is true .

In the following we prove the completeness of DYNAMICHS. Given an arbitrary minimal diagnosis
D w.r.t. to an arbitrary fixed DPI DPI , Proposition 12.8 testifies that there must be some node set-equal
to D that is processed during the execution of DYNAMICHS with current DPI DPI in case this execution
terminates by reason of Q = []. Second, the proposition demonstrates that the set Dcalc returned by this
execution of DYNAMICHS comprises all minimal diagnoses w.r.t. DPI . Additionally, the proposition
shows that, at any point in time during the execution of Algorithm 5, some node that corresponds to a
subset of D must be stored by DYNAMICHS.

In terms of the hitting set tree produced by DYNAMICHS, the proposition states that, after all branches
in the tree have been closed or pruned, there is a closed branch labeled by valid for each minimal diag-
nosis w.r.t. DPI . And, for any minimal diagnosis D w.r.t. DPI , at any time during the tree construction,
there is some branch that corresponds to a part of D.

This proposition will be proven by deriving the existence of a de-facto non-redundant node ndD w.r.t.
DPI for any minimal diagnosis D w.r.t. DPI such that ndD ⊆ D. In case ndD = D, we will deduce
directly that the proposition must be true . Otherwise, i.e. if ndD ⊂ D, then Lemmata 12.13 and 12.14
will be exploited.

Proposition 12.8 (Completeness of DYNAMICHS). Let 〈K,B,P ,N 〉R be the DPI and P ′ and N ′ the
sets of positively and negatively answered queries given as an input to DYNAMICHS and assume that
DYNAMICHS terminates due to Q = []. Let further DPI := 〈K,B,P ∪ P ′,N ∪ N ′〉R and D be some
minimal diagnosis w.r.t. DPI . Then the following holds:

(1) At some point in time during the execution of DYNAMICHS with current DPI DPI , there is a node
nd such that nd = D and nd is processed.

(2) The execution of DYNAMICHS with current DPIDPI returns a set Dcalc that comprises all minimal
diagnoses w.r.t. DPI .

(3) Let DPI ′ be an arbitrary DPI that includes a (not necessarily proper) subset of the test cases in
DPI . Then, at any point in time during the execution of DYNAMICHS with current DPIDPI ′, there
is some node nd′ such that nd′ ⊆ D and nd′ is an element of one of the collections Q,Dcalc,DX,D×
or D⊃.

Proof. Let GenNodes be the set of all nodes generated throughout the execution of all calls to DY-
NAMICHS during the execution of Algorithm 5.

Assume first that D = ∅. This means that DPI must be the input DPI of Algorithm 5. Assume the
opposite.

A query is only generated and added as a new test case to the DPI in lines 16 and 24 or 26 of
Algorithm 5 if there are at least two diagnoses in the set Dcalc (called DX in Algorithm 5) returned by
DYNAMICHS. Otherwise, line 16 cannot be reached since there must be exactly one diagnosis in DX

when it comes to the execution of line 13 wherefore the probability of this diagnosis must be equal to
1 which is greater or equal to 1 − σ for any choice of σ (recall that σ is positive). Please notice that
DX = ∅ cannot hold in line 13 since this would imply the non-admissibility of the input DPI given to
Algorithm 5 by Corollary 7.3 and Definition 3.6. By precondition, however, the DPI provided as an input
to Algorithm 5 must be admissible.

Now, since DPI is assumed to be not equal to the input DPI of Algorithm 5, we have, by the argu-
mentation given, that there must have been at least two diagnoses w.r.t. the input DPI.

12.4. ALGORITHM DETAILS AND CORRECTNESS 239

Let us first assume that K is valid w.r.t. 〈·,B,P ,N 〉R where 〈K,B,P ,N 〉R is the input DPI. Then,
by Corollary 3.3, ∅ is a diagnosis w.r.t. the input DPI. Obviously, it must be a minimal diagnosis and the
only minimal diagnosis w.r.t. the input DPI, contradiction.

Second, suppose that K is invalid w.r.t. 〈·,B,P ,N 〉R. By Proposition 4.6 which says that a diagnosis
w.r.t. some DPI is a hitting set of all minimal conflict sets w.r.t. this DPI, we conclude that there must
be at least one minimal conflict set C w.r.t. the input DPI. Now, by Proposition 12.1, there must be a
minimal conflict set C′ w.r.t. DPI such that C′ ⊆ C. By Proposition 4.2, the fact that K is invalid w.r.t.
〈·,B,P ,N 〉R, the fact that the input DPI is admissible and Corollary 7.3 which states that the addition
of queries as test cases cannot make an admissible DPI non-admissible, we obtain that ∅ ⊂ C′. By
Proposition 4.6, this is a contradiction to D = ∅ and the fact that D is a diagnosis w.r.t. DPI .

So, DPI is the input DPI. Hence, the first call to DYNAMICHS throughout the execution of Algo-
rithm 5 considers this DPI. During the execution of the first call to DYNAMICHS, Q = [∅] holds by
lines 3 and 10 of Algorithm 5. The function UPDATETREE has no effect during the execution of the first
call to DYNAMICHS in Algorithm 5. That is, in particular, it does not modify Q. For, UPDATETREE first
iterates over all elements in D×, then over all elements in D⊃ and finally over all elements in DX where
D× = D⊃ = DX = ∅ by lines 1 and 10 in Algorithm 5. Hence, Q = [∅] holds when DYNAMICHS
reaches line 6 wherefore ∅ is processed.

Now, assume D 6= ∅. In this case, the root node must be labeled by some minimal conflict set L w.r.t.
the DPI given as input to Algorithm 5. To see this, suppose the opposite, i.e. that the root node is labeled
by (i) nonmin or (ii) valid.

Case (i): This leads to a contradiction. For, Dcalc = ∅ holds at the beginning of each execution of
DYNAMICHS (line 3). The root node ∅must be the first node that is processed throughout all executions of
DYNAMICHS during the execution of Algorithm 5 since it holds for each other node node that node ⊃ ∅.
Thus, the non-minimality criterion (lines 27-29) cannot be satisfied because Dcalc = ∅ must hold in
line 27 when DLABEL is executed for the root node. Hence, the label nonmin is impossible for the node
∅.

Case (ii): By Lemma 12.1, we can deduce that ∅ is a diagnosis w.r.t. the input DPI. The fact that there
cannot be any diagnosis w.r.t. the input DPI which is a proper subset of ∅ implies that ∅ is a minimal
diagnosis w.r.t. the input DPI. By the reasoning applied before (in the case D = ∅), we obtain that DPI
is equal to the input DPI and that ∅ is the only minimal diagnosis w.r.t. DPI . This is a contradiction to
the existence of a minimal diagnosis w.r.t. DPI , namely D, which is non-empty.

Consequently, the root node must be labeled by some minimal conflict set L w.r.t. the input DPI.
Hence, DYNAMICHS will execute lines 17-23 and generate one node nodee := ADD(∅, e) = [e] with
nodee.cs := ADD(∅, L) = [L] for each e ∈ L (cf. Definition 12.2 for an explanation of the function
ADD). This means that nodee ∈ GenNodes for each e ∈ L. As L is a set and thus comprises only one
exemplar of each element, there cannot be a set-equal node node′e of nodee in Q at the time nodee is
generated. So, each nodee must be added to Q in line 23.

By Proposition 12.1, there must be some minimal conflict set C w.r.t. DPI such that C ⊆ L. Since D
is a diagnosis w.r.t. DPI , we have that C ∩ D 6= ∅ by Proposition 4.6. Thence, L ∩ D 6= ∅ must be true .
Therefore, in particular, L 6= ∅ must hold.

Assume that |D| = 1. This implies by Proposition 4.6 that each minimal conflict set w.r.t. DPI in-
cludes x. Further, there is some x ∈ L such thatD = {x} = nodex. By Corollary 12.1 and Lemmata 12.6
and 12.7, PRUNE is only called given some minimal conflict set X w.r.t. the current DPI DPIprev as ar-
gument. As DYNAMICHS using DPI is assumed to terminate due to Q = [], DPIprev must be equal
to DPI or include only a subset of the test cases DPI includes. By Proposition 12.1, it must hold for
X that it is equal to or a superset of some minimal conflict set w.r.t. DPI . Hence x ∈ X must hold
wherefore X cannot be a witness of redundancy of nodex. So, nodex can never be pruned and must
be finally processed as DPI terminates due to Q = [] and nodes can only be deleted from Q by being
pruned or processed. So far, we have established the truth of the lemma for |D| ≤ 1.

240 CHAPTER 12. DYNAMIC DIAGNOSIS COMPUTATION ALGORITHM

Now, suppose |D| ≥ 2. In the following, we argue that there must be some node nodey ⊂ D for some
y ∈ L which is de-facto non-redundant w.r.t. DPI .

As DYNAMICHS using DPI is assumed to terminate due to Q = [], each node nodee for e ∈ L
must have been generated (and L must have been computed) during DYNAMICHS with some current DPI
DPIprev which is equal toDPI or includes only a subset of the test casesDPI includes. LetDPIprev+i

be any DPI which includes a proper superset of the test cases DPIprev includes and is either equal to
DPI or comprises a subset of the test cases DPI comprises. Then, Proposition 12.1 manifests that there
must be some minimal conflict set Ci w.r.t. DPIprev+i such that Ci ⊆ L. Since we proved above that
L 6= ∅ must hold, we deduce by Proposition 12.2 that Ci 6= ∅ must be valid.

From Corollaries 12.1, 12.2 and Lemmata 12.6 and 12.7 we infer that PRUNE as well as PRUNEQDUP
are always called with a minimal conflict set X w.r.t. the current DPI given as an argument. Lemma 12.8
and the fact that PRUNE is always called immediately after PRUNEQDUP given the argument Qdup which
is the output list of PRUNEQDUP, we have that the list Qdup includes only nodes nd such that there is no
r ∈ {1, . . . , |nd|} for which nd.cs[r] ⊃ X . As a consequence of this, we have by Lemma 12.10 that for
all nodes nd in the collection S′ returned by PRUNE there is no r ∈ {1, . . . , |nd|} for which nd.cs[r] ⊃ X .

Thence, the first time PRUNE is called with someX1 ⊂ L,X1 is a minimal conflict set w.r.t. some DPI
DPIprev+i. Thus, as argued, X1 ⊃ ∅ must hold. So, after PRUNE has finished executing, for each node
node in its output set there will be no r ∈ {1, . . . , |node|} such that node.cs[r] ⊃ X1. For any further
minimal conflict set X2 w.r.t. some DPIprev+i+k for which PRUNE is called, we have that X2 ⊃ ∅ and
for each node node in its output set there will be no r ∈ {1, . . . , |node|} such that node.cs[r] ⊃ X2, and
so on.

For L, in particular, there is some (possibly empty) sequence of minimal conflict sets X1, . . . , Xn

w.r.t. DPIs DPIprev+i1 , . . . , DPIprev+in (ij < ij+1 for j ∈ {1, . . . , n− 1}) such that L ⊃ X1 and
Xi ⊃ Xi+1 for i ∈ {1, . . . , n} where this sequence includes all such conflict sets which restrict a conflict
set used to label nodes that was initially given by L. SinceXn is a minimal conflict set w.r.t.DPIprev+in

which is equal to DPI or includes only a subset of the test cases DPI includes, we have that there must
be some minimal conflict set C w.r.t. DPI such that C ⊆ Xn, as already argued. As D must hit C by
Proposition 4.6, we obtain that D ∩Xn 6= ∅.

So, by the inference given, there must be some y ∈ L such that y ∈ X1 ∩ · · · ∩Xn and y ∈ D. That
is, nodey ⊂ D.

Since |nodee| = 1 and nodee.cs[1] = L for all e ∈ L, in particular for e = y, we obtain by
Definitions 12.6 and 12.7 that nodey is de-facto non-redundant w.r.t. DPI .

So, the preconditions of Lemma 12.13 are met for nodey . As a consequence, there must be a node
nd′suc such that |nd′suc| = |nodey|+1, nd′suc ⊆ D, nd′suc is an element of Q immediately after nodey has
been processed and nd′suc satisfies the postulations to the node nd in the preconditions of Lemma 12.14.
Hence, if nd′suc ⊂ D, there must be a node nd′′suc such that |nd′′suc| = |nd′suc| + 1, nd′′suc ⊆ D, nd′′suc is
an element of Q immediately after a node set-equal to nd′suc has been processed and nd′′suc satisfies the
postulations to the node nd in the preconditions of Lemma 12.14.

This reasoning by means of Lemma 12.14 can be further applied to finally derive that some node nd =
Dmust be generated and some node nd′ set-equal to nd must be an element of Q. By Lemma 12.14, either
nd′ or a node set-equal to nd′ which is in a transitive replaces-relation with nd′ must finally be processed.
Reason for this is that nd′ ∈ Q cannot be pruned, but can only be replaced, and each replacement node
is set-equal to nd′ and thus to D. Moreover, the execution of DYNAMICHS with current DPI DPI
terminates due to Q = [] wherefore each node in Q must be either pruned or processed as these are the
only two ways nodes might be eliminated from Q.

If some node nd = D is processed during an execution of DYNAMICHS with current DPI some DPI
DPI ′ that includes a proper subset of the test cases in DPI , then DLABEL cannot return a set L. This
holds by Lemma 12.2 and Proposition 12.1. The former says that nd∩L = ∅ and L is a minimal conflict
set w.r.t. DPI ′. The latter asserts that each conflict set w.r.t. DPI is a conflict set w.r.t. DPI . Moreover,

12.4. ALGORITHM DETAILS AND CORRECTNESS 241

we can deduce that L 6= ∅must hold if a set L is returned by DLABEL by a similar argumentation as used
in the proof of Lemma 12.14. That is, by Proposition 4.6, we have that D cannot be a diagnosis w.r.t.
DPI , contradiction.

Hence, DLABEL must return nonmin or valid for nd. In the former case, it would be added to D⊃, in
the latter to Dcalc. Similarly as done in the proof of Lemma 12.14, we can show that nd must be reinserted
into Q the latest during the execution of DYNAMICHS with current DPI DPI and, in particular, nd must
be an element of Q when the repeat-loop during the execution of DYNAMICHS with current DPI DPI
is entered. Thus, nd must be (again) processed during the execution of DYNAMICHS with current DPI
DPI . This proves proposition (1).

Proposition (2): At the beginning of each execution of DYNAMICHS, it holds that Dcalc = ∅. This is
truein particular for the execution of DYNAMICHS with current DPI DPI . Now, proposition (1) reveals
that, for each diagnosis D w.r.t. DPI , at some point in time during the execution of DYNAMICHS with
current DPI DPI , there is a node nd such that nd = D and nd is processed. When nd is processed,
the DLABEL function is called for nd. The DLABEL function might return (a) a set L, (b) nonmin or
(c) valid. There are no other possible return values of DLABEL.

Case (a): By Lemma 12.2, L must be a minimal conflict set w.r.t. DPI such that nd ∩ L = ∅.
According to Proposition 4.6, it must hold for D that D ∩ L 6= ∅ since D is a minimal diagnosis w.r.t.
DPI . Since D = nd, we obtain a contradiction.

Case (b): By Lemma 12.1, Dcalc can comprise only diagnoses w.r.t. DPI . By line 27, this yields
that there is a diagnosis w.r.t. DPI that is a proper subset of nd. This however is a contradiction to the
set-equality of nd with the minimal diagnosis D w.r.t. DPI .

Consequently, case (c) must arise. This implies that nd is added to Dcalc in line 13.
Proposition (3) is a direct consequence of the reasoning in this proof and in the proofs of Lem-

mata 12.13 and 12.14.

12.4.9 Soundness of DYNAMICHS
Having established the completeness of each call to DYNAMICHS concerning the minimal diagnoses w.r.t.
the current DPI DPI at this call, we are now able to prove the soundness of each call to DYNAMICHS.
That is, we will demonstrate that only minimal diagnoses w.r.t. DPI can be added to the set Dcalc during
DYNAMICHS with the current DPI DPI . Necessary condition for the proof of the following proposition
is the completeness of DYNAMICHS, i.e. Proposition 12.8.

Proposition 12.9 (Soundness of DYNAMICHS). Let 〈K,B,P ,N 〉R be the DPI and P ′ and N ′ the sets
of positively and negatively answered queries given as an input to DYNAMICHS. Let further DPI :=
〈K,B,P ∪ P ′,N ∪N ′〉R. Then, the following holds:

(1) At any point in time during the execution of DYNAMICHS with current DPIDPI , each node in Dcalc

is a minimal diagnosis w.r.t. DPI .

(2) At any point in time during the execution of DYNAMICHS with current DPI DPI , Dcalc comprises
the |Dcalc| most-probable minimal diagnoses w.r.t. DPI .

Proof. Proposition (1): At the beginning of any execution of DYNAMICHS, the set Dcalc is the empty set
(line 3). So, it suffices to show that only minimal diagnoses w.r.t. DPI can be added to Dcalc during the
execution of DYNAMICHS with the current DPI DPI .

A node node can be added to Dcalc exclusively in line 13. In order for this line to be reached, by the
criterion that is checked in line 12, node must be processed and labeled by valid. By Lemma 12.1, if
node gets labeled by valid, then it is a diagnosis w.r.t. DPI .

So, assume that node is added to Dcalc where node is a non-minimal diagnosis w.r.t. DPI . Since
node must have been processed and labeled by valid, the DLABEL function must have been executed

242 CHAPTER 12. DYNAMIC DIAGNOSIS COMPUTATION ALGORITHM

given node as an argument and must have returned in line 43. Hence, there can be no node nd ∈ Dcalc

such that nd ⊂ node holds, as otherwise DLABEL would have already returned in line 29.
However, since node is a non-minimal diagnosis w.r.t. DPI there must be some minimal diagnosis

D w.r.t. DPI such that D ⊂ node. Moreover, by Proposition 12.8, at any point in time before D is added
to Dcalc, there must be some node nd such that nd ⊆ D and nd is an element of one of the collections
(a) Dcalc, (b) DX, (c) D×, (d) D⊃ or (e) Q. So, let us consider these cases in sequence.

Case (a): First, nd ⊆ D and D ⊂ node implies that nd ⊂ node must be valid. As mentioned above,
there can be no node in Dcalc which is a proper subset of node, contradiction.

Case (b): In this case, nd must be also an element of Q since all nodes in DX are inserted into Q
during UPDATETREE which is executed before the repeat-loop is entered, i.e. before it can come to the
assumed addition of node to Dcalc which can only take place within the repeat-loop. So, in fact case (e)
applies here.

Case (c): As can be easily seen from lines 67-69 in UPDATETREE, D× must be the empty set at the
time node might be added to Dcalc by analogue argumentation as in case (b), contradiction.

Case (d): By lines 70-78 in UPDATETREE and the fact that UPDATETREE must have been executed
before the assumed addition of node to Dcalc can take place as argued in case (b), we have that there must
be some node ndsub ∈ DX such that ndsub ⊂ nd. Otherwise, nd would have been deleted from D⊃ in
line 78. By nd ⊂ node as per case (a), we deduce that ndsub ⊂ node. Due to nd ⊆ D, it must be truethat
ndsub ⊆ D. Thus, we have derived that case case (b) holds for the node ndsub. By the deductions in
case (b) above, we eventually know that case (e) must hold.

Thence, assumption of cases (a) and (c) is contradictory. Cases (b) and (d) imply the truth of case (e).
Therefore, case (e) must occur.

Case (e): Due to the facts that all nodes are inserted into Q in a manner that descending order of nodes
in Q by pnodes() is maintained (cf. lines 23, 100 and 103) and always the first node in Q is processed next
(cf. line 6), we conclude that pnodes(nd) ≤ pnodes(node) must be valid. However, due to nd ⊆ D ⊂ node
we have that nd ⊂ node. Now, by Lemma 4.14, pnodes(n) > pnodes(n

′) holds for any two nodes n and
n′ such that n ⊂ n′. Therefore, pnodes(nd) > pnodes(node), contradiction.

Proposition (2): By proposition (1), each node added to Dcalc must be a minimal diagnosis w.r.t.
DPI .

Assume any point in time t during the execution of DYNAMICHS with the current DPI DPI . Then,
|Dcalc| = m ≥ 0 must hold. We use induction by m to prove proposition (2).

Base Case: Suppose that m = 0 and some minimal diagnosis D w.r.t. DPI is added to Dcalc where
D is not the most probable minimal diagnosis w.r.t. DPI . This implies that D is processed and that D
has the highest probability as per pnodes() among all nodes that are elements of Q at time t, as argued in
the proof of proposition (1).

Let us denote by D1 the most probable minimal diagnosis w.r.t. DPI . That is, pnodes(D1) >
pnodes(D) holds.

Then, by Proposition 12.8, at any point in time during the execution of DYNAMICHS with the current
DPI DPI , there must be some node nd1 such that nd1 ⊆ D1 and nd1 is an element of one of the
collections (a) Dcalc, (b) DX, (c) D×, (d) D⊃ or (e) Q.

Case (a) can be ruled out due to the assumption that Dcalc = ∅. Cases (b)-(d) can be treated analo-
gously as above in the proof of proposition (1). Hence, case (e) must hold.

That is, nd1 ∈ Q at time t and nd1 is equal to or a subset of D1. As pnodes(nd1) ≥ pnodes(D1) >
pnodes(D) holds by Lemma 4.14, we can infer that D has not the highest probability as per pnodes()
among all nodes that are elements of Q at time t, contradiction.

Inductive Step: Now, let m > 0 and assume that the m most probable minimal diagnoses w.r.t. DPI
are already elements of Dcalc. Suppose further that some minimal diagnosis D w.r.t. DPI is added to
Dcalc where D is not the (m+ 1)-th most probable minimal diagnosis w.r.t. DPI . This implies that D is
processed and that D has the highest probability as per pnodes() among all nodes that are elements of Q

12.4. ALGORITHM DETAILS AND CORRECTNESS 243

at time t.
Let us denote by Dm+1 the (m + 1)-th most probable minimal diagnosis w.r.t. DPI . That is,

pnodes(Dm+1) > pnodes(D) holds since the m most probable minimal diagnoses w.r.t. DPI are already
elements of Q.

Then, by Proposition 12.8, at any point in time during the execution of DYNAMICHS with the current
DPI DPI , there must be some node ndm+1 such that ndm+1 ⊆ Dm+1 and ndm+1 is an element of one
of the collections (a) Dcalc, (b) DX, (c) D×, (d) D⊃ or (e) Q.

Case (a) can be ruled out due to proposition (1) which affirms that only minimal diagnoses w.r.t.DPI
can be elements of Dcalc. As Dm+1 is not an element of Dcalc per assumption, a node ndm+1 = Dm+1

cannot be an element of Dcalc. Furthermore, by the fact that Dm+1 is a minimal diagnosis w.r.t. DPI ,
any node ndm+1 ⊂ Dm+1 cannot be a (minimal) diagnosis w.r.t. DPI and thus cannot be an element of
Dcalc. Cases (b)-(d) can be treated analogously as above in the proof of proposition (1). Hence, case (e)
must hold.

That is, ndm+1 ∈ Q at time t and ndm+1 is equal to or a subset of Dm+1. As pnodes(ndm+1) ≥
pnodes(Dm+1) > pnodes(D) holds by Lemma 4.14, we can infer that D has not the highest probability
as per pnodes() among all nodes that are elements of Q at time t, contradiction.

12.4.10 Correctness of DYNAMICHS
Now, we are able to prove that DYNAMICHS terminates and yields an output complying with the asser-
tions given in Algorithm 8:

Corollary 12.8. Any call to DYNAMICHS (given the inputs described in Algorithm 8) within Algorithm 5
terminates and yields an output 〈Dcalc,Q,Ccalc,D×,D⊃,Qdup〉 where

(1) Dcalc is the current set of leading diagnoses such that

(a) Dcalc ⊆ mD〈K,B,P∪P ′,N∪N ′〉R is the set of most probable minimal diagnoses w.r.t. 〈K,B,P ∪
P ′,N ∪N ′〉R such that

(i) nmin ≤ |Dcalc| ≤ nmax and
(ii) Dcalc \DX 6= ∅,

if such a set Dcalc exists; or

(b) Dcalc is equal to the set of all minimal diagnoses mD〈K,B,P∪P ′,N∪N ′〉R , otherwise;

where “most-probable” refers to the probability measure pnodes() given by Definition 4.9 and ob-
tained from the function p() given as an input argument to DYNAMICHS.

(2) Q is the current queue of open (non-labeled) nodes of the produced hitting set tree,

(3) Ccalc is a set of conflict sets w.r.t. the current DPI 〈K,B,P ∪ P ′,N ∪N ′〉R,

(4) D× = ∅,

(5) D⊃ is the set of all processed nodes so far throughout the execution of Algorithm 5 that are non-
minimal diagnoses w.r.t. the current DPI 〈K,B,P ∪ P ′,N ∪N ′〉R and

(6) Qdup includes a node set-equal to X for a set X ⊆ K iff

• nd = X is a generated node that is de-facto non-redundant w.r.t. the current DPI 〈K,B,P ∪
P ′,N ∪N ′〉R, such that, at generation time of nd, there was a node set-equal to X in Q or

• there is a de-facto non-redundant node nd′ = X w.r.t. the current DPI 〈K,B,P ∪P ′,N ∪N ′〉R
which is a combined equal node of some generated node nd′′ that has been added to Qdup.

244 CHAPTER 12. DYNAMIC DIAGNOSIS COMPUTATION ALGORITHM

Proof. First, we prove that any call to DYNAMICHS within Algorithm 5 terminates. To this end, assume
that a call to DYNAMICHS executes infinitely. That is, Q = [] must not be satisfied at any time during the
execution of DYNAMICHS due to the stop criterion of DYNAMICHS in line 24.

However, the overall number of nodes that might be elements of Q during the processing of the
repeat-loop of any call to DYNAMICHS is finite. This is satisfied since each node nd in DYNAMICHS
is a list corresponding to a subset of K and each element of the list nd.cs is a subset of K as well. For,
a node can never correspond to a proper superset of K by Proposition 4.9 which says that QX(〈K \
D, B,P ∪ P ′,N ∪ N ′〉R) returns ’no conflict’ in case K \ D is valid w.r.t. 〈·,B,P ∪ P ′,N ∪N ′〉R
which is equivalent to D being a diagnosis w.r.t. 〈K \ D,B,P ∪ P ′,N ∪N ′〉R by Corollary 3.3. Now,
the DPI 〈K,B,P ∪ P ′,N ∪N ′〉R is admissible which follows from the admissibility of the input DPI
〈K,B,P ,N 〉R and Corollary 7.3. That D := K must be a diagnosis w.r.t. 〈K,B,P ∪ P ′,N ∪N ′〉R
is a direct consequence of the admissibility of 〈K,B,P ∪ P ′,N ∪N ′〉R and Definition 3.6. Therefore
DLABEL must return valid for each node the latest when the node becomes set-equal to K. A node that
was assigned the label valid and added to Dcalc can never be processed again during this execution of
DYNAMICHS wherefore no successors of such a node can be added to Q. The same holds for some node
that is labeled by nonmin and added to D⊃.

Thence, the assumption that Q 6= [] forever implies that there is (at least) one node node that is never
removed from Q.

By Lemma 12.12, each node that is a subset of or set-equal to a once processed node nd must have
been generated before nd is processed. That is, after a node is processed, it is guaranteed that no proper
subsets of it can ever be processed and no subsets of it can ever be added to Q. After a node nd is
processed and is not labeled by valid or nonmin, nd is not an element of Q anymore (cf. line 7) and Q
comprises a set of successor nodes of nd where each such node corresponds to a proper superset of nd
(cf. line 23). Consequently, a node in Q that is processed can either be deleted whereupon no successor
thereof is added to Q (in case of pruning or labeling a node by valid or nonmin) or be deleted whereupon
proper supersets of it are added to Q (in case of labeling a node by a conflict set).

A (combined) replacement of a node involves the substitution of this node by another node set-equal
to it. However, there can be only finitely many possibilities to construct a replacement or combined
replacement node of some node since Comb(Qdup) ⊇ Qdup also includes only nodes, i.e. finitely many
elements. Therefore, each node in Q can be replaced only finitely many times.

Since in each iteration of the repeat-loop in DYNAMICHS one node is processed, the cardinality of
the nodes that are elements of Q is strictly monotonically increasing.

As node is supposed to be never processed, we have that in each iteration of the repeat-loop, one of
the other nodes in Q must by processed. By the given argumentation, we know that after finitely many
iterations, Q = [node] must be given (since all other nodes must be already pruned or labeled). Hence,
node will be processed in the next iteration as GETFIRST in line 6 must catch node, contradiction.

Proposition (1): This proposition is a direct consequence of Proposition 12.9-(2) and the stop criterion
of DYNAMICHS in line 24.

Proposition (2) is clear. Proposition (3) follows from Lemma 12.2 which asserts that each element of
Ccalc is a minimal conflict set w.r.t. some DPI 〈K,B,P ∪ P ′′,N ∪N ′′〉R where P ′′ ⊆ P ′ and N ′′ ⊆
N ′. By Proposition 12.1, we obtain that each element of Ccalc is a conflict set w.r.t. the current DPI
〈K,B,P ∪ P ′,N ∪N ′〉R.

Proposition (4): This proposition is true since UPDATETREE is called at the beginning of each exe-
cution of DYNAMICHS and all elements in D× that have not been deleted from D× before are deleted in
lines 67-69. After UPDATETREE has finished processing, there is no other place in DYNAMICHS where
nodes can be added to D×. Hence, D× = ∅ must hold when DYNAMICHS terminates.

Proposition (5): The elements of D⊃ after UPDATETREE at the beginning of the execution of DY-
NAMICHS has returned must be non-minimal diagnoses w.r.t. the current DPI 〈K,B,P ∪ P ′,N ∪N ′〉R
by lines 70-78 and the fact that DX comprises only diagnoses w.r.t. the current DPI. The latter holds by

12.4. ALGORITHM DETAILS AND CORRECTNESS 245

lines 19 and 21 of Algorithm 5 where only diagnoses w.r.t. the current DPI 〈K,B,P ∪ P ′,N ∪N ′〉R are
added to DX. That only non-minimal diagnoses w.r.t. the current DPI can be added to D⊃ during the
execution of the repeat-loop is a simple implication of Lemma 12.1-(4).

Proposition (6) is a consequence of lines 20-21, the definition of de-facto non-redundancy (Defini-
tion 12.7) and Lemma 12.8.

246 CHAPTER 12. DYNAMIC DIAGNOSIS COMPUTATION ALGORITHM

Algorithm 8 Iterative Construction of a Dynamic Hitting Set Tree

Input: a tuple 〈〈K,B,P ,N 〉R,Q,Qdup, t, nmin, nmax,Ccalc,DX,D×, p(),P
′,N ′,D⊃〉 consisting of

• the DPI 〈K,B,P ,N 〉R given as input to Algorithm 5,

• the overall sets of positively (P ′) and negatively (N ′) answered queries added as test cases to 〈K,B,P ,N 〉R so far,

• a queue Q of open (non-labeled) nodes,

• some computation timeout t,

• a desired minimal (nmin ≥ 2) and maximal (nmax) number of minimal diagnoses to be returned,

• a set Ccalc of conflict sets w.r.t. the current DPI 〈K,B,P ∪ P ′,N ∪N ′〉R,

• a set DX of minimal diagnoses w.r.t. the current DPI 〈K,B,P ∪ P ′,N ∪N ′〉R,

• a set D× of minimal diagnoses w.r.t. the last-but-one DPI that are invalidated by the most recently added test case,

• a function p : K → (0, 0.5),

• a set D⊃ of non-minimal diagnoses w.r.t. the last-but-one DPI and

• a set Qdup of stored (duplicate) nodes nd that can be used when it comes to constructing a replacement node of a pruned
node nd′ ⊇ nd after tree pruning.

Output: a tuple 〈Dcalc,Q,Ccalc,D×,D⊃〉 where

• Dcalc is the current set of leading diagnoses such that

(a) Dcalc ⊆ mD〈K,B,P∪P′,N∪N ′〉R is the set of most probable minimal diagnoses w.r.t. 〈K,B,P ∪ P ′,N ∪ N ′〉R such
that
(i) nmin ≤ |Dcalc| ≤ nmax and

(ii) Dcalc \DX 6= ∅,
if such a set Dcalc exists, or

(b) Dcalc is equal to the set of all minimal diagnoses mD〈K,B,P∪P′,N∪N ′〉R , otherwise,

where “most-probable” refers to the probability measure pnodes() (cf. Definition 4.9) obtained from the given function p();

• Q is the current queue of open (non-labeled) nodes of the hitting set tree,

• Ccalc is a set of conflict sets w.r.t. the current DPI 〈K,B,P ∪ P ′,N ∪N ′〉R,

• D× = ∅,
• D⊃ is the set of all processed nodes so far throughout the execution of Algorithm 5 that are non-minimal diagnoses w.r.t. the

current DPI 〈K,B,P ∪ P ′,N ∪N ′〉R and

• Qdup includes a node set-equal to X for a set X ⊆ K iff

– nd = X is a generated node that is de-facto non-redundant w.r.t. the current DPI 〈K,B,P ∪ P ′,N ∪ N ′〉R, such that,
at generation time of nd, there was a node set-equal to X in Q or

– there is a de-facto non-redundant node nd′ = X w.r.t. the current DPI 〈K,B,P ∪ P ′,N ∪ N ′〉R which is a combined
equal node of some generated node nd′′ that has been added to Qdup.

1: procedure DYNAMICHS(〈K,B,P ,N 〉R,Q,Qdup, t, nmin, nmax,Ccalc,DX,D×, p(),P
′,N ′,D⊃)

2: tstart ← GETTIME()
3: Dcalc ← ∅
4: 〈Q,D×,D⊃,Ccalc,Qdup〉 ← UPDATETREE(〈K,B,P ,N 〉R,D×,Q,Qdup,D⊃,DX,Ccalc, p(),P

′,N ′)
5: repeat . UPDATETREE (see Algorithm 9)
6: node← GETFIRST(Q) . node is processed
7: Q← DELETEFIRST(Q)
8: if node ∈ DX then .DX includes only minimal diagnoses w.r.t. current DPI
9: L← valid

10: else
11: 〈L,Ccalc,Qdup〉 ← DLABEL(〈K,B,P ,N 〉R, node,Ccalc,Dcalc,Q,Qdup, p(),P

′,N ′)

12: if L = valid then . DLABEL (see Algorithm 9)
13: Dcalc ← Dcalc ∪ {node} . node is a minimal diagnosis w.r.t. current DPI
14: else if L = nonmin then
15: D⊃ ← D⊃ ∪ {node} . node is a non-minimal diagnosis w.r.t. current DPI
16: else
17: for e ∈ L do . L is a minimal conflict set w.r.t. current DPI
18: nodee ← ADD(node, e) . nodee is generated
19: nodee.cs← ADD(node.cs, L)
20: if nodee ∈ Q then . nodee is a (set-equal) duplicate of a node in Q
21: Qdup ← INSERTSORTED(nodee,Qdup, cardinality, ascending)
22: else
23: Q← INSERTSORTED(nodee,Q, pnodes(), descending)

24: until Q = [] ∨ [Dcalc \DX 6= ∅ ∧ |Dcalc| ≥ nmin ∧ (|Dcalc| = nmax ∨ GETTIME()− tstart > t)]
25: return 〈Dcalc,Q,Ccalc,D×,D⊃,Qdup〉

12.4. ALGORITHM DETAILS AND CORRECTNESS 247

Algorithm 9 Iterative Construction of a Dynamic Hitting Set Tree (continued)

26: procedure DLABEL(〈K,B,P ,N 〉R, node,Ccalc,Dcalc,Q,Qdup, p(),P
′,N ′) . DLABEL (see page 196)

27: for nd ∈ Dcalc do
28: if node ⊃ nd then . node is a non-minimal diagnosis
29: return 〈nonmin,Ccalc,Qdup〉
30: for C ∈ Ccalc do .Ccalc includes only conflict sets w.r.t. current DPI
31: if C ∩ node = ∅ then . reuse (a subset of) C to label node
32: X ← QX(〈C,B,P ∪ P ′,N ∪N ′〉R) . Algorithm 1 (page 48) to test if C is minimal w.r.t. current DPI
33: if X = C then
34: return 〈C,Ccalc,Qdup〉
35: else . X ⊂ C
36: Qdup ← PRUNEQDUP(X,Qdup) . PRUNEQDUP (see Algorithm 10)
37: Q← PRUNE(X,Q,Qdup, pnodes()) . PRUNE (see Algorithm 10)
38: D⊃ ← PRUNE(X,D⊃,Qdup, ∅)
39: Ccalc ← ADDSETDELSUPSETS(X,Ccalc) . add X to Ccalc and delete all its supersets from Ccalc

40: return 〈X,Ccalc,Qdup〉
41: L← QX(〈K \ node,B,P ∪ P ′,N ∪N ′〉R) . Algorithm 1 (page 48) to test if node is a diagnosis
42: if L = ’no conflict’ then . node is a diagnosis
43: return 〈valid,Ccalc,Qdup〉
44: else . L is a new minimal conflict set (/∈ Ccalc)
45: Ccalc ← Ccalc ∪ {L}
46: return 〈L,Ccalc,Qdup〉

47: procedure UPDATETREE(〈K,B,P ,N 〉R,D×,Q,Qdup,D⊃,DX,Ccalc, p(),P
′,N ′)

48: for nd ∈ D× do
49: quickRC, completeRC ← false
50: X ← QX(〈Und.cs \ nd,B,P ∪ P ′,N ∪N ′〉R) . QRC begin
51: for C ∈ nd.cs do
52: if X ⊂ C then . QRC (see page 205)
53: quickRC ← true
54: break . QRC end
55: if quickRC = false then . CRC begin
56: for i← 1, . . . , |nd| do
57: X ← QX(〈nd.cs[i] \ {nd[i]} ,B,P ∪ P ′,N ∪N ′〉R) . CRC (see page 206)
58: if X 6= ’no conflict’ then
59: completeRC ← true
60: break . CRC end
61: if quickRC = true ∨ completeRC = true then . condition true iff nd redundant w.r.t. current DPI
62: Qdup ← PRUNEQDUP(X,Qdup) . PRUNEQDUP (see Algorithm 10)
63: Q← PRUNE(X,Q,Qdup, pnodes()) . PRUNE (see Algorithm 10)
64: D× ← PRUNE(X,D×,Qdup, ∅)
65: D⊃ ← PRUNE(X,D⊃,Qdup, ∅)
66: Ccalc ← ADDSETDELSUPSETS(X,Ccalc) . add X to Ccalc and delete all its supersets from Ccalc

67: for nd ∈ D× do . add all (non-pruned) nodes in D× to Q
68: Q← INSERTSORTED(nd,Q, pnodes(), descending)
69: D× ← D× \ {nd}
70: for nd ∈ D⊃ do . update D⊃: add all nodes to Q which are not proper supersets of a diagnosis in DX

71: nonmin← false
72: for nd′ ∈ DX do
73: if nd ⊃ nd′ then
74: nonmin← true
75: break
76: if nonmin = false then
77: Q← INSERTSORTED(nd,Q, pnodes(), descending)
78: D⊃ ← D⊃ \ {nd}
79: for D ∈ DX do . reinsert known minimal diagnoses to Q to find diagnoses in order of descending pnodes()
80: Q← INSERTSORTED(D,Q, pnodes(), descending)

81: return 〈Q,D×,D⊃,Ccalc,Qdup〉

248 CHAPTER 12. DYNAMIC DIAGNOSIS COMPUTATION ALGORITHM

Algorithm 10 Iterative Construction of a Dynamic Hitting Set Tree (continued)
82: procedure PRUNE(X,S,Dup, sort_measure) . PRUNE (see page 212)
83: if S is a list then
84: S′ ← []
85: else
86: S′ ← ∅
87: for nd ∈ S do
88: k ← 0
89: for i = 1 to |nd.cs| do
90: if nd.cs[i] ⊃ X then . check first redundancy criterion (Definition 12.4 on page 202)
91: if nd[i] ∈ nd.cs[i] \X then . check second redundancy criterion (Definition 12.4 on page 202)
92: k ← i
93: else
94: nd.cs[i]← X . replace each superset of X in nd.cs by X
95: if k > 0 then . nd is redundant
96: for node← Dup[1], . . . , Dup[|Dup|] do
97: if |node| ≥ k ∧ nd[1..|node|] = node then
98: ndnew ← ADD(node, nd[|node|+ 1..|nd|]) . construct replacement node ndnew of nd
99: ndnew.cs← ADD(node.cs, nd.cs[|node|+ 1..|nd|])
100: S′ ← INSERTSORTED(ndnew, S

′, sort_measure, descending)
101: break
102: else . X is not a witness of redundancy of nd
103: S′ ← INSERTSORTED(nd, S′, sort_measure, descending)

104: return S′

105: procedure PRUNEQDUP(X,Dup) . PRUNEQDUP (see page 209)
106: Dupnew ← []
107: for i← 1 to |Dup| do
108: ndi← Dup[i]
109: k ← 0
110: for m← 1 to |ndi.cs| do
111: if ndi.cs[m] ⊃ X then . check first redundancy criterion (Definition 12.4 on page 202)
112: if ndi[m] ∈ ndi.cs[m] \X then . check second redundancy criterion (Definition 12.4 on page 202)
113: k ← m
114: else
115: ndi.cs[m]← X . replace each superset of X in ndi.cs by X
116: if k > 0 then . ndi is redundant
117: for ndj ∈ Dupnew do
118: if |ndj| ≥ k ∧ ndi[1..|ndj|] = ndj then
119: ndinew ← ADD(ndj, ndi[|ndj|+ 1..|ndi|]) . construct combined replacement node ndinew of ndi
120: ndinew.cs← ADD(ndj.cs, ndi.cs[|ndj|+ 1..|ndi|])
121: Dupnew ← INSERTSORTED(ndinew, Dupnew, cardinality, ascending)
122: break
123: else . X is not a witness of redundancy of ndi
124: Dupnew ← INSERTSORTED(ndi, Dupnew, cardinality, ascending)

125: return Dupnew

Chapter 13

Discussion of Iterative Diagnosis
Computation

In this chapter we want to summarize properties of and differences between STATICHS and DYNAMICHS
that we already pointed out in previous sections and, additionally, we want to shed light on some fur-
ther interesting aspects of these iterative diagnosis computation methods in the scope of interactive KB
debugging (Algorithm 5). Table 13.1 provides an overview of what we did discuss or will discuss below.

First Segment of Table 13.1 – Addressed Problem and Properties w.r.t. Solutions. The first row of
the table has been proven by Proposition 9.1 on page 124. Results given by the second up to the fourth
row of the table are substantiated by Proposition 11.1 (STATICHS) and Corollary 12.8 (DYNAMICHS). We
have discussed in Section 11.1 that Algorithm 5 with mode = static can artificially fix the search space
for possible solutions initially. This is an inherent property of the Interactive Static KB Debugging Prob-
lem which the algorithm aims to solve in static mode. For, a minimal diagnosis w.r.t. the input DPI which
satisfies all answered queries added as test cases throughout the debugging session must be detected (see
left column of category “diagnoses” in Table 13.1). Hence, the solution space is given by |mDinputDPI |.
“Initially fixed search space” in this case means that, given the fault tolerance σ = 0, Algorithm 5 in static
mode must compute all minimal diagnoses w.r.t. the input DPI, i.e. the entire set mDinputDPI . In case
of dynamic mode, on the other hand, the solution space (i.e. minimal diagnoses w.r.t. the current DPI,
see right column of Table 13.1 in category “diagnoses”) that needs to be explored by Algorithm 5 for a
given value of zero for σ is not known in advance. It rather depends on which test cases are specified or,
respectively, which queries the user is asked. In case of the usage of mainly “positive-impact queries”,
the search space might have significantly smaller cardinality than mDinputDPI whereas it might grow
significantly beyond the cardinality of mDinputDPI in a scenario where many unfavorable “negative-
impact queries” are generated (cf. Section 12.1). The maximum theoretically possible cardinality of the
search space for DYNAMICHS is given by |aDinputDPI | due to Corollary 12.4.

Second Segment of Table 13.1 – Impact of New Test Cases and Computation Focus. The prop-
erties given in the category “computes” in Table 13.1 are confirmed by Proposition 11.1 (STATICHS)
and Corollary 12.8 (DYNAMICHS). Hence, other than DYNAMICHS which analyzes the current DPI in
terms of minimal conflict sets and diagnoses in each iteration, STATICHS must only consider minimal
conflict sets w.r.t. the input DPI (see categories “diagnoses” and “conflict sets” in Table 13.1). This is
sufficient for the exploration of all minimal diagnoses w.r.t. the input DPI by Proposition 4.6. In this
vein, new test cases in static KB debugging are not taken into account in the computation of minimal

249

250 CHAPTER 13. DISCUSSION OF ITERATIVE DIAGNOSIS COMPUTATION

conflict sets. Instead, new test cases are just exploited to invalidate already computed minimal diagnoses
w.r.t. the input DPI. Thus, test cases specified during static KB debugging are treated somewhat inferior
to test cases already present in the input DPI. Because, the newly gained information given by these test
cases is not utilized to reveal new faults in the KB or to lay the focus on just the now relevant parts of
existing faults, but only for the purpose of constraining the search space for minimal diagnoses w.r.t. the
input DPI 〈K,B,P ,N 〉R. We might thus call test cases added during the execution of Algorithm 5 with
mode = static pure differentiation test cases (see category “purpose of test cases” in Table 13.1).

Of course, seen from the point of view of a current DPI, i.e. the input DPI extended by differentiation
test cases, STATICHS does not guarantee completeness w.r.t. this current DPI, but only w.r.t. the initial
one. This however does not mean that, after the (exact) solution K∗ := (K \ D) ∪ UP of the Interactive
Static KB Debugging problem has been localized by means of STATICHS, the differentiation test cases
(P ′ and N ′) cannot be simply added to the DPI. In this case, K∗ is still a maximal solution KB w.r.t.
the extended input DPI 〈K,B,P ∪ P ′,N ∪ N ′〉R. In other words, there is no conflict set (and thus no
diagnosis) w.r.t. 〈K\D,B,P ∪P ′,N ∪N ′〉R andK\D is valid w.r.t. 〈·,B,P ∪P ′,N ∪N ′〉R. However,
in spite of using the (exact) solution KB of the Interactive Static KB Debugging problem, it is not ensured
that this solution is the optimal one w.r.t. the extended DPI, i.e. of the Interactive Dynamic KB Debugging
problem. This is because user interaction is just exploited to the extent that the best solution w.r.t. the
input DPI is crystallized out. It is not used to have the solution verified by the user in the light of the
extended DPI.

On the other hand, test cases assigned throughout dynamic KB debugging by means of Algorithm 5
with mode = dynamic are treated equally as test cases already given in the input DPI. They are used
to prune the search space and to pinpoint new faults that arise from added test cases resulting from
answered queries. The dynamic algorithm assists the user in filtering out a solution and verifying in a
thorough manner that this solution is the desired one w.r.t. the extended DPI, among all existing solutions
w.r.t. the extended DPI. Due to these aspects we might regard Algorithm 5 with mode mode = dynamic
as the standard method for Interactive KB Debugging.

In Sections 11.1, 12.1, 12.4.3 and 12.4.4 we have thoroughly investigated the impact of new test cases
(answered queries) added to the DPI on the set of minimal (all) diagnoses and the set of minimal conflict
sets considered by the respective method STATICHS or DYNAMICHS. For the former, we have shown
that (for arbitrary iteration i of Algorithm 5) mDi ⊃ mDi+1 and aDi ⊃ aDi+1 where mDi and aDi

denote the set of all minimal diagnoses and the set of all diagnoses, respectively, that are relevant (for the
DPI considered) during iteration i. That is, the set of minimal as well as the set of all diagnoses (w.r.t. the
input DPI) is reduced to a proper subset after a new test case has been added. For the latter, (for arbitrary
iteration i of Algorithm 5) we have argued that generally mDi 6⊃ mDi+1, but still aDi ⊃ aDi+1,
where mDi and aDi are defined as above. That is, not only might some minimal diagnoses (w.r.t. the
last-but-one DPI) be invalidated, but also some new ones (w.r.t. the current DPI) might originate from the
incorporation of the information given by a query answer.

Concerning minimal conflict sets, the set of all (or: relevant) minimal conflict sets does not change
throughout a debugging session by means of STATICHS, i.e. mCi = mCi+1 (for arbitrary iteration i
of Algorithm 5) where mCi is the set of minimal conflict sets relevant (for the DPI considered) during
iteration i. This holds since the minimal conflict sets w.r.t. the input DPI are artificially fixed (see above).
On the contrary, the assignment of a new test case using DYNAMICHS involves the reduction of some
minimal conflict sets (w.r.t. the last-but-one DPI) to smaller subset conflict sets (w.r.t. the current DPI)
and/or the introduction of some “completely new” minimal conflict sets (which are in no subset-relation
with existing ones, cf. Section 12.1). These results are summarized by the categories “set of all X upon
addition of a test case” in Table 13.1.

Third Segment of Table 13.1 – Hitting Set Tree Construction, Pruning and Complexity. Regarding
the constructed hitting set tree, we have explained that STATICHS builds a wpHS-tree (see Definition 4.10

251

on page 74 and the argumentation in Section 11.4) just as the HS method which is employed for diagnosis
computation in the presented non-interactive KB debugging scenario (Algorithm 3). The main differences
between Algorithm 5 in static mode and Algorithm 3 are, first, that the former constructs the wpHS-tree
step-by-step in multiple phases. Between each two phases a query is generated and presented to the user.
The latter, by contrast, finishes the tree construction (to the extent as prescribed by the given parameters
nmin, nmax and t, see Section 4.7) before a single most probable automatically selected solution or a set of
solutions is displayed to the user. Second, the tree constructed by the interactive static algorithm exhibits
a different labeling of leaf nodes than the one built up be the non-interactive algorithm. In the former,
some leaf nodes might be labeled by × indicating that the path to this node is a minimal diagnosis w.r.t.
the input DPI, but one which is not in accordance with all answered queries. Notice that such invalidated
diagnoses cannot be simply deleted in favor of memory savings, but must be stored in order for the non-
minimality criterion (lines 21-23) to function properly which is necessary to preserve the property of
STATICHS to compute only minimal diagnoses (cf. Lemma 11.7). In the non-interactive wpHS-tree, on
the other hand, all minimal diagnoses w.r.t. the input DPI are labeled by X.

What the interactive static and the non-interactive tree have in common is the usage of only minimal
conflict sets w.r.t. the input DPI as labels of internal (i.e. non-leaf) nodes and the adherence to the “stan-
dard” pruning rules [Rei87] as per Definition 4.8 on page 59, i.e. the immediate deletion of non-minimal
and duplicate tree paths. Except for the standard pruning actions that take place during tree expansion,
no separate pruning phases are performed by STATICHS. The reason for this is the fixation of the min-
imal conflict sets, i.e. the consideration of only minimal conflict sets w.r.t. the input DPI. Incorporation
of new minimal conflict sets resulting from answered queries would generally negate completeness of
STATICHS w.r.t. the exploration of all minimal diagnoses w.r.t. the input DPI. Integration of new conflict
sets that are subsets of existing ones, however, is the key to more substantial pruning actions carried out
by DYNAMICHS.

Due to the more or less equivalent construction of both the tree built up by STATICHS and the one
constructed by the HS method in the non-interactive algorithm, it is straightforward to recognize that
the worst case time and space complexity of both tree computations (without taking into the account
other actions performed by the interactive algorithm like probability updates and query generations) are
equal. By worst case complexity we refer to the complexity of the search for the (exact) solution of the
Interactive Static KB Debugging Problem on the one hand and the complexity of enumerating all minimal
diagnoses w.r.t. the input DPI on the other hand. In particular, the complexity of tree construction in static
KB debugging is independent of given parameters such as the ones for leading diagnoses computation
(nmin, nmax and t) and of the test cases that are classified positively or negatively, respectively, during
the debugging session.

To sum up, due to the artificial fixation of the solution set, there is no possibility of tree pruning
in static KB debugging except for the standard pruning rules and hence no way to escape the generally
immense worst case complexity for diagnosis search in case σ = 0.

The hitting set tree constructed by DYNAMICHS, on the other hand, might differ significantly from the
wpHS-tree produced by the non-interactive algorithm. First, it uses minimal conflict sets w.r.t. the current
DPI to label internal nodes in the tree during each expansion stage. Since minimal conflict sets can only
“shrink” and not “grow” due to the integration of test cases into a DPI as stated by Proposition 12.1,
the finding that by now a subset of a former minimal conflict set (w.r.t. some previous DPI) is already
a minimal conflict set (w.r.t. the current DPI) gives rise to very powerful ways of tree pruning, as we
detailed in Section 12.4.6 and illustrated by Example 12.2. In this vein, the evolution of the tree produced
by DYNAMICHS can be characterized by alternating expansion and pruning stages. A pruning stage takes
place after a test case has been added to the last-but-one DPI in order to modify the tree Ti used to search
for minimal diagnoses w.r.t. the last-but-one DPI to obtain a tree Ti+1 that enables the discovery of all
minimal diagnoses w.r.t. the current DPI. Concretely, both pre-pruning as well as post-pruning is possible
during a pruning phase. Pre-pruning refers to the deletion of tree paths ending in an open leaf node, i.e.

252 CHAPTER 13. DISCUSSION OF ITERATIVE DIAGNOSIS COMPUTATION

paths corresponding to partial diagnoses, and post-pruning refers to the deletion of tree paths ending in a
closed node, i.e. paths corresponding to (minimal or non-minimal) diagnoses. Both pre- and post-pruning
are not possible in STATICHS. The ability for significant tree pruning comes at the cost of not being able
to exploit the standard pruning rules as STATICHS does. For, non-minimal diagnoses and duplicate tree
paths must be stored to guarantee the proper working of tree pruning and in further consequence the
completeness of minimal diagnoses search for each current DPI (see Section 12.4).

As we pointed out in Section 12.1, the test cases specified during the dynamic debugging session and
the defined leading diagnoses computation parameters nmin, nmax and t might have a material influence
on the extent of possible tree pruning on the one hand and the extent of undesired tree growth on the other.
Thence, worst case time and space complexity of the tree generation by means of DYNAMICHS cannot be
initially (at least theoretically) quantified as in the case of STATICHS. Consequently, significant savings as
well as a substantial overhead compared to STATICHS are possible. Careful “control” of certain properties
of asked queries (added test cases) might help to keep considerable unwanted tree growth within bounds,
as we touched upon in Section 12.1 and will elaborate on in future work.

Nevertheless, we want to mention a shortcoming of STATICHS compared to DYNAMICHS. Namely,
for σ = 0, STATICHS must enumerate all minimal diagnoses w.r.t. the input DPI (otherwise no diagnosis
can have a probability of 1, see the proof of Proposition 9.1 in Section 9.4) whereas DYNAMICHS might
be able to obtain some extended DPI (by the addition of test cases) soon for which only one minimal diag-
nosis exists. This might require the computation of only a small fraction of the number of |mDinputDPI |
minimal diagnoses that STATICHS must determine and therefore might be substantially more time and
space saving than figuring out all minimal diagnoses w.r.t. some DPI. This is quite well illustrated by
Examples 11.2 and 12.2.

Fourth Segment of Table 13.1 – Query Generation and Bias. We explained in Remark 11.2 on
page 153 that queries in STATICHS are computed w.r.t. the current DPI albeit only minimal diagnoses
w.r.t. the input DPI (which are at the same time minimal diagnoses w.r.t. the current DPI, cf. bullet (a) on
page 128) are considered and calculated by Algorithm 5 with mode = static. In the case of dynamic
debugging it is clear that queries are computed w.r.t. the current DPI since only minimal diagnoses w.r.t.
the current DPI are taken into account.

Another important property of an interactive KB debugging algorithm is whether it is biased or un-
biased. Intuitively, we call an interactive KB debugging algorithm biased w.r.t. some current DPI DPI
encountered during its execution iff there might be a minimal diagnosis D w.r.t. DPI such that D might
be definitely invalidated independently of the answers a user gives. In other words, an interactive KB de-
bugging algorithm is unbiased iff for each minimal diagnosis D w.r.t. DPI there is a set QAD including
query answer-pairs such that the addition of the positive queries inQAD to the positive test cases ofDPI
and the addition of the negative queries inQAD to the negative test cases ofDPI yields an extended DPI
DPI ′ such that D is the only minimal diagnosis w.r.t. DPI ′. This means that unbiasedness implies that
any solution w.r.t. any encountered current DPI during the debugging session might be found as the finally
remaining (exact) solution diagnosis. So, all solutions are treated equitably by an unbiased algorithm and
only the user may decide by their given answers which solutions are and which are not ruled out.

More formally, we define unbiasedness of an interactive KB debugging algorithm as follows:

Definition 13.1. Let 〈K,B,P ,N 〉R be the input DPI given to an algorithm AlgX that solves the In-
teractive X Debugging Problem for X ∈ {static, dynamic}. Let P ′ ⊇ ∅ and N ′ ⊇ ∅ be the sets
of test cases specified so far during the execution of AlgX and let D ⊆ mD〈K,B,P∪P ′,N∪N ′〉R be
the current set of leading diagnoses. Then, we call AlgX biased w.r.t. 〈K,B,P ∪ P ′,N ∪ N ′〉R iff
there is a diagnosis D ∈ mD〈K,B,P∪P ′,N∪N ′〉R and a query Q ∈ QD,〈K,B,P∪P ′,N∪N ′〉R such that
D /∈mD〈K,B,P∪P ′∪{Q},N∪N ′〉R and D /∈mD〈K,B,P∪P ′,N∪N ′∪{Q}〉R .

Further, we call AlgX unbiased iff there cannot be any sets of test cases P ′ ⊇ ∅ and N ′ ⊇ ∅ during

253

any execution of AlgX such that AlgX is biased w.r.t. 〈K,B,P ∪ P ′,N ∪N ′〉R.

Remark 13.1 It is important to notice the difference between completeness (which has already been
established for Algorithm 5 using any of the methods STATICHS or DYNAMICHS, see Lemma 11.5
and Proposition 12.8) and unbiasedness of an algorithm. Completeness refers to the guarantee that the
algorithm explores all minimal diagnoses w.r.t. any DPI DPI . However, it does not say anything about
what might happen after a new test case Q is added to DPI . Although it does state that all minimal
diagnoses w.r.t. the new DPI DPI ′ are explored, it leaves us unclear about what effect the addition of the
queryQ to the test cases might have had on the minimal diagnoses. So, there might be a minimal diagnosis
w.r.t. DPI that would have been ruled out by both answers to Q thereby violating unbiasedness, but not
completeness. To sum up, completeness gives us guarantees about what happens during the diagnosis
computation phase whereas unbiasedness gives us guarantees about what happens during the transition
from one DPI to a new DPI.

In the following, we show that Algorithm 5 in both static and dynamic mode is unbiased.

Proposition 13.1. Assume the execution of Algorithm 5 with mode ∈ {static, dynamic} given the input
DPI 〈K,B,P ,N 〉R. Further, let D := Dcalc be the set of minimal diagnoses w.r.t. 〈K,B,P ∪ P ′,N ∪
N ′〉R returned by a call of DYNAMICHS in case of mode = dynamic and D := Dcalc ∪DX be the
set of minimal diagnoses w.r.t. 〈K,B,P ∪ P ′,N ∪ N ′〉R returned by a call of STATICHS in case of
mode = static. Moreover, let D ∈mD〈K,B,P∪P ′,N∪N ′〉R .

Then, no query Q w.r.t. D and 〈K,B,P ∪ P ′,N ∪ N ′〉R can be computed by Algorithm 5 such that
D /∈mD〈K,B,P∪P ′∪{Q},N∪N ′〉R and D /∈mD〈K,B,P∪P ′,N∪N ′∪{Q}〉R .

Proof. Let us consider the q-partition P(Q) =
〈
D+(Q),D−(Q),D0(Q)

〉
of the query Q that is com-

puted by Algorithm 5 for the set of leading diagnoses D. By Proposition 7.1, we have that D+(Q) ∪
D−(Q) ∪D0(Q) = D and D+(Q), D−(Q) and D0(Q) are pairwise disjoint sets, i.e. the sets D+(Q),
D−(Q) and D0(Q) constitute a partition of the set D. Let us now assume that each diagnosis in
mD〈K,B,P∪P ′,N∪N ′〉R is assigned to its respective set in P(Q) as per Definition 7.2 yielding the tu-
ple
〈
D+

m(Q),D−m(Q),D0
m(Q)

〉
where D+

m(Q)∪D−m(Q)∪D0
m(Q) = mD〈K,B,P∪P ′,N∪N ′〉R . Then, by

analogue argumentation as in the proof of Proposition 7.1, we obtain that D+
m(Q), D−m(Q) and D0

m(Q)
are pairwise disjoint sets. That is,

〈
D+

m(Q),D−m(Q),D0
m(Q)

〉
is the (extended) q-partition of Q w.r.t.

the leading diagnoses set mD〈K,B,P∪P ′,N∪N ′〉R .
By Remark 7.4, we have that Dpos := D+

m(Q) ∪ D0
m(Q) are minimal diagnoses w.r.t. the DPI

〈K,B,P ∪ P ′ ∪ {Q} ,N ∪ N ′〉R (positive answer u(Q)) and Dneg := D−m(Q) ∪D0
m(Q) are minimal

diagnoses w.r.t. the DPI 〈K,B,P ∪P ′,N ∪N ′ ∪ {Q}〉R (negative answer u(Q)). Since Dpos ∪Dneg ⊇
mD〈K,B,P∪P ′,N∪N ′〉R , we have that each diagnosis in mD〈K,B,P∪P ′,N∪N ′〉R is either in Dpos or in
Dneg (or in both). Hence, for each diagnosis D ∈ mD〈K,B,P∪P ′,N∪N ′〉R there is some answer u(Q) ∈
{true, false} to the query Q such that D is a diagnosis w.r.t. the DPI resulting from 〈K,B,P ∪ P ′,N ∪
N ′〉R by addition of the new test caseQ to the respective set (P ∪P ′ for positive and N ∪N ′ for negative
answer). Consequently, the claimed proposition holds.

Corollary 13.1. Algorithm 5 with mode ∈ {static, dynamic} is unbiased for any given input DPI
〈K,B,P ,N 〉R.

254 CHAPTER 13. DISCUSSION OF ITERATIVE DIAGNOSIS COMPUTATION

STATICHS DYNAMICHS

is used to solve Interactive Static KB Debugging problem
(Problem Definition 6.2)

Interactive Dynamic KB Debugging prob-
lem (Problem Definition 6.1)

soundness yes yes

completeness yes yes

optimality yes yes

number of solutions that
must be considered (but not
necessarily computed)

• initially fixed

• upper bound: |mDinputDPI |
• not initially fixed, depends on speci-

fied test cases (answered queries)

• upper bound: |aDinputDPI |

diagnoses considers only minimal diagnoses w.r.t. the
input DPI which satisfy all answered queries
added as test cases so far

considers only minimal diagnoses w.r.t. the
current DPI

conflict sets computes only minimal conflict sets w.r.t.
the input DPI

computes minimal conflict sets w.r.t. the cur-
rent DPI

computes a set D including the |D| ≤ nmax (a-priori)
most probable minimal diagnoses w.r.t. the
input DPI which satisfy all answered queries
added as test cases so far

a set D including the |D| ≤ nmax (a-priori)
most probable minimal diagnoses w.r.t. the
current DPI

purpose of test cases differentiation between minimal diagnoses
of fixed DPI

obtaining a new DPI with fewer minimal di-
agnoses

set of all minimal diagnoses
upon addition of a test case

is reduced to a proper subset some are invalidated, some new ones might
be introduced

set of all diagnoses upon ad-
dition of a test case

is reduced to a proper subset is reduced to a proper subset

set of all minimal conflict sets
upon addition of a test case

constant some minimal conflict sets are reduced to
smaller sets and/or some new minimal con-
flict sets (in no subset-relation with existing
ones) are introduced

constructed tree:
comparison to non-interac-
tive wpHS-tree (Alg. 2)

equivalent (except for labels of leaf nodes) might differ significantly

non-leaf-node labels only minimal conflict sets w.r.t. the input
DPI

(not necessarily minimal) conflict sets w.r.t.
the current DPI

non-minimal and duplicate
tree paths

deleted stored

evolution of produced tree only expansion (except for deletion of non-
minimal and duplicate tree paths)

alternating tree expansion and pruning
phases

pre-pruning (deletion of par-
tial diagnoses)

only duplicate tree paths any

post-pruning (deletion of
complete diagnoses)

only non-minimal diagnoses (all invalidated
minimal diagnoses are stored)

any

overall tree pruning poor significant

tree construction: worst case
time and space complexity

• independent of specified test cases

• upper and lower bound is time and
space required by non-interactive
wpHS-tree (Alg. 2)

• a function of the specified test cases
and the leading diagnosis computa-
tion parameters nmin, nmax, t

• best case: significant savings com-
pared to STATICHS

• worst case: significant overhead com-
pared to STATICHS

query generation w.r.t. the current DPI w.r.t. the current DPI

unbiased yes yes

Table 13.1: Comparison: STATICHS versus DYNAMICHS.

Part IV

Two Query Strategies for Efficient
Fault Localization in Interactive

Ontology Debugging

255

257

In this part, we suggest and extensively analyze different methods for the selection of an “optimal”
query. The material dealt with in Part IV is based on the publications [SFFR12, SF10] where the former
was published in the journal Web Semantics: Science, Services and Agents on the World Wide Web and
the latter in the Proceedings of the 9th International Semantic Web Conference (ISWC 2010).

Chapter 14

Introduction to the Problem

Ontology acquisition and maintenance are important prerequisites for the successful application of se-
mantic systems in areas such as the Semantic Web. However, as state of the art ontology extraction
methods cannot automatically acquire ontologies in a complete and error-free fashion, users of such sys-
tems must formulate and correct logical descriptions on their own. In most of the cases these users are
domain experts who have little or no experience in expressing knowledge in representation languages
like OWL 2 DL [GHM+08]. Studies in cognitive psychology, e.g. [CP71, JL99], indicate that humans
make systematic errors while formulating or interpreting logical descriptions, with the results presented
in [RDH+04, RCVB09] confirming that these observations also apply to ontology development. More-
over, the problem gets even more if an ontology is developed by a group of users, such as OBO Foundry29

or NCI Thesaurus30, is based on a set of imported third-party ontologies, etc. In this case inconsisten-
cies might appear if some user does not understand or accept the context in which shared ontological
descriptions are used. Therefore, identification of erroneous ontological definitions is a difficult and
time-consuming task.

Several ontology debugging methods [SHCH07, KPHS07, FS05, HPS08] were proposed to simplify
ontology development and maintenance. Usually the main aim of debugging is to obtain a consistent and,
optionally, coherent ontology. These basic requirements can be extended with additional ones, such as
test cases [FS05], which must be fulfilled by the target ontology Ot. Any ontology that does not fulfill
the requirements is faulty regardless of how it was created. For instance, an ontology might be created
by an expert specializing descriptions of the imported ontologies (top-down) or by an inductive learning
algorithm from a set of examples (bottom-up).

Note that even if all requirements are completely specified, many logically equivalent target ontologies
might exist. They may differ in aspects such as the complexity of consistency checks, size or readability.
However, selecting between logically equivalent theories based on such measures is out of the scope of
this work. Furthermore, although target ontologies may evolve as requirements change over time, we
assume that the target ontology remains stable throughout a debugging session.

Given an set of requirements (e.g. formulated by a user) and a faulty ontology, the task of an ontol-
ogy debugger is to identify the set of alternative diagnoses, where each diagnosis corresponds to a set of
possibly faulty axioms. More concretely, a diagnosisD is a subset of an ontologyO such that one should
remove (change) all the axioms of a diagnosis from the ontology (i.e. O \ D) in order to formulate an
ontology O′ that fulfills all the given requirements. Only if the set of requirements is complete the only
possible ontology O′ corresponds to the target ontology Ot. In the following we refer to the removal
of a diagnosis from the ontology as a trivial application of a diagnosis. Moreover, in practical applica-

29http://www.obofoundry.org
30http://ncit.nci.nih.gov

259

260 CHAPTER 14. INTRODUCTION TO THE PROBLEM

tions it might be inefficient to consider all possible diagnoses. Therefore, modern ontology debugging
approaches focus on the computation of minimal diagnoses. A set of axioms Di is a minimal diagnosis
iff there is no proper subset D′i ⊂ Di which is a diagnosis. Thus, minimal diagnoses constitute minimal
required changes to the ontology.

Application of diagnosis methods can be problematic in the cases for which many alternative minimal
diagnoses exist for a given set of test cases and requirements. A sample study of real-world incoherent
ontologies, which were used in [KPHS07], showed that hundreds or even thousands of minimal diagnoses
may exist. In the case of the Transportation ontology the diagnosis method was able to identify 1782
minimal diagnoses 31. In such situations a simple visualization of all alternative sets of modifications to
the ontology is ineffective. Thus an efficient debugging method should be able to discriminate between
the diagnoses in order to select the target diagnosisDt. Trivial application ofDt to the ontologyO allows
a user to extend (O \ Dt) with a set of additional axioms EX and, thus, to formulate the target ontology
Ot, i.e. Ot = (O \ Dt) ∪ EX .

One possible solution to the diagnosis discrimination problem would be to order the set of diagnoses
by various preference criteria. For instance, Kalyanpur et al. [KPSCG06] suggest a measure to rank
the axioms of a diagnosis depending on their structure, usage in test cases, provenance, and impact in
terms of entailments. Only the top ranking diagnoses are then presented to the user. Of course this set of
diagnoses will contain the target diagnosis only in cases where the faulty ontology, the given requirements
and test cases provide sufficient data to the appropriate heuristic. However, it is difficult to identify which
information, e.g. test cases, is really required to identify the target diagnosis. That is, a user does not
know a priori which and how many tests should be provided to the debugger to ensure that it will return
the target diagnosis.

In this part we present an approach for the acquisition of additional information by generating a se-
quence of queries, the answers of which can be used to reduce the set of diagnoses and ultimately identify
the target diagnosis. These queries should be answered by an oracle such as a user or an information
extraction system. In order to construct queries we exploit the property that different ontologies result-
ing from trivial applications of different diagnoses entail unequal sets of axioms. Consequently, we can
differentiate between diagnoses by asking the oracle if the target ontology should entail a set of logical
sentences or not. These entailed logical sentences can be generated by the classification and realiza-
tion services provided in description logic reasoning systems [SPG+07, HM01, MSH09]. In particular,
the classification process computes a subsumption hierarchy (sometimes also called “inheritance hierar-
chy” of parents and children) for each concept description mentioned in a TBox. For each individual
mentioned in an ABox, the realization computes all the concept names of which the individual is an
instance [SPG+07].

We propose two methods for selecting the next query of the set of possible queries: The first method
employs a greedy approach that selects queries which try to cut the number of diagnoses in half. The
second method exploits the fact that some diagnoses are more likely than others because of typical user
errors [RDH+04, RCVB09]. Beliefs for an error to occur in a given part of a knowledge base, represented
as a probability, can be used to estimate the change in entropy of the set of diagnoses if a particular query is
answered. In our evaluation the fault probabilities of axioms are estimated by the type and number of the
logical operators employed. For example, roughly speaking, the greater the number of logical operators
and the more complex these operators are, the greater the fault probability of an axiom. For assigning
prior fault probabilities to diagnoses we employ the fault probabilities of axioms. Of course other methods
for guessing prior fault probabilities, e.g. based on context of concept descriptions, measures suggested in
the previous work [KPSCG06], etc., can be easily integrated in our framework. Given a set of diagnoses
and their probabilities the method selects a query which minimizes the expected entropy of a set of
diagnoses after an oracle answers a query, i.e. maximizes the information gain. An oracle should answer
such queries until a diagnosis is identified whose probability is significantly higher than those of all other

31In Chapter 18, we will give a detailed characterization of these ontologies.

261

diagnoses. This diagnosis is most likely to be the target diagnosis.
In the first evaluation scenario we compare the performance of both methods in terms of the number

of queries needed to identify the target diagnosis. The evaluation is performed using generated examples
as well as real-world ontologies presented in Tables 18.1 and 18.5. In the first case we alter a consistent
and coherent ontology with additional axioms to generate conflicts that result in a predefined number
of diagnoses of a required length. Each faulty ontology is then analyzed by the debugging algorithm
using entropy, greedy and “random” strategies, where the latter selects queries at random. The evaluation
results show that in some cases the entropy-based approach is almost 60% better than the greedy one
whereas both approaches clearly outperformed the random strategy.

In the second evaluation scenario we investigate the robustness of the entropy-based strategy with
respect to variations in the prior fault probabilities. We analyze the performance of entropy-based and
greedy strategies on real-world ontologies by simulating different types of prior fault probability distribu-
tions as well as the “quality” of these probabilities that might occur in practice. In particular, we identify
the cases where all prior fault probabilities are (1) equal, (2) “moderately” varied or (3) “extremely” var-
ied. Regarding the “quality” of the probabilities we investigate cases where the guesses based on the prior
diagnosis probabilities are good, average or bad. The results show that the entropy method outperforms
“split-in-half” in almost all of the cases, namely when the target diagnosis is located in the more likely
two thirds of the minimal diagnoses. In some situations the entropy-based approach achieves even twice
the performance of the greedy one. Only in cases where the initial guess of the prior probabilities is very
vague (the bad case), and the number of queries needed to identify the target diagnosis is low, “split-in-
half” may save on average one query. However, if the number of queries increases, the performance of
the entropy-based query selection increases compared to the “split-in-half” strategy. We observed that if
the number of queries is greater than 10, the entropy-based method is preferable even if the initial guess
of the prior probabilities is bad. This is due to the effect that the initial bad guesses are improved by the
Bayes-update of the diagnoses probabilities as well as an ability of the entropy-based method to stop in
the cases when a probability of some diagnosis is above an acceptance threshold predefined by the user.
Consequently, entropy-based query selection is robust enough to handle different prior fault probability
distributions.

Additional experiments performed on big real-world ontologies demonstrate the scalability of the
suggested approach. In our experiments we were able to identify the target diagnosis in an ontology with
over 33000 axioms using entropy-based query selection in only 190 seconds using an average of five
queries.

The remainder of Part IV is organized as follows: Chapter 15 presents two introductory examples
as well as the basic concepts. The details of the entropy-based query selection method are given in
Chapter 16. Chapter 17 describes the implementation of the approach and is followed by evaluation
results in Chapter 18. An overview of related work is given in Chapter 19 and conclusions are drawn in
Chapter 20.

Chapter 15

Motivating Examples and Basic
Concepts

We begin by presenting the fundamentals of ontology diagnosis and then show how queries and answers
can be generated and employed to differentiate between sets of diagnoses.

Description Logics
Since the underlying knowledge representation method of ontologies in the Semantic Web is based on
description logics, we start by briefly introducing the main concepts, employing the usual definitions as
in [Bor96, Baa03]. A knowledge base is comprised of two components, namely a TBox (denoted by
T) and a ABox (A). The TBox defines the terminology whereas the ABox contains assertions about
named individuals in terms of the vocabulary defined in the TBox. The vocabulary consists of concepts,
denoting sets of individuals, and roles, denoting binary relationships between individuals. These concepts
and roles may be either atomic or complex, the latter being obtained by employing description operators.
The language of descriptions is defined recursively by starting from a schema S = (CN ,RN , IN)
of disjoint sets of names for concepts, roles, and individuals. Typical operators for the construction of
complex descriptions are CtD (disjunction), CuD (conjunction), ¬C (negation), ∀R.C (concept value
restriction), and ∃R.C(concept exists restriction), where C and D are elements of CN and R ∈ RN .

Knowledge bases are defined by a finite set of logical sentences. Sentences regarding the TBox
are called terminological axioms whereas sentences regarding the ABox are called assertional axioms.
Terminological axioms are expressed by C v D (Generalized Concept Inclusion) which corresponds
to the logical implication. Let a, b ∈ IN be individual names. C(a) and R(a, b) are thus assertional
axioms.

Concepts (rsp. roles) can be regarded as unary (rsp. binary) predicates. Roughly speaking description
logics can be seen as fragments of first-order predicate logic (without considering transitive closure or
special fixpoint semantics). These fragments are specifically designed to ensure decidability or favorable
computational costs.

The semantics of description terms are usually given using an interpretation I = 〈∆I , (·)I〉, where
∆I is a domain (non-empty universe) of values, and (·)I is a function that maps every concept description
to a subset of ∆I , and every role name to a subset of ∆I ×∆I . The mapping also associates a value in
∆I with every individual name in IN . An interpretation I is a model of a knowledge base iff it satisfies
all terminological axioms and assertional axioms. A knowledge base is satisfiable iff a model exists. A
concept description C is coherent (satisfiable) w.r.t. a TBox T , if a model I of T exists such that CI 6= ∅.

263

264 CHAPTER 15. MOTIVATING EXAMPLES AND BASIC CONCEPTS

A TBox is incoherent iff an incoherent concept description exists.

Diagnosis of Ontologies

Example 15.1 Consider a simple ontology O with the terminology T :

ax 1 : A v B ax 2 : B v C
ax 3 : C v D ax 4 : D v R

and assertions A : {A(w),¬R(w), A(v)}.
Assume that the user explicitly states that the three assertional axioms should be considered as correct,

i.e. these axioms are added to a background theory B. The introduction of a background theory ensures
that the diagnosis method focuses purely on the potentially faulty axioms.

Furthermore, assume that the user requires the currently inconsistent ontologyO∪B to be consistent.
The only irreducible set of non-background axioms (minimal conflict set) that preserves the inconsistency
is CS : 〈ax 1, ax 2, ax 3, ax 4〉. That is, one has to modify or remove the axioms of at least one of the
following diagnoses

D1 : [ax 1] D2 : [ax 2] D3 : [ax 3] D4 : [ax 4]

to restore the consistency of the ontology. However, it is unclear which of the ontologies Oi = O \ Di

obtained by application of diagnoses from the set D : {D1, . . . ,D4} is the target one.

Definition 15.1. A target ontology Ot is a set of logical sentences characterized by a set of background
axioms B, a set of sets of logical sentences P that must be entailed by Ot and the set of sets of logical
sentences N that must not be entailed by Ot.

A target ontology Ot must fulfill the following necessary requirements:

• Ot must be satisfiable (optionally coherent)

• B ⊆ Ot

• Ot |= p ∀p ∈ P

• Ot 6|= n ∀n ∈ N

Given B, P, and N , an ontologyO is faulty iffO does not fulfill all the necessary requirements of the
target ontology.

Note that the approach presented in this work can be used with any knowledge representation language
for which there exists a sound and complete procedure to decide whether O |= ax and the entailment
operator |= is extensive, monotone and idempotent. For instance, these requirements are fulfilled by all
subsets of OWL 2 which are interpreted under OWL Direct Semantics.

Definition 15.1 allows a user to identify the target diagnosis Dt by providing sufficient information
about the target ontology in the sets B, P and N . For instance, if in Example 15.1 the user provides the
information that Ot |= {B(w)} and Ot 6|= {C(w)}, the debugger will return only one diagnosis, namely
D2. Application of this diagnosis results in a consistent ontology O2 = O \D2 that – integrated with the
background knowledge B – entails {B(w)} because of ax 1 and the assertion A(w). In addition, O2 ∪ B
does not entail {C(w)} since O2 ∪ B ∪ {¬C(w)} is consistent and, moreover, {¬R(w), ax 4, ax 3} |=
{¬C(w)}. All other ontologies Oi = (O \ Di) obtained by the application of the diagnoses D1,D3

and D4 do not fulfill the given requirements, since O1 ∪ B ∪ {B(w)} is inconsistent and therefore any
consistent extension ofO1∪B cannot entail {B(w)}. As bothO3∪B andO4∪B entail {C(w)},O2∪B
corresponds to the target ontology Ot.

265

Definition 15.2. Let 〈O,B, P,N〉 be a diagnosis problem instance, where O is an ontology, B a back-
ground theory, P a set of sets of logical sentences which must be entailed by the target ontology Ot, and
N a set of sets of logical sentences which must not be entailed by Ot.

A set of axioms D ⊆ O is a diagnosis iff the set of axioms O \ D can be extended by a logical
description EX such that:

1. (O \ D) ∪ B ∪ EX is consistent (and coherent if required)

2. (O \ D) ∪ B ∪ EX |= p ∀p ∈ P

3. (O \ D) ∪ B ∪ EX 6|= n ∀n ∈ N

A diagnosis Di defines a partition of the ontology O where each axiom ax j ∈ Di is a candidate for
changes by the user and each axiom axk ∈ O\Di is correct. IfDt is the set of axioms ofO to be changed
(i.e. Dt is the target diagnosis) then the target ontology Ot is (O \ Dt) ∪ B ∪ EX for some EX defined
by the user.

In the following we assume the background theory B together with the sets of logical sentences in the
sets P and N always allow formulation of the target ontology. Moreover, a diagnosis exists iff a target
ontology exists.

Proposition 15.1. A diagnosis D for a diagnosis problem instance 〈O,B, P,N〉 exists iff

B ∪
⋃
p∈P

p

is consistent (coherent) and
∀n ∈ N : B ∪

⋃
p∈P

p 6|= n

The set of all diagnoses is complete in the sense that at least one diagnosis exists where the ontology
resulting from the trivial application of a diagnosis is a subset of the target ontology:

Proposition 15.2. Let D 6= ∅ be the set of all diagnoses for a diagnosis problem instance 〈O,B, P,N〉
and Ot the target ontology. Then a diagnosis Dt ∈ D exists s.t. (O \ Dt) ⊆ Ot.

The set of all diagnoses can be characterized by the set of minimal diagnoses.

Definition 15.3. A diagnosis D for a diagnosis problem instance 〈O,B, P,N〉 is a minimal diagnosis iff
there is no D′ ⊂ D such that D′ is a diagnosis.

Proposition 15.3. Let 〈O,B, P,N〉 be a diagnosis problem instance. For every diagnosis D there is a
minimal diagnosis D′ s.t. D′ ⊆ D.

Definition 15.4. A diagnosis D for a diagnosis problem instance 〈O,B, P,N〉 is a minimum cardinality
diagnosis iff there is no diagnosis D′ such that |D′| < |D|.

To summarize, a diagnosis describes which axioms are candidates for modification. Despite the fact
that multiple diagnoses may exist, some are more preferable than others. E.g. minimal diagnoses require
minimal changes, i.e. axioms are not considered for modification unless there is a reason. Minimal
cardinality diagnoses require changing a minimal number of axioms. The actual type of error contained
in an axiom is irrelevant as the concept of diagnosis defined here does not make any assumptions about
errors themselves. There can, however, be instances where an ontology is faulty and the empty diagnosis
is the only minimal diagnosis, e.g. if some axioms are missing and nothing must be changed.

The extension EX plays an important role in the ontology repair process, suggesting axioms that
should be added to the ontology. For instance, in Example 15.1 the user requires that the target ontology

266 CHAPTER 15. MOTIVATING EXAMPLES AND BASIC CONCEPTS

must not entail {B(w)} but has to entail {B(v)}, that is N = {{B(w)}} and P = {{B(v)}}. Because,
the example ontology O is inconsistent some sentences must be changed. The consistent ontology O1 =
O \ D1 (along with the background axioms B) neither entails {B(v)} nor {B(w)} (in particular O1 ∪
B |= {¬B(w)}). Consequently, O1 has to be extended with a set EX of logical sentences in order to
entail {B(v)}. This set of logical sentences can be approximated with EX = {B(v)}. O1 ∪ B ∪ EX
is satisfiable, entails {B(v)} but does not entail {B(w)}. All other ontologies Oi = O \ Di, i =
2, 3, 4 (integrated with B) are consistent but entail {B(w), B(v)} and must be rejected because of the
monotonic semantics of description logic. That is, there is no such extension EX that (Oi ∪B∪EX) 6|=
{B(w)}. Therefore, the diagnosisD1 is the minimum cardinality diagnosis which allows the formulation
of the target ontology. Note that formulation of the complete extension is impossible, since our diagnosis
approach deals with changes to existing axioms and does not learn new axioms.

The following corollary characterizes diagnoses without employing the true extension EX to formu-
late the target ontology. The idea is to use the sentences which must be entailed by the target ontology to
approximate EX as shown above.

Corollary 15.1. Given a diagnosis problem instance 〈O,B, P,N〉, a set of axioms D ⊆ O is a diagnosis
iff

(O \ D) ∪ B ∪
⋃
p∈P

p (Condition 1)

is satisfiable (coherent) and

∀n ∈ N : (O \ D) ∪ B ∪
⋃
p∈P

p 6|= n (Condition 2)

Proof sketch: (⇒) LetD ⊆ O be a diagnosis for 〈O,B, P,N〉. Since there is anEX s.t. (O\D)∪B∪EX
is satisfiable (coherent) and (O\D)∪B∪EX |= p for all p ∈ P , it follows that (O\D)∪B∪EX∪

⋃
p∈P p

is satisfiable (coherent) and therefore (O \ D) ∪ B ∪
⋃

p∈P p is satisfiable (coherent). Consequently,
the first condition of the corollary is fulfilled. Since (O \ D) ∪ B ∪ EX |= p for all p ∈ P and
(O \ D) ∪ B ∪ EX 6|= n for all n ∈ N it follows that (O \ D) ∪ B ∪ EX ∪

⋃
p∈P p 6|= n for all n ∈ N .

Consequently, (O \ D) ∪ B ∪
⋃

p∈P p 6|= n for all n ∈ N and the second condition of the corollary is
fulfilled.

(⇐) Let D ⊆ O and 〈O,B, P,N〉 be a diagnosis problem instance. Without limiting generality let
EX = P . By Condition 1 of the corollary (O \ D) ∪ B ∪

⋃
p∈P p is satisfiable (coherent). Therefore,

for EX = P the sentences (O \ D) ∪ B ∪ EX are satisfiable (coherent), i.e. the first condition for a
diagnosis is fulfilled and these sentences entail p for all p ∈ P which corresponds to the second condition
a diagnosis must fulfill. Furthermore, by Condition 2 of the corollary (O \ D) ∪ B ∪ EX 6|= n for all
n ∈ N holds and therefore the third condition for a diagnosis is fulfilled. Consequently, D ⊆ O is a
diagnosis for 〈O,B, P,N〉.

Conflict sets, which are the parts of the ontology that preserve the inconsistency/incoherency, are
usually employed to constrain the search space during computation of diagnoses.

Definition 15.5. Given a diagnosis problem instance 〈O,B, P,N〉, a set of axioms CS ⊆ O is a conflict
set iff CS ∪ B ∪

⋃
p∈P p is inconsistent (incoherent) or n ∈ N exists s.t. CS ∪ B ∪

⋃
p∈P p |= n.

Definition 15.6. A conflict set CS for an instance 〈O,B, P,N〉 is minimal iff there is no CS′ ⊂ CS such
that CS′ is a conflict set.

A set of minimal conflict sets can be used to compute the set of minimal diagnoses as shown in [Rei87].
The idea is that each diagnosis must include at least one element of each minimal conflict set.

Proposition 15.4. D is a minimal diagnosis for the diagnosis problem instance 〈O,B, P,N〉 iff D is a
minimal hitting set for the set of all minimal conflict sets of 〈O,B, P,N〉.

267

Ontology Entailments
O1 ∅
O2 {B(w)}
O3 {B(w), C(w)}
O4 {B(w), C(w), D(w)}

Table 15.1: Entailments of ontologies Oi = (O \ Di) , i = 1, . . . , 4 (integrated with B) in Example 15.1
returned by realization.

Given a set of sets S, a set H is a hitting set of S iff H ∩ Si 6= ∅ for all Si ∈ S and H ⊆
⋃

Si∈S Si.
Most modern ontology diagnosis methods [SHCH07, KPHS07, FS05, HPS08] are implemented accord-
ing to Proposition 28.2 and differ only in details, such as how and when (minimal) conflict sets are
computed, the order in which hitting sets are generated, etc.

Differentiating between Diagnoses

The diagnosis method usually generates a set of diagnoses for a given diagnosis problem instance. Thus,
in Example 15.1 an ontology debugger returns a set of four minimal diagnoses {D1, . . . ,D4}. As ex-
plained in the previous section, additional information, i.e. sets of sets of logical sentences P and N , can
be used by the debugger to reduce the set of diagnoses. However, in the general case the user does not
know which sets P and N to provide to the debugger such that the target diagnosis will be identified.
Therefore, the debugger should be able to identify sets of logical sentences on its own and only ask the
user or some other oracle, whether these sentences must or must not be entailed by the target ontology. To
generate these sentences the debugger can apply each of the diagnoses in D = {D1, . . . ,Dn} and obtain
a set of ontologies Oi = O \ Di , i = 1, . . . , n that fulfill the user requirements. For each ontology Oi a
description logic reasoner can generate a set of entailments such as entailed subsumptions provided by the
classification service and sets of class assertions provided by the realization service. These entailments
can be used to discriminate between the diagnoses, as different ontologies entail different sets of sen-
tences due to extensivity of the entailment relation. Note that in the examples provided in this section we
consider only two types of entailments, namely subsumption and class assertion. In general, the approach
presented in this work is not limited to these types and can use all of the entailment types supported by a
reasoner.

For instance, in Example 15.1 for each ontology Oi = (O \ Di) , i = 1 . . . 4 (integrated with B) the
realization service of a reasoner returns the set of class assertions presented in Table 15.1. Without any
additional information the debugger cannot decide which of these sentences must be entailed by the target
ontology. To obtain this information the diagnosis method must query an oracle that can specify whether
the target ontology entails some set of sentences or not. E.g. the debugger could ask an oracle if {D(w)}
is entailed by the target ontology (Ot |= {D(w)}). If the answer is yes, then {D(w)} is added to P and
D4 is considered as the target diagnosis. All other diagnoses are rejected because (O\Di)∪B∪{D(w)}
for i = 1, 2, 3 is inconsistent. If the answer is no, then {D(w)} is added to N and D4 is rejected as
(O \D4) ∪ B |= {D(w)} and we have to ask the oracle another question. In the following we consider a
query Q as a set of logical sentences such that Ot |= Q holds iff Ot |= qi for all qi ∈ Q.

Property 1. Given a diagnosis problem instance 〈O,B, P,N〉, a set of diagnoses D, a set of logical
sentences Q representing the query (Ot |= Q) and an oracle able to evaluate the query:

If the oracle answers yes then every diagnosis Di ∈ D is a diagnosis for P ∪ {Q} iff both conditions

268 CHAPTER 15. MOTIVATING EXAMPLES AND BASIC CONCEPTS

hold:

(O \ Di) ∪ B ∪
⋃
p∈P

p ∪Q is consistent (coherent)

∀n ∈ N : (O \ Di) ∪ B ∪
⋃
p∈P

p ∪Q 6|= n

If the oracle answers no then every diagnosis Di ∈ D is a diagnosis for N ∪ {Q} iff both conditions
hold:

(O \ Di) ∪ B ∪
⋃
p∈P

p is consistent (coherent)

∀n ∈ (N ∪ {Q}) : (O \ Di) ∪ B ∪
⋃
p∈P

p 6|= n

In particular, a query partitions the set of diagnoses D into three disjoint subsets.

Definition 15.7. For a query Q, each diagnosis Di ∈ D of a diagnosis problem instance 〈O,B, P,N〉
can be assigned to one of the three sets DP, DN or D∅ where

• Di ∈ DP iff it holds that
(O \ Di) ∪ B ∪

⋃
p∈P

p |= Q

• Di ∈ DN iff it holds that
(O \ Di) ∪ B ∪

⋃
p∈P

p ∪Q

is inconsistent (incoherent).

• Di ∈ D∅ iff Di ∈ D \
(
DP ∪DN

)
Given a diagnosis problem instance we say that the diagnoses in DP predict a positive answer (yes)

as a result of the query Q, diagnoses in DN predict a negative answer (no), and diagnoses in D∅ do not
make any predictions.

Property 2. Given a diagnosis problem instance 〈O,B, P,N〉, a set of diagnoses D, a query Q and an
oracle:

If the oracle answers yes then the set of rejected diagnoses is DN and the set of remaining diagnoses
is DP ∪D∅.

If the oracle answers no then the set of rejected diagnoses is DP and the set of remaining diagnoses
is DN ∪D∅.

Consequently, given a query Q either DP or DN is eliminated but D∅ always remains after the query
is answered. For generating queries we have to investigate for which subsets DP,DN ⊆ D a query exists
that can differentiate between these sets. A straight forward approach is to investigate all possible subsets
of D. In our evaluation we show that this is feasible if we limit the number n of minimal diagnoses to
be considered during query generation and selection. E.g. for n = 9, the algorithm has to verify 512
possible partitions in the worst case.

Given a set of diagnoses D for the ontology O, a set P of sets of sentences that must be entailed by
the target ontology Ot and a set of background axioms B, the set of partitions PR for which a query
exists can be computed as follows:

269

1. Generate the power set P (D), PR← ∅

2. Assign an element of P (D) to the set DP
i and generate a set of common entailments Ei of all

ontologies (O \ Dj) ∪ B ∪
⋃

p∈P p, where Dj ∈ DP
i

3. If Ei = ∅, then reject the current element DP
i , i.e. set P (D) ← P (D) \ {DP

i } and goto Step 2.
Otherwise set Qi ← Ei.

4. Use Definition 15.7 and the queryQi to classify the diagnosesDk ∈ D\DP
i into the sets DP

i , DN
i

and D∅i . The generated partition is added to the set of partitions PR← PR∪{
〈
Qi,D

P
i ,D

N
i ,D

∅
i

〉
}

and set P (D)← P (D) \ {DP
i }. If P (D) 6= ∅ then go to Step 2.

In Example 15.1 the set of diagnoses D of the ontology O contains 4 elements. Therefore, the power
set P (D) includes 15 elements {{D1}, {D2} , . . . , {D1,D2,D3,D4}}, assuming we omit the element
corresponding to ∅ as it does not contain any diagnoses to be evaluated. Moreover, assume that P and N
are empty. In each iteration an element of P (D) is assigned to the set DP

i . For instance, the algorithm
assigns DP

1 = {D1,D2}. In this case the set of common entailments is empty as (O \ D1) ∪ B has no
entailed sentences (see Table 15.1). Therefore, the set {D1,D2} is rejected and removed from P (D).
Assume that in the next iteration the algorithm selects DP

2 = {D2,D3}. In this case the set of common
entailments E2 = {B(w)} is not empty and so Q2 = {B(w)}. The remaining diagnoses D1 and D4 are
classified according to Definition 15.7. That is, the algorithm selects the first diagnosis D1 and verifies
whether (O \ D1) ∪ B |= {B(w)}. Given the negative answer of the reasoner, the algorithm checks
if (O \ D1) ∪ B ∪ {B(w)} is inconsistent. Since the condition is satisfied the diagnosis D1 is added
to the set DN

2 . The second diagnosis D4 is added to the set DP
2 as it satisfies the first requirement

(O \ D4) ∪ B |= {B(w)}. The resulting partition 〈{B(w)}, {D2,D3,D4}, {D1}, ∅〉 is added to the set
PR.

However, a query need not include all of the entailed sentences. If a query Q partitions the set of
diagnoses into DP, DN and D∅ and an (irreducible) subset Q′ ⊂ Q exists which preserves the partition
then it is sufficient to query Q′. In our example, Q2 : {B(w), C(w)} can be reduced to its subset
Q′2 : {C(w)}. If there are multiple irreducible subsets that preserve the partition then we select one of
them.

All of the queries and their corresponding partitions generated in Example 15.1 are presented in
Table 15.2. Given these queries the debugger has to decide which one should be asked first in order to
minimize the number of queries to be answered. A popular query selection heuristic (called “split-in-
half”) prefers queries which allow half of the diagnoses to be removed from the set D regardless of the
answer of an oracle.

Using the data presented in Table 15.2, the “split-in-half” heuristic determines that asking the oracle
if (Ot |= {C(w)}) is the best query (i.e. the reduced query Q2), as two diagnoses from the set D
are removed regardless of the answer. Assuming that D1 is the target diagnosis, then an oracle will
answer no to our question (i.e. Ot 6|= {C(w)}). Based on this feedback, the diagnoses D3 and D4

are removed according to Property 2. Given the updated set of diagnoses D and P = {{C(w)}} the
partitioning algorithm returns the only partition 〈{B(w)} , {D2} , {D1} , ∅〉. The heuristic then selects
the query {B(w)}, which is also answered with no by the oracle. Consequently, D1 is identified as the
only remaining minimal diagnosis.

In general, if n is the number of diagnoses and we can split the set of diagnoses in half with each query,
then the minimum number of queries is log2n. Note that this minimum number of queries can only be
achieved when all minimal diagnoses are considered at once, which is intractable even for relatively small
values of n.

However, in case probabilities of diagnoses are known we can reduce the number of queries by utiliz-
ing two effects:

270 CHAPTER 15. MOTIVATING EXAMPLES AND BASIC CONCEPTS

Query DP DN D∅

Q1 : {B(w)} {D2,D3,D4} {D1} ∅
Q2 : {B(w), C(w)} {D3,D4} {D1,D2} ∅
Q3 : {B(w), C(w), Q(w)} {D4} {D1,D2,D3} ∅

Table 15.2: Possible queries in Example 15.1

1. We can exploit diagnoses probabilities to assess the likelihood of each answer and the expected
value of the information contained in the set of diagnoses after an answer is given.

2. Even if multiple diagnoses remain, further query generation may not be required if one diagnosis
is highly probable and all other remaining diagnoses are highly improbable.

Example 15.2 Consider an ontology O with the terminology T :

ax 1 : A1 v A2 uM1 uM2 ax 4 : M2 v ∀s.A uD
ax 2 : A2 v ¬∃s.M3 u ∃s.M2 ax 5 : M3 ≡ B t C
ax 3 : M1 v ¬A uB

and the background theory containing the assertions A : {A1(w), A1(u), s(u,w)}.
The ontology along with the background theory is inconsistent and the set of minimal conflict sets

CS = {〈ax 1, ax 3, ax 4〉 , 〈ax 1, ax 2, ax 3, ax 5〉}. To restore consistency, the user should modify all
axioms of at least one minimal diagnosis:

D1 : [ax 1] D3 : [ax 4, ax 5]

D2 : [ax 3] D4 : [ax 4, ax 2]

Following the same approach as in Example 15.1, we compute a set of possible queries and corre-
sponding partitions using the algorithm presented above. A set of possible irreducible queries for Exam-
ple 15.2 and their partitions are presented in Table 15.3. These queries partition the set of diagnoses D in
a way that makes the application of myopic strategies, such as “split-in-half”, inefficient. A greedy algo-
rithm based on such a heuristic would first select the first query Q1, since there is no query that cuts the
set of diagnoses in half. If D4 is the target diagnosis then Q1 will be answered with yes by an oracle (see
Figure 15.1). In the next iteration the algorithm would also choose a suboptimal query, the first untried
query Q2, since there is no partition that divides the diagnoses D1, D2, and D4 into two groups of equal
size. Once again, the oracle answers yes, and the algorithm identifies query Q4 to differentiate between
D1 and D4.

Query DP DN D∅

Q1 : {B vM3} {D1,D2,D4} {D3} ∅
Q2 : {B(w)} {D3,D4} {D2} {D1}
Q3 : {M1 v B} {D1,D3,D4} {D2} ∅
Q4 : {M1(w),M2(u)} {D2,D3,D4} {D1} ∅
Q5 : {A(w)} {D2} {D3,D4} {D1}
Q6 : {M2 v D} {D1,D2} ∅ {D3,D4}
Q7 : {M3(u)} {D4} ∅ {D1,D2,D3}

Table 15.3: Possible queries in Example 15.2

271

However, in real-world settings the assumption that all axioms fail with the same probability is rarely
the case. For example, Roussey et al. [RCVB09] present a list of “anti-patterns” where an anti-pattern
is a set of axioms, such as {C1 v ∀R.C2, C1 v ∀R.C3, C2 ≡ ¬C3} that corresponds to a minimal
conflict set. The study performed by [RCVB09] shows that such conflict sets often occur in practice due
to frequent misuse of certain language constructs like quantification or disjointness. Such studies are ideal
sources for estimating prior fault probabilities. However, this is beyond the scope of our work presented
in this part.

Our approach for computing the prior fault probabilities of axioms is inspired by [RDH+04] and
considers the syntax of a knowledge representation language, such as restrictions, conjunction, negation,
etc. For instance, if a user frequently changes the universal to the existential quantifier and vice versa in
order to restore coherency, then we can assume that axioms including such restrictions are more likely
to fail than the other ones. In [RDH+04] the authors report that in most cases inconsistent ontologies
are created because users (a) mix up ∀r.S and ∃r.S, (b) mix up ¬∃r.S and ∃r.¬S, (c) mix up t and
u, (d) wrongly assume that classes are disjoint by default or overuse disjointness, or (e) wrongly apply
negation. Observing that misuses of quantifiers are more likely than other failure patterns one might find
that the axioms ax 2 and ax 4 are more likely to be faulty than ax 3 (because of the use of quantifiers),
whereas ax 3 is more likely to be faulty than ax 5 and ax 1 (because of the use of negation).

Detailed justifications of diagnoses probabilities are given in the next section. However, let us assume
some probability distribution of the faults according to the observations presented above such that: (a) the
diagnosis D2 is the most probable one, i.e. single fault diagnosis of an axiom containing a negation;
(b) although D4 is a double fault diagnosis, it follows D2 closely as its axioms contain quantifiers; (c) D1

and D3 are significantly less probable than D4 because conjunction/disjunction in ax 1 and ax 5 have a
significantly lower fault probability than negation in ax 3. Taking this information into account asking
query Q1 is essentially useless because it is highly probable that the target diagnosis is either D2 or
D4 and, therefore, it is highly probable that the oracle will respond with yes. Instead, asking Q3 is
more informative because regardless of the answer we can exclude one of the highly probable diagnoses,
i.e. either D2 or D4. If the oracle responds to Q3 with no then D2 is the only remaining diagnosis.
However, if the oracle responds with yes, diagnoses D4, D3, and D1 remain, where D4 is significantly
more probable compared to diagnoses D3 and D1. If the difference between the probabilities of the
diagnoses is high enough such thatD4 can be accepted as the target diagnosis, no additional questions are
required. Obviously this strategy can lead to a substantial reduction in the number of queries compared
to myopic approaches as we demonstrate in our evaluation.

Note that in real-world application scenarios failure patterns and their probabilities can be discov-
ered by analyzing the debugging actions of a user in an ontology editor, like Protégé. Learning of fault
probabilities can be used to “personalize” the query selection algorithm to prefer user-specific faults.

{D4} {D1} {D1} {D2}

{D1,D4} : Q4 {D1,D2} : Q3

{D1,D2,D4} : Q2 {D3}

{D1,D2,D3,D4} : Q1

yes{{ no ## yes{{ no ##

yesuu
no

##

no ##

yes

{{

Figure 15.1: The search tree of the greedy algorithm

272 CHAPTER 15. MOTIVATING EXAMPLES AND BASIC CONCEPTS

However, as our evaluation shows, even a rough estimate of the probabilities is capable of outperforming
the “split-in-half” heuristic.

Chapter 16

Entropy-Based Query Selection

To select the best query we exploit a-priori failure probabilities of each axiom derived from the syntax
of description logics or some other knowledge representation language, such as OWL. That is, the user
is able to specify own beliefs in terms of the probability of syntax element such as ∀, ∃, u, etc. being
erroneous; alternatively, the debugger can compute these probabilities by analyzing the frequency of
various syntax elements in the target diagnoses of different debugging sessions. If no failure information
is available then the debugger can initialize all of the probabilities with some small value. Compared
to statistically well-founded probabilities, the latter approach provides a suboptimal but useful diagnosis
discrimination process, as discussed in the evaluation.

Given the failure probabilities of all syntax elements se ∈ S of a knowledge representation language
used in O, we can compute the failure probability of an axiom ax i ∈ O

p(ax i) = p(Fse1 ∪ Fse2 ∪ · · · ∪ Fsen)

where Fse1 . . . Fsen represent the events that the occurrence of a syntax element sej in ax i is faulty. E.g.
for ax2 of Example 15.2 p(ax2) = p(Fv ∪ F¬ ∪ F∃ ∪ Fu ∪ F∃). Assuming that each occurrence of a
syntax element fails independently, i.e. an erroneous usage of a syntax element sek makes it neither more
nor less probable that an occurrence of syntax element sej is faulty, the failure probability of an axiom is
computed as:

p(ax i) = 1−
∏
se∈S

(1− Fse)
c(se) (16.1)

where c(sej) returns number of occurrences of the syntax element sej in an axiom ax i. If among other
failure probabilities the user states that p(Fv) = 0.001, p(F¬) = 0.01, p(F∃) = 0.05 and p(Fu) = 0.001
then p(ax 2) = p(Fv ∪ F¬ ∪ F∃ ∪ Fu ∪ F∃) = 0.108.

Given the failure probabilities p(ax i) of axioms, the diagnosis algorithm first calculates the a-priori
probability p(Dj) that Dj is the target diagnosis. Since all axioms fail independently, this probability can
be computed as [dKW87]:

p(Dj) =
∏

axn ∈Dj

p(axn)
∏

axm ∈O\Dj

1− p(axm) (16.2)

The prior probabilities for diagnoses are then used to initialize an iterative algorithm that includes two
main steps: (a) the selection of the best query and (b) updating the diagnoses probabilities given query
feedback.

273

274 CHAPTER 16. ENTROPY-BASED QUERY SELECTION

According to information theory the best query is the one that, given the answer of an oracle, min-
imizes the expected entropy of the set of diagnoses [dKW87]. Let p(Qi = yes) be the probability that
query Qi is answered with yes and p(Qi = no) be the probability for the answer no. Furthermore, let
p(Dj |Qi = yes) be the probability of diagnosis Dj after the oracle answers yes and p(Dj |Qi = no) be
the probability after the oracle answers no. The expected entropy after querying Qi is:

He(Qi) =
∑

v∈{yes,no}

p(Qi = v)
∑
Dj∈D

−p(Dj |Qi = v) log2 p(Dj |Qi = v)

Based on a one-step-look-ahead information theoretic measure, the query which minimizes the ex-
pected entropy is considered best. This formula can be simplified to the following score function [dKW87]
which we use to evaluate all available queries and select the one with the minimum score to maximize
information gain:

sc(Qi) =
∑

v∈{yes,no}

[
p(Qi = v) log2p(Qi = v)

]
+ p(D∅i) + 1 (16.3)

where v ∈ {yes, no} is a feedback of an oracle and D∅i is the set of diagnoses which do not make any
predictions for the query Qi. The probability of the set of diagnoses p(D∅i) as well as of any other set of
diagnoses Di like DP

i and DN
i is computed as:

p(Di) =
∑
Dj∈Di

p(Dj)

because by Definition 28.2, each diagnosis uniquely partitions all of the axioms of an ontology O into
two sets, correct and faulty, and thus all diagnoses are mutually exclusive events.

Since, for a query Qi, the set of diagnoses D can be partitioned into the sets DP
i , DN

i and D∅i , the
probability that an oracle will answer a query Qi with either yes or no can be computed as:

p(Qi = yes) = p(DP
i) + p(D∅i)/2

p(Qi = no) = p(DN
i) + p(D∅i)/2

(16.4)

Clearly this assumes that for each diagnosis of D∅i both outcomes are equally likely and thus the
probability that the set of diagnoses D∅i predicts either Qi = yes or Qi = no is p(D∅i)/2.

Following feedback v for a query Qs, i.e. Qs = v, the probabilities of the diagnoses must be updated
to take the new information into account. The update is made using Bayes’ rule for each Dj ∈ D:

p(Dj |Qs = v) =
p(Qs = v|Dj)p(Dj)

p(Qs = v)
(16.5)

where the denominator p(Qs = v) is known from the query selection step (Equation 16.4) and p(Dj)
is either a prior probability (Equation 16.2) or is a probability calculated using Equation 16.5 after a
previous iteration of the debugging algorithm. We assign p(Qs = v|Dj) as follows:

p(Qs = v|Dj) =

1, if Dj predicted Qs = v;
0, if Dj is rejected by Qs = v;
1
2 , if Dj ∈ D∅s

Example 16.1 (Example 15.1 continued) Suppose that the debugger is not provided with any informa-
tion about possible failures and therefore assumes that all syntax elements fail with the same probability

275

Query Initial score Q2 = yes
Q1 : {B(w)} 0.1887 0
Q2 : {C(w)} 0 1
Q3 : {Q(w)} 0.1887 1

Table 16.1: Expected scores for minimized queries (p(ax i) = 0.01)

Query Initial score
Q1 : {B(w)} 0.250
Q2 : {C(w)} 0.408
Q3 : {Q(w)} 0.629

Table 16.2: Expected scores for minimized queries (p(ax1) = 0.025, p(ax2) = p(ax3) = p(ax4) = 0.01)

0.01 and therefore p(ax i) = 0.01 for all ax i ∈ O. Using Equation 16.2 we can calculate probabilities
for each diagnosis. For instance, D1 suggests that only one axiom ax 1 should be modified by the user.
Hence, we can calculate the probability of diagnosisD1 as p(D1) = p(ax 1)(1−p(ax 2))(1−p(ax 3))(1−
p(ax 4)) = 0.0097. All other minimal diagnoses have the same probability, since every other minimal
diagnosis suggests the modification of one axiom. To simplify the discussion we only consider minimal
diagnoses for query selection. Therefore, the prior probabilities of the diagnoses can be normalized to
p(Dj) = p(Dj)/

∑
Dj∈D p(Dj) and are equal to 0.25.

Given the prior probabilities of the diagnoses and a set of queries (see Table 15.2) we evaluate the
score function (Equation 16.3) for each query. E.g. for the first query Q1 : {B(w)} the probability
p(D∅) = 0 and the probabilities of both the positive and negative outcomes are: p(Q1 = 1) = p(D2) +
p(D3) + p(D4) = 0.75 and p(Q1 = 0) = p(D1) = 0.25. Therefore the query score is sc(Q1) = 0.1887.

The scores computed during the initial stage (see Table 16.1) suggest thatQ2 is the best query. Taking
into account thatD1 is the target diagnosis the oracle answers no to the query. The additional information
obtained from the answer is then used to update the probabilities of diagnoses using the Equation 16.5.
Since D1 and D2 predicted this answer, their probabilities are updated, p(D1) = p(D2) = 1/p(Q2 =
1) = 0.5. The probabilities of diagnoses D3 and D4 which are rejected by the oracle’s answer are also
updated, p(D3) = p(D4) = 0.

In the next iteration the algorithm recomputes the scores using the updated probabilities. The results
show that Q1 is the best query. The other two queries Q2 and Q3 are irrelevant since no information
will be gained if they are asked. Given the oracle’s negative feedback to Q1, we update the probabilities
p(D1) = 1 and p(D2) = 0. In this case the target diagnosis D1 was identified using the same number of
steps as the “split-in-half” heuristic.

However, if the user specifies that the first axiom is more likely to fail, e.g. p(ax 1) = 0.025, then
Q1 : {B(w)} will be selected first (see Table 16.2). The recalculation of the probabilities given the
negative outcome Q1 = 0 sets p(D1) = 1 and p(D2) = p(D3) = p(D4) = 0. Therefore the debugger
identifies the target diagnosis in only one step.

Example 16.2 (Example 15.2 continued) Suppose that in ax 4 the user specified ∀s.A instead of ∃s.A
and ¬∃s.M3 instead of ∃s.¬M3 in ax 2. Therefore D4 is the target diagnosis. Moreover, assume that the
debugger is provided with observations of three types of faults: (1) conjunction/disjunction occurs with
probability p1 = 0.001, (2) negation p2 = 0.01, and (3) restrictions p3 = 0.05. Using Equation 16.1
we can calculate the probability of the axioms containing an error: p(ax 1) = 0.0019, p(ax 2) = 0.1074,
p(ax 3) = 0.012, p(ax 4) = 0.051, and p(ax 5) = 0.001. These probabilities are exploited to calculate
the prior probabilities of the diagnoses (see Table 16.3) and to initialize the query selection process. To

276 CHAPTER 16. ENTROPY-BASED QUERY SELECTION

Answers D1 D2 D3 D4

Prior 0.0970 0.5874 0.0026 0.3130
Q3 = yes 0.2352 0 0.0063 0.7585
Q3 = yes, Q4 = yes 0 0 0.0082 0.9918
Q3 = yes, Q4 = yes, Q1 = yes 0 0 0 1

Table 16.3: Probabilities of diagnoses after answers

Queries Initial Q3 = yes Q3 = yes, Q4 = yes
Q1 : {B vM3} 0.974 0.945 0.931
Q2 : {B(w)} 0.151 0.713 1
Q3 : {M1 v B} 0.022 1 1
Q4 : {M1(w),M2(u)} 0.540 0.213 1
Q5 : {A(w)} 0.151 0.713 1
Q6 : {M2 v D} 0.686 0.805 1
Q7 : {M3(u)} 0.759 0.710 0.970

Table 16.4: Expected scores for queries

simplify matters we focus on the set of minimal diagnoses.
In the first iteration the algorithm determines that Q3 is the best query and asks the oracle whether

Ot |= {M1 v B} is true or not (see Table 16.4). The obtained information is then used to recalculate
the probabilities of the diagnoses and to compute the next best subsequent query, i.e. Q4, and so on.
The query process stops after the third query, since D4 is the only diagnosis that has the probability
p(D4) > 0.

Given the feedback of the oracle Q4 = yes for the second query, the updated probabilities of the
diagnoses show that the target diagnosis has a probability of p(D4) = 0.9918 whereas p(D3) is only
0.0082. In order to reduce the number of queries a user can specify a threshold, e.g. σ = 0.95. If
the absolute difference in probabilities of two most probable diagnoses is greater than this threshold, the
query process stops and returns the most probable diagnosis. Therefore, in this example the debugger
based on the entropy query selection requires less queries than the “split-in-half” heuristic. Note that
already after the first answer Q3 = yes the most probable diagnosis D4 is three times more likely than
the second most probable diagnosis D1. Given such a great difference we could suggest to stop the query
process after the first answer if the user would set σ = 0.65.

Chapter 17

Implementation Details

The iterative ontology debugger (Algorithm 11) takes a faulty ontologyO as input. Optionally, a user can
provide a set of axioms B that are known to be correct as well as a set P of axioms that must be entailed
by the target ontology and a set N of axioms that must not. If these sets are not given, the corresponding
input arguments are initialized with ∅. Moreover, the algorithm takes a set FP of fault probabilities for
axioms ax i ∈ O, which can be computed as described in Chapter 16 by exploiting knowledge about
typical user errors. Alternatively, if no estimates of such probabilities are available, all probability values
can be initialized using a small constant. We show the results of such a strategy in our evaluation section.
The two other arguments σ and n are used to improve the performance of the algorithm. σ specifies
the diagnosis acceptance threshold, i.e. the minimum difference in probabilities between the most likely
and second-most likely diagnoses. The parameter n defines the maximum number of most probable
diagnoses that should be considered by the algorithm during each iteration. A further performance gain
in Algorithm 11 can be achieved if we approximate the set of the nmost probable diagnoses with the set of
the nmost probable minimal diagnoses, i.e. we neglect non-minimal diagnoses. We call this set of at most
nmost probable minimal diagnoses the leading diagnoses. Note, under the reasonable assumption that the
fault probability of each axiom p(ax i) is less than 0.5, for every non-minimal diagnosis ND a minimal
diagnosisD ⊂ ND exists which from Equation 16.2 is more probable thanND. Consequently the query
selection algorithm presented here operates on the set of minimal diagnoses instead of all diagnoses (i.e.
non-minimal diagnoses are excluded). However, the algorithm can be adapted with moderate effort to
also consider non-minimal diagnoses.

We use the approach proposed by Friedrich et al. [FS05] to compute diagnoses and employ the combi-
nation of two algorithms, QUICKXPLAIN [Jun04] and HS-TREE [Rei87]. In a standard implementation
the latter is a breadth-first search algorithm that takes an ontology O, sets P and N , and the maximum
number of most probable minimal diagnoses n as an input. The algorithm generates minimal hitting sets
using minimal conflict sets, which are computed on-demand. This is motivated by the fact that in some
circumstances a subset of all minimal conflict sets is sufficient for generating a subset of all required
minimal diagnoses. For instance, in Example 15.2 the user wants to compute only n = 2 leading minimal
diagnoses and a minimal conflict search algorithm returns CS1. In this case HS-TREE identifies two re-
quired minimal diagnoses D1 and D2 and avoiding the computation of the minimal conflict set CS2. Of
course, in the worst case, when all minimal diagnoses have to be computed the algorithm should compute
all minimal conflict sets. In addition, the HS-TREE generation reuses minimal conflict sets in order to
avoid unnecessary computations. Thus, in the real-world scenarios we evaluated (see Table 18.1), less
than 10 minimal conflict sets were contained in the faulty ontologies having at most 13 elements while
the maximal cardinality of minimal diagnoses was observed to be at most 9. Therefore, space limitations
were not a problem for the breadth-first generation. However, for scenarios involving diagnoses of greater

277

278 CHAPTER 17. IMPLEMENTATION DETAILS

Algorithm 11 ONTODEBUGGING(O,B, P,N, FP, n, σ)

Input: ontology O, set B of background axioms, set P of sets of logical sentences to be entailed, set N of sets
of logical sentences not to be entailed, set FP of fault probabilities for axioms, maximum number n of most
probable minimal diagnoses, acceptance threshold σ

Output: a diagnosis D

1: DP ← ∅
2: QH ← ∅
3: T ← 〈∅, ∅, ∅, ∅〉
4: while BELOWTHRESHOLD(DP, σ) ∧ GETSCORE(T) 6= 1 do
5: DP ← HS-TREE(O,B, P,N, FP,QH, n)
6: T ← SELECTQUERY(DP,O,B, P)
7: Q← GETQUERY(T)
8: if Q = ∅ then
9: exit loop

10: if GETANSWER(Ot |= Q) then
11: P ← P ∪ {Q}
12: else
13: N ← N ∪ {Q}
14: QH ← QH ∪ {T}
15: return MOSTPROBABLEDIAGNOSIS(DP)

cardinalities iterative-deepening strategies could be applied.
In our implementation of HS-TREE we use the uniform-cost search strategy. Given additional in-

formation in terms of axiom fault probabilities FP , the algorithm expands a leaf node in a search-tree
if it is an element of the path corresponding to the maximum probability hitting set of minimal conflict
sets computed so far. The probability of each minimal hitting set can be computed using Equation 16.2.
Consequently, the algorithm computes a set of diagnoses ordered by their probability starting from the
most probable one. HS-TREE terminates if either the n most probable minimal diagnoses are identified
or no further minimal diagnoses can be found. Thus the algorithm computes at most nminimal diagnoses
regardless of the number of all minimal diagnoses.

HS-TREE uses QUICKXPLAIN to compute required minimal conflicts. This algorithm, given a set
of axioms AX and a set of correct axioms B returns a minimal conflict set CS ⊆ AX , or ∅ if axioms
AX ∪ B are consistent. In the worst case, to compute a minimal conflict QUICKXPLAIN performs
2k(log(s/k) + 1) consistency checks, where k is the size of the generated minimal conflict set and s
is the number of axioms in the ontology. In the best case only log(s/k) + 2k are performed [Jun04].
Importantly, the size of the ontology is contained in the log function. Therefore, the time needed for
consistency checks in our test ontologies remained below 0.2 seconds, even for real world knowledge
bases with thousands of axioms. The maximum time to compute a minimal conflict was observed in the
Sweet-JPL ontology and took approx. 5 seconds (see Table 18.2).

In order to take past answers into account the HS-TREE updates the prior probabilities of the diag-
noses by evaluating Equation 16.5. All required data is stored in the query history QH as well as in
the sets P and N . When complete, HS-TREE returns a set of tuples of the form 〈Di, p(Di)〉 where Di

is contained in the set of the n most probable minimal diagnoses (leading diagnoses) and p(Di) is its
probability calculated using Equation 16.2 and Equation 16.5.

In the query-selection phase Algorithm 11 calls SELECTQUERY function (Algorithm 12) to generate
a tuple T =

〈
Q,DP,DN,D∅

〉
, where Q is the minimum score query (Equation 16.3) and DP,DN

and D∅ the sets of diagnoses constituting the partition. The generation algorithm carries out a depth-
first search, removing the top element of the set D and calling itself recursively to generate all possible

279

Algorithm 12 SELECTQUERY(DP,O,B, P)

Input: set DP of tuples 〈Di, p(Di)〉, ontology O, set of background axioms B, set P of sets of logical sentences
that must be entailed by the target ontology

Output: a tuple
〈
Q,DP,DN,D∅

〉
1: D← GETDIAGNOSES(DP)
2: T ← GENERATE(∅,D,O,B, P,DP)
3: return MINIMIZEQUERY(T)

4: procedure GENERATE(DP, D,O,B, P,DP) returns a tuple
〈
Q,DP,DN,D∅

〉
5: if D = ∅ then
6: D← GETDIAGNOSES(DP)
7: return CREATEQUERY(DP,O,B, P,D)

8: D ← POP(D)
9: left ← GENERATE(DP, D,O,B, P,DP)

10: right ← GENERATE(DP ∪ {D} , D,O,B, P,DP)
11: if GETSCORE(left , DP) < GETSCORE(right , DP) then
12: return left
13: else
14: return right

subsets of the leading diagnoses. The set of leading diagnoses D is extracted from the set of tuples
DP by the GETDIAGNOSES function. In each leaf node of the search tree the GENERATE function calls
CREATEQUERY creates a query given a set of diagnoses DP by computing common entailments and
partitioning the set of diagnoses D \ DP, as described in Section 15. If a query for the set DP does
not exist (i.e. there are no common entailments) or DP = ∅ then CREATEQUERY returns an empty tuple
T = 〈∅, ∅, ∅, ∅〉. In all inner nodes of the tree the algorithm selects a tuple that corresponds to a query with
the minimum score as found using the GETSCORE function. This function may implement the entropy-
based measure (Equation 16.3), “split-in-half” or any other preference criteria. Given an empty tuple T =
〈∅, ∅, ∅, ∅〉 the function returns the highest possible score of a used measure. In general, CREATEQUERY is
called 2n times, where we set n = 9 in our evaluation. Furthermore, for each leading diagnosis not in DP,
CREATEQUERY has to check if the associated query is entailed. If a query is not entailed, a consistency
check has to be performed. Entailments are determined by classification/realization and a subset check of
the generated sentences. Common entailments are computed by exploiting the intersection of entailments
for each diagnosis contained in DP. Note that the entailments for each leading diagnosis are computed
just once and reused in for subsequent calls of CREATEQUERY.

In the function MINIMIZEQUERY, the query Q of the resulting tuple
〈
Q,DP,DN,D∅

〉
is itera-

tively reduced by applying QUICKXPLAIN such that sets DP, DN and D∅ are preserved. This is im-
plemented by replacing the consistency checks performed by QUICKXPLAIN with checks that ensure
that the reduction of the query preserves the partition. In order to check if a partition is preserved,
a consistency/entailment check is performed for each element in DN and D∅. Elements of DP need
not be checked because these elements entail the query and therefore any reduction. In the worst case
n(2k log(s/k) + 2k) consistency checks have to be performed in MINIMIZEQUERY where k is the length
of the minimized query. Entailments of leading diagnoses are reused.

Algorithm 11 invokes the function GETQUERY to obtain the query from the tuple stored in T and calls
GETANSWER to query the oracle. Depending on the answer, Algorithm 11 extends either the set P or the
set N and thus excludes diagnoses not compliant with the query answer from the results of HS-TREE in
further iterations. Note, the algorithm can be easily adapted to allow the oracle to reject a query if the

280 CHAPTER 17. IMPLEMENTATION DETAILS

answer is unknown. In this case the algorithm proceeds with the next best query (w.r.t. the GETSCORE
function) until no further queries are available.

Algorithm 11 stops if the difference in the probabilities of the top two diagnoses is greater than the
acceptance threshold σ or if no query can be used to differentiate between the remaining diagnoses (i.e.
the score of the minimum score query equals to the maximum score of the used measure). The most
probable diagnosis is then returned to the user. If it is impossible to differentiate between a number of
highly probable minimal diagnoses, the algorithm returns a set that includes all of them. Moreover, in the
first case (termination due to σ), the algorithm can continue if the user is not satisfied with the returned
diagnosis and at least one further query exists.

Additional performance improvements can be achieved by using greedy strategies in Algorithm 12.
The idea is to guide the search such that a leaf node of the left-most branch of a search tree contains a set
of diagnoses DP that might result in a tuple

〈
Q,DP,DN,D∅

〉
with a low-score query. This method is

based on the property of Equation 16.3 that sc(Q) = 0 if∑
Di∈DP

p(Di) =
∑
Dj∈DN

p(Dj) = 0.5 and p(D∅) = 0

Consequently, the query selection problem can be presented as a two-way number partitioning problem:
given a set of numbers, divide them into two sets such that the difference between the sums of the numbers
in each set is as small as possible. The Complete Karmarkar-Karp (CKK) algorithm [Kor98], which is
one of the best algorithms developed for the two-way partitioning problem, corresponds to an extension of
the Algorithm 12 with a set differencing heuristic [KKLO86]. The algorithm stops if the optimal solution
to the two-way partitioning problem is found or if there are no further subsets to be investigated. In the
latter case the best found solution is returned.

The main drawback of applying CKK to the query selection process is that none of the pruning
techniques can be used. Also even if the algorithm finds an optimal solution to the two-way partitioning
problem there just might be no query for a found set of diagnoses DP. Moreover, since the algorithm is
complete it still has to investigate all subsets of the set of diagnoses in order to find the minimum score
query. To avoid this exhaustive search we extended CKK with an additional termination criterion: the
search stops if a query is found with a score below some predefined threshold γ. In our evaluation section
we demonstrate substantial savings by applying the CKK partitioning algorithm.

To sum up, the proposed method depends on the efficiency of the classification/realization system
and consistency/coherency checks given a particular ontology. The number of calls to a reasoning system
can be reduced by decreasing the number of leading diagnoses n. However, the more leading diagnoses
provide the more data for generating the next best query. Consequently, by varying the number of lead-
ing diagnoses it is possible to balance runtime with the number of queries needed to isolate the target
diagnosis.32

32The source code as well as precompiled binaries can be downloaded from http://rmbd.googlecode.com. The package also
includes a Protégé-plugin implementing the methods as described.

Chapter 18

Evaluation

We evaluated our approach using the real-world ontologies presented in Table 18.1 with the aim of demon-
strating its applicability real-world settings. In addition, we employed generated examples to perform
controlled experiments where the number of minimal diagnoses and their cardinality could be varied to
make the identification of the target diagnosis more difficult. Finally, we carried out a set of tests using
randomly modified large real-world ontologies to provide some insights on the scalability of the suggested
debugging method.

For the first test we created a generator which takes a consistent and coherent ontology, a set of fault
patterns together with their probabilities, the minimum number of minimum cardinality diagnosesm, and
the required cardinality |Dt| of these minimum cardinality diagnoses as inputs. We also assumed that the
target diagnosis has cardinality |Dt|. The output of the generator is an alteration of the input ontology
for which at least the given number of minimum cardinality diagnoses with the required cardinality exist.
Furthermore, to introduce inconsistencies (incoherencies), the generator applies fault patterns randomly
to the input ontology depending on their probabilities.

In this experiment we took five fault patterns from a case study reported by Rector et al. [RDH+04]
and assigned fault probabilities according to their observations of typical user errors. Thus we assumed
that in cases (a) and (b) (see Section 15), where an axiom includes some roles (i.e. property assertions),
axiom descriptions are faulty with a probability of 0.025, in cases (c) and (d) 0.01 and in case (e) 0.001.
In each iteration, the generator randomly selected an axiom to be altered and applied a fault pattern.
Following this, another axiom was selected using the concept taxonomy and altered correspondingly to
introduce an inconsistency (incoherency). The fault patterns were randomly selected in each step using

Ontology DL Axioms #C/#P/#I #CS/min/max #D/min/max Domain
1. Chemical ALCHF (D) 144 48/20/0 6/5/6 6/1/3 Chemical elements
2. Koala ALCON (D) 44 21/5/6 3/4/4 10/1/3 Training
3. Sweet-JPL ALCHOF (D) 2579 1537/121/50 1/13/13 13/1/1 Earthscience
4. miniTambis ALCN 173 183/44/0 3/2/6 48/3/3 Biological science
5. University SOIN (D) 49 30/12/4 4/3/5 90/3/4 Training
6. Economy ALCH(D) 1781 339/53/482 8/3/4 864/4/8 Mid-level
7. Transportation ALCH(D) 1300 445/93/183 9/2/6 1782/6/9 Mid-level

Table 18.1: Diagnosis results for several of the real-world ontologies presented in [KPHS07]. #C/#P/#I are
the number of concepts, properties and individuals in each ontology. #CS/min/max are the number of conflict
sets, and their minimum and maximum cardinality. The same notation is used for diagnoses #D/min/max. The
ontologies are available upon request.

281

282 CHAPTER 18. EVALUATION

Leading diagnoses All diagnoses
Ontology Consistency Conflicts Diagnoses Consistency Conflicts Diagnoses

Chemical time 0/3/8 90/107/128 1/97/326 0/3/18 105/130/179 2/126/402
calls 264 6 7 262 6 7

runtime: 723 runtime: 892

Koala time 0/1/3 19/25/30 0/11/70 0/2/4 24/30/37 0/12/105
calls 74 3 10 75 3 11

runtime: 120 runtime: 148

Sweet-JPL time 1/31/112 5185/5185/5185 0/586/5332 31/106/195 5192/5192/5192 1/438/5319
calls 187 1 10 195 1 14

runtime: 5991 runtime: 6312

miniTambis time 0/5/14 84/157/210 0/57/504 1/5/15 88/167/225 3/19/537
calls 111 3 10 189 3 49

runtime: 586 runtime: 1027

University time 0/2/3 31/41/54 0/20/157 0/2/5 37/46/60 2/5/200
calls 126 4 10 283 4 91

runtime: 205 runtime: 536

Economy time 1/12/26 410/460/569 0/282/2085 1/9/80 418/510/681 16/25/1929
calls 239 6 10 2064 8 865

runtime: 2857 runtime: 25369

Transportaton time 0/11/58 237/438/683 0/352/3176 1/9/130 222/429/636 16/29/6394
calls 337 7 10 3966 9 1783

runtime: 3671 runtime: 65010

Table 18.2: Min/avg/max time and calls required to compute the nine leading most probable diagnoses as
well as all diagnoses for the real-world ontologies. Values are given for each stage, i.e. consistency checking,
computation of minimal conflicts and minimal diagnoses, together with the total runtime needed to compute
the diagnoses. All time values are 15 trial averages and are given in milliseconds.

the probabilities provided above.
For instance, given the description of a randomly selected concept A and the fault pattern “misuse of

negation”, we added the construct u¬X to the description of A, where X is a new concept name. Next,
we randomly selected concepts B and S such that S v A and S v B and added uX to the description of
B. During the generation process, we applied the HS-TREE algorithm after each introduction of an inco-
herency/inconsistency to control two parameters: the minimum number of minimal cardinality diagnoses
in the ontology and their cardinality. The generator continues to introduce incoherences/inconsistencies
until the specified parameter values are reached. For instance, if the minimum number of minimum car-
dinality diagnoses is equal to m = 6 and their cardinality is |Dt| = 4, then the generated ontology will
include at least 6 diagnoses of cardinality 4 and possibly some additional number of minimal diagnoses
of higher cardinalities.

The resulting faulty ontology as well as the fault patterns and their probabilities were inputs for the
ontology debugger. The acceptance threshold σ was set to 0.95 and the number of most probable minimal
diagnoses n was set to 9. In addition, one of the minimal diagnoses with the required cardinality was
randomly selected as the target diagnosis. Note, the target ontology is not equal to the original ontology,
but rather a corrected version of the altered one in which the faulty axioms were repaired by replacing
them with their original (correct) versions according to the target diagnosis. The tests were performed

283

1

2

3

4

5

6

7

8

9

4 6 8 10 12

Random Split-in-half |Dt|=2 |Dt|=4 |Dt|=8

Required number of minimum cardinality diagnoses in a faulty ontology

Av
er

ag
e

nu
m

be
r o

f q
ue

rie
s

Figure 18.1: Average number of queries required to select the target diagnosis Dt with threshold σ = 0.95.
Random and “split-in-half” are shown for the cardinality of minimal diagnoses |Dt| = 2.

using the ontologies bike2 to bike9, bcs3, galen and galen2 from Racer’s benchmark suite33.
The average results of the evaluation performed on each test ontology (presented in Figure 18.1) show

that the entropy-based approach outperforms the “split-in-half” heuristic as well as the random query
selection strategy by more than 50% for the |Dt| = 2 case due to its ability to estimate the probabilities
of diagnoses and to stop once the target diagnosis crossed the acceptance threshold. On average the
algorithm required 8 seconds to generate a query. In addition, Figure 18.1 shows that the number of
queries required increases as the cardinality of the target diagnosis increases, regardless of the method.
Despite this, the entropy-based approach remains better than the “split-in-half” method for diagnoses
with increasing cardinality. The approach did however require more queries to discriminate between high
cardinality diagnoses because in such cases more minimal conflicts were generated. Consequently, the
debugger should consider more minimal diagnoses in order to identify the target one.

For the next test we selected seven real-world ontologies described in Tables 18.1 and 18.234. Perfor-
mance of both the entropy-based and “split-in-half” selection strategies was evaluated using a variety of
different prior fault probabilities to investigate under which conditions the entropy-based method should
be preferred.

In our experiments we distinguished between three different distributions of prior fault probabilities:
extreme, moderate and uniform (see Figure 18.2 for an example). The extreme distribution simulates
a situation in which very high failure probabilities are assigned to a small number of syntax elements.
That is, the provider of the estimates is quite sure that exactly these elements are causing a fault. For
instance, it may be well known that a user has problems formulating restrictions in OWL whereas all
other elements, such as subsumption and conjunction, are well understood. In the case of a moderate
distribution the estimates provide a slight bias towards some syntax elements. This distribution has the
same motivation as the extreme one, however, in this case the probability estimator is less sure about
the sources of possible errors in axioms. Both extreme and moderate distributions correspond to the
exponential distribution with λ = 1.75 and λ = 0.5 respectively. The uniform distribution models the
situation where no prior fault probabilities are provided and the system assigns equal probabilities to
all syntax elements found in a faulty ontology. Of course the prior probabilities of diagnoses may not
reflect the actual situation. Therefore, for each of the three distributions we differentiate between good,
average and bad cases. In the good case the estimates of the prior fault probabilities are correct and the

33Available at http://www.racer-systems.com/products/download/benchmark.phtml
34All experiments were performed on a PC with Core2 Duo (E8400), 3 Ghz with 8 Gb RAM, running Windows 7 and Java 6.

284 CHAPTER 18. EVALUATION

0,5 4,4 4,31369251

0 0,5 0 0,5 0,11590998

1 0,30326533 0,22727273 0,44629124 0,10345921

2 0,18393972 0,45454545 0,39835173 0,09234588

3 0,11156508 0,68181818 0,35556178 0,08242631

4 0,06766764 0,90909091 0,31736821 0,07357228

5 0,0410425 1,13636364 0,2832773 0,06566933

6 0,02489353 1,36363636 0,25284835 0,05861529

7 0,01509869 1,59090909 0,22568801 0,05231898

8 0,00915782 1,81818182 0,20144516 0,04669901

9 0,0055545 2,04545455 0,17980642 0,04168272

10 0,00336897 2,27272727 0,16049206 0,03720526

11 0,00204339 2,5 0,1432524 0,03320876

12 0,00123938 2,72727273 0,12786458 0,02964156

13 0,00075172 2,95454545 0,11412968 0,02645754

14 0,00045594 3,18181818 0,10187015 0,02361553

15 0,00027654 3,40909091 0,09092751 0,02107881

16 0,00016773 3,63636364 0,08116031 0,01881458

17 0,00010173 3,86363636 0,07244227 0,01679356

18 6,1705E‐05 4,09090909 0,0646607 0,01498964

19 3,7426E‐05 4,31818182 0,057715 0,01337949

20 2,27E‐05 4,54545455 0,0515154 0,0119423

21 1,3768E‐05 4,77272727 0,04598174 0,01065949

22 8,3509E‐06 5 0,0410425 0,00951447

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

P
ro
b
ab
ili
ty

Number of a syntax element

Extreme Moderate UniformDistribution:

Figure 18.2: Example of prior fault probabilities of syntax elements sampled from extreme, moderate and
uniform distributions.

target diagnosis is assigned a high probability. The average case corresponds to the situation when the
target diagnosis is neither favored nor penalized by the priors. In the bad case the prior distribution is
unreasonable and disfavors the target diagnosis by assigning it a low probability.

We executed 30 tests for each of the combinations of the distributions and cases with an acceptance
threshold σ = 0.85 and a required number of most probable minimal diagnoses n = 9. Each iteration
started with the generation of a set of prior fault probabilities of syntax elements by sampling from a
selected distribution (extreme, moderate or uniform). Given the priors we computed the set of all minimal
diagnoses D of a given ontology and selected the target one according to the chosen case (good, average
or bad). In the good case the prior probabilities favor the target diagnosis and, therefore, it should be
selected from the diagnoses with high probability. The set of diagnoses was ordered according to their
probabilities and the algorithm iterated through the set starting from the most probable element. In the
first iteration the most probable minimal diagnosisD1 is added to the setG. In next iteration j a diagnosis
Dj was added to the set G if

∑
i≤j p(Di) ≤ 1

3 and to the set A if
∑

i≤j p(Di) ≤ 2
3 . The obtained set

G contained all most probable diagnoses which we considered as good. All diagnoses in the set A \ G
were classified as average and the remaining diagnoses D \A as bad. Depending on the selected case we
randomly selected one of the diagnoses as the target from the appropriate set.

The results of the evaluation presented in Table 18.3 show that the entropy-based query selection
approach clearly outperforms “split-in-half” in good and average cases for the three probability distri-
butions. The average time required by the debugger to perform such basic operations as consistency
checking, computation of minimal conflicts and diagnoses is presented in Table 18.4. The results indicate
that on average at most 17 seconds required to compute up to 9 minimal diagnoses and a query. Moreover,
the number of axioms in a query remains reasonable in most of the cases stays bounds, i.e. between 1 and
4 axioms per query.

In the uniform case better results were observed since the diagnoses have different cardinality and
structure, i.e. they include different syntax elements. Consequently, even if equal probabilities for all
syntax elements (uniform distribution) are given, the probabilities of diagnoses are different. Axioms
with a greater number of syntax elements receive a higher fault probability. Also, diagnoses with a
smaller cardinality in many cases receive a higher probability. This information provides enough bias to
favor the entropy-based method.

In the bad case, where the target diagnosis received a low probability and no information regarding the

285

Entropy-based query selection
Ontology Case Distribution

Extreme Moderate Uniform
min avg max min avg max min avg max

Good 1 1.63 3 1 1.7 2 1 1.83 2
Chemical Avg. 1 1.87 4 1 1.73 3 1 1.7 2

Bad 2 3.03 4 2 3.03 4 2 3.17 4
Good 1 1.7 3 1 2.4 4 1 2.67 3

Koala Avg. 1 1.8 3 1 2.37 4 1 2.4 3
Bad 1 3.5 6 2 4.33 7 3 4.13 5

Good 1 3.27 7 2 3.43 7 3 3.87 7
Sweet-JPL Avg. 1 3.5 6 1 4.03 7 3 4.07 6

Bad 3 3.93 6 2 4.03 6 3 3.37 4
Good 1 2.37 4 2 2.73 4 2 2.77 3

miniTambis Avg. 1 2.53 4 2 4.03 8 3 4.53 7
Bad 3 6.43 11 3 7.93 17 5 9.03 13

Good 1 2.7 4 3 3.83 7 3 4.4 8
University Avg. 1 3.4 6 3 7.03 12 4 7.27 10

Bad 5 9.13 15 5 9.7 14 6 10.03 14
Good 1 3.2 11 3 3.1 4 3 3.93 6

Economy Avg. 1 4.63 14 3 5.57 12 5 6.5 8
Bad 8 12.3 19 6 11.5 21 7 11.67 19

Good 1 5.63 14 1 6.97 12 3 9.5 14
Transportation Avg. 1 6.9 16 1 7.73 12 3 8.73 14

Bad 3 12.4 18 8 12.8 20 3 12.1 18

“Split-in-half” query selection
Good 2 2.63 3 2 2.7 3 2 2.53 3

Chemical Avg. 2 2.63 3 2 2.67 3 2 2.77 3
Bad 2 2.63 3 2 2.6 3 2 2.4 3

Good 3 3.3 4 3 3.3 4 3 3.47 4
Koala Avg. 3 3.33 4 3 3.2 4 3 3.23 4

Bad 3 3.43 4 3 3.4 4 3 3.5 4
Good 3 3.83 4 3 3.8 4 4 4 4

Sweet-JPL Avg. 3 3.57 4 3 3.8 4 3 3.47 4
Bad 3 3.87 4 3 3.8 4 3 3.8 4

Good 4 5.33 6 4 5 6 4 4 4
miniTambis Avg. 4 5.1 6 4 4.93 7 5 5.43 7

Bad 5 5.93 8 4 5.8 7 5 6.3 7
Good 4 5.93 8 4 6 8 4 5.43 8

University Avg. 4 5.87 7 5 6.73 9 6 7.37 8
Bad 5 6.97 9 5 7.2 9 5 7 8

Good 6 7.87 11 6 7.4 10 6 7.5 10
Economy Avg. 6 8 12 5 7.63 12 6 8.73 13

Bad 9 11.50 14 6 11.1 14 8 11.3 15
Good 5 8.03 13 5 7.3 11 6 11.43 18

Transportation Avg. 3 9 16 5 9.4 13 5 11.43 18
Bad 10 12.67 19 7 13 19 6 13.8 20

Table 18.3: Minimum, average and maximum number of queries required by the entropy-based and “split-in-
half” query selection methods to identify the target diagnosis in real-world ontologies. Ontologies are ordered
by the number of diagnoses.

286 CHAPTER 18. EVALUATION

Ontology Good Average Bad
DT QT QL DT QT QL DT QT QL

Chemical 459.33 117.67 3 461.33 121 3.34 256.67 75.67 2.19
Koala 88.33 1308.33 3.47 92 1568.67 3.90 56.33 869.33 2.36
Sweet-JPL 2387.33 691.67 1.48 2272 926 1.61 2103 1240.33 1.57
miniTabmis 481.33 2764.33 3.27 398.33 2892 2.53 238.67 3223 1.76
University 189.33 822.67 3.91 145 903.33 2.82 113 872 2.11
Economy 2953.33 6927 3.06 3239 8789 3.80 3083 8424.67 1.58
Transportation 6577.33 9426.33 2.37 7080.67 10135.33 2.29 7186.67 9599.67 1.64

Table 18.4: Average time required to compute at most nine minimal diagnoses (DT) and a query (QT) in
each iteration, as well as the average number of axioms in a query after minimization (QL). The averages are
shown for extreme, moderate and uniform distributions using the entropy-based query selection method. Time
is measured in milliseconds.

0 0 0

max win Q 0,15 0,03 0,19

max loss Q 0,37 0,14 0,38

max win T 32% 34% 37%

max loss T 33% 38% 35%

Avg ‐0,11 ‐0,03 ‐0,07

Max ‐0,04 0,06 0,26

Min ‐0,26 ‐0,10 ‐0,31

‐100%

‐80%

‐60%

‐40%

‐20%

0%

20%

40%

60%

80%

100%

‐1,00

‐0,80

‐0,60

‐0,40

‐0,20

0,00

0,20

0,40

0,60

0,80

1,00

Good Average Bad

A
ve
ra
ge
 g
ai
n
 o
f
ti
m
e

A
ve
ra
ge
 g
ai
n
 o
f
q
u
e
ri
e
s

Average number of queries Average time

Figure 18.3: Average time/query gain resulting from the application of the extended CKK partitioning algo-
rithm. The whiskers indicate the maximum and minimum possible average gain of queries/time using extended
CKK.

prior fault probabilities was given, we observed that the performance of the entropy-method improved as
more queries were posed. In particular, in the University ontology the performance is essentially similar
(7.27 vs. 7.37) whereas in the Economy and Transportation ontology the entropy-based method can save
and average of two queries.

“Split-in-half” appears to be particularly inefficient in all good, average and bad cases when applied
to ontologies with a large number of minimal diagnoses, such as Economy and Transportation. The main
problem is that no stop criteria can be used with the greedy method as it is unable to provide any ordering
on the set of diagnoses. Instead, the method continues until no further queries can be generated, i.e.
only one minimal diagnosis exists or there are no discriminating queries. Conversely, the entropy-based
method is able to improve its probability estimates using Bayes-updates as more queries are answered
and to exploit the differences in the probabilities in order to decide when to stop.

The most significant gains are achieved for ontologies with many minimal diagnoses and for the av-
erage and good cases, e.g. the target diagnosis is within the first or second third of the minimal diagnoses
ranked by their prior probability. In these cases the entropy-based method can save up to 60% of the
queries.

287

Ontology Cton Opengalen-no-propchains
Axioms 33203 9664
DL SHF ALEHIF (D)

#CS/min/max 6/3/7 9/5/8
#D/min/max 15/1/5 110/2/6
Consistency 5/209/1078 1/98/471
QuickXplain 17565/20312/38594 7634/10175/12622
Diagnosis 1/5285/38594 10/1043/19543
Overall runtime 146186 119973

Table 18.5: Statistics for the real-world ontologies used in the stress-tests measured for a single random al-
teration. #CS/min/max are the number of minimal conflict sets, and their minimum and maximum cardinality.
The same notation is used for diagnoses #D/min/max. The minimum/average/maximum time required to make
a consistency check (Consistency), compute a minimal conflict set (QuickXplain) and a minimal diagnosis are
measured in milliseconds. Overall runtime indicates the time required to compute all minimal diagnoses in
milliseconds.

Good
Ontology #Query Overall QT DT QL

Cton 3 176828 6918 52237 4
Opengalen-no-propchains 8 154145 2349 22905 4

Average
Cton 4 177383 6583 52586 3
Opengalen-no-propchains 7 151048 3752 21344 4

Bad
Cton 5 190407 5742 35608 1
Opengalen-no-propchains 14 177728 1991 11319 3

Table 18.6: Average values measured for extreme, moderate and uniform distributions in each of the good,
average and bad cases. #Query is the number of queries required to find the target diagnosis. Overall runtime
as well as the time required to compute a query (QT) and at least nine minimal diagnoses (DT) are given in
milliseconds. Query length (QL) shows the average number of axioms in a query.

Therefore, we can conclude that even rough estimates of the prior fault probabilities are sufficient,
provided that the target diagnosis is not significantly penalized. Even if no fault probabilities are avail-
able and there are many minimal diagnoses, the entropy-based method is advantageous. The differences
between probabilities of individual syntax elements appears not to influence the results of the query se-
lection process and affect only the number of outliers, i.e. cases in which the diagnosis approach required
either few or many queries compared to the average.

Another interesting observation is that often both methods eliminated more than n diagnoses in one
iteration. For instance, in the case of the Transportation ontology both methods were able to remove
hundreds of minimal diagnoses with a small number of queries. This behavior appears to stem from
relations between the diagnoses. That is, the addition of a query to either P or N allows the method
to remove not only the diagnoses in sets DP or DN, but also some unobserved diagnoses that were not
in any of the sets of n leading diagnoses computed by HS-TREE. Given the sets P and N , HS-TREE
automatically invalidates all diagnoses which do not fulfill the requirements (see Definition 28.2).

The extended CKK method presented in Chapter 17 was evaluated in the same settings as the complete
Algorithm 12 with acceptance threshold γ = 0.1. The obtained results presented in Figure 18.3 show that
the extended CKK method decreases the length of a debugging session by at least 60% while requiring

288 CHAPTER 18. EVALUATION

a) Extreme distribution

b) Moderate distribution

c) Uniform distribution

0

50000

100000

150000

200000

250000

Av
er

ag
e

tim
e,

 m
s

0

50000

100000

150000

200000

250000

Av
er

ag
e

tim
e,

 m
s

0

50000

100000

150000

200000

250000

Av
er

ag
e

tim
e,

 m
s

 Good Average Bad

 Good Average Bad

 CKK

SelectQuery

Figure 18.4: Average time required to identify the target diagnosis using CKK and brute force query selection
algorithms.

289

on average 0.1 queries more than Algorithm 12. In some cases (mostly for the uniform distribution)
the debugger using CKK search required even fewer queries than Algorithm 12 because of the inherent
uncertainty of the domain. The plot of the average time required by Algorithm 12 and CKK to identify
the target diagnosis presented in Figure 18.4 shows that the application of the latter can reduce runtime
significantly.

In the last experiment we tried to simulate an expert developing large real-world ontologies35 as
described in Table 18.5. Often in such settings an expert makes small changes to the ontology and then
runs the reasoner to verify that the changes are valid, i.e. the ontology is consistent and its entailments
are correct. To simulate this scenario we used the generator described in the first experiment to introduce
1 to 3 random changes that would make the ontology incoherent. Then, for each modified ontology,
we performed 15 tests using the fault distributions as in the second test. The results obtained by the
entropy-based query selection method using CKK for query computation are presented in Table 18.6.
These results show that the method can be used for analysis of large ontologies with over 33000 axioms
while requiring a user to wait for only a minute to compute the next query.

35The ontologies taken from TONES repository http://owl.cs.manchester.ac.uk/repository

Chapter 19

Related Work

Despite the range of ontology diagnosis methods available (see [SHCH07, KPHS07, FS05]), to the best
of our knowledge no interactive ontology debugging methods, such as our “split-in-half” or entropy-based
methods, have been proposed so far. The idea of ranking of diagnoses and proposing a target diagnosis is
presented in [KPSCG06]. This method uses a number of measures such as: (a) the frequency with which
an axiom appears in conflict sets, (b) impact on an ontology in terms of its “lost” entailments when an
axiom is modified or removed, (c) ranking of test cases, (d) provenance information about axioms, and
(e) syntactic relevance. For each axiom in a conflict set, these measures are evaluated and combined to
produce a rank value. These ranks are then used by a modified HS-TREE algorithm to identify diagnoses
with a minimal rank. However, the method fails when a target diagnosis cannot be determined reliably
with the given a-priori knowledge. In our work required information is acquired until the target diagnosis
can be identified with confidence. In general, the work of [KPSCG06] can be combined with the ideas
presented in our work as axiom ranks can be taken into account together with other observations for
calculating the prior probabilities of the diagnoses.

The idea of selecting the next best query based on the expected entropy was exploited in the generation
of decisions trees in [Qui86] and further refined for selecting measurements in the model-based diagnosis
of circuits in [dKW87]. We extend these methods to query selection in the domain of ontology debugging.

In the area of debugging logic programs, Shapiro [Sha83] developed debugging methods based on
query answering. Roughly speaking, Shapiro’s method aims to detect one fault at a time by querying an
oracle about the intended behavior of a Prolog program at hand. In our terminology, for each answer that
must not be entailed this diagnosis approach generates one conflict at a time by exploiting the proof tree
of a Prolog program. The method then identifies a query that splits the conflict in half. Our approach can
deal with multiple diagnoses and conflicts simultaneously which can be exploited by query generation
strategies such as “split-in-half” and entropy-based methods. Whereas the “split-in-half” strategy splits
the set of diagnoses in half, Shapiros’s method focuses on one conflict. Furthermore, the exploitation of
failure probabilities is not considered in [Sha83]. However, Shapiro’s method includes the learning of
new clauses in order to cover not entailed answers. Interleaving discrimination of diagnoses and learning
of descriptions is currently not considered in our approach because of their additional computational
costs.

From a general point of view Shapiro’s method can be seen as a prominent example of inductive logic
programming (ILP) including systems such as [MB88, Mug95]. In particular, [Mug95] proposes inverse
entailments combined with general to specific search through a refinement graph with the goal of gen-
erating a theory (hypothesis) which covers the examples and fulfills additional properties. Compared to
ILP, the focus of our work lies on the theory revision. However, our knowledge representation languages
are variants of description logics and not logic programs. Moreover, our method aims to discover axioms

291

292 CHAPTER 19. RELATED WORK

which must be changed while minimizing user interaction. Preferences of theory changes are expressed
by probabilities which are updated through Bayes’ rule. Other preferences based on plausible extensions
of the theory were not considered, again because of their computational costs.

Although model-based diagnosis has also been applied to logic programs [CFD93], constraint know-
ledge bases [FFJS04] and hardware descriptions [FSW99], none of these approaches propose a query
generation method to discriminate between diagnoses.

Chapter 20

Summary and Conclusions

In this part we presented an approach to the interactive debugging of ontologies. This approach is ap-
plicable to any knowledge representation language with monotonic semantics. We showed that the ax-
ioms generated by classification and realization reasoning services can be exploited to generate queries
which differentiate between diagnoses. For selecting the best next query we proposed two strategies:
The “split-in-half” strategy prefers queries which allow eliminating a half of the leading diagnoses. The
entropy-based strategy employs information theoretic concepts to exploit knowledge about the likelihood
of axioms to be faulty. Based on the probability of an axiom containing an error we predict the (expected)
information gain produced by a query result, enabling us to select the best subsequent query according to
a one-step-lookahead entropy-based scoring function. We described the implementation of an interactive
debugging algorithm and compared the entropy-based method with the “split-in-half” strategy. Our ex-
periments showed a significant reduction in the number of queries required to identify the target diagnosis
when the entropy-based method is applied. Depending on the quality of the given prior fault probabilities
the required number of queries could be reduced by up to 60%.

In order to evaluate the robustness of the entropy-based method we experimented with different prior
fault probability distributions as well as different qualities of the prior probabilities. Furthermore, we
investigated cases where knowledge about failure probabilities is missing or inaccurate. In case such
knowledge is unavailable, the entropy-based methods ranks the diagnoses based on the number of syntax
elements contained in an axiom and the number of axioms in a diagnosis. Given that this is a reasonable
guess (i.e. the target diagnosis is not at the lower end of the diagnoses ranked by their prior probabilities),
the entropy-based method outperformed “split-in-half”. Moreover, even if the initial guess is not reason-
able, the entropy-based method improves the accuracy of the probabilities as more questions are asked.
Furthermore, the applicability of the approach to real-world ontologies containing thousands of axioms
was demonstrated by an extensive set of evaluations which are publicly available.

293

Part V

Minimizing User Interaction in
Ontology Debugging

295

297

A reinforcement learning query selection strategy (RIO) that makes the presented debugging system
robust against the usage of low-quality fault information is presented and thoroughly analyzed in this
part which is based on the publications [RSFF13, RSFF12, RSFF11, SRF11] published in Web Rea-
soning and Rule Systems (RR-2013), in the Proceedings of the 7th International Workshop on Ontology
Matching (OM-2012), in the Proceedings of the Joint Workshop on Knowledge Evolution and Ontology
Dynamics 2011 (EvoDyn2011) and in DX 2011 - 22nd International Workshop on Principles of Diagno-
sis, respectively.

Chapter 21

Introduction to the Problem

The foundation for widespread adoption of Semantic Web technologies is a broad community of on-
tology developers which is not restricted to experienced knowledge engineers. Instead, domain experts
from diverse fields should be able to create ontologies incorporating their knowledge as autonomously
as possible. The resulting ontologies are required to fulfill some minimal quality criteria, usually con-
sistency, coherency and no undesired entailments, in order to grant successful deployment. However,
the correct formulation of logical descriptions in ontologies is an error-prone task which accounts for
a need for assistance in ontology development in terms of ontology debugging tools. Usually, such
tools [SHCH07, KPHS07, FS05, HPS08] use model-based diagnosis [Rei87] to identify sets of faulty ax-
ioms, called diagnoses, that need to be modified or deleted in order to meet the imposed quality require-
ments. The major challenge inherent in the debugging task is often a substantial number of alternative
diagnoses.

In [SFFR12] this issue is tackled by letting the user take action during the debugging session by
answering queries about entailments and non-entailments of the desired ontology. These answers pose
constraints to the validity of diagnoses and thus help to sort out incompliant diagnoses step-by-step.
In addition, a Bayesian approach is used to continuously readjust the fault probabilities by means of
the additional information given by the user. The user effort in this interactive debugging procedure is
strongly affected by the quality of the initially provided meta information, i.e. prior knowledge about fault
probabilities of a user w.r.t. particular logical operators. To get this under control, the selection of queries
shown to the user can be varied correspondingly. To this end, two essential paradigms for choosing the
next “best” query have been proposed, split-in-half and entropy-based.

In order to opt for the optimal strategy, however, the quality of the meta information, i.e. good or bad
(which means high or low probability of the correct solution), must be known in advance. This would,
however, implicate the pre-knowledge of the initially unknown solution. Entropy-based methods can
make optimal profit from exploiting properly adjusted initial fault probabilities (high potential), whereas
they can completely fail in the case of weak prior information (high risk). The split-in-half technique, on
the other hand, manifests constant behavior independently of the probabilities given (no risk), but lacks
the ability to leverage appropriate fault information (no potential). This matter of fact is witnessed by
the evaluation we conducted, which shows that an unsuitable combination of meta information and query
selection strategy can result in a substantial increase of more than 2000% w.r.t. number of queries to a
user. So, there is a need to either (1) guarantee a sufficiently suited choice of prior fault information, or
(2) to manage the “risk” of unsuitable method selection. The task of (1) might not be a severe problem in
a debugging scenario involving a faulty ontology developed by a single expert, since the meta information
might be extracted from the logs of previous sessions, if available, or specified by the expert based on
their experience w.r.t. own faults. However, realization of task (1) is a major issue in scenarios involving

299

300 CHAPTER 21. INTRODUCTION TO THE PROBLEM

automatized systems producing (parts of) ontologies, e.g. ontology alignment and ontology learning, or
numerous users collaborating in modeling an ontology, where the choice of reasonable meta information
is rather unclear. Therefore, we focus on accomplishing task (2).

The contribution of this part is a new RIsk Optimization reinforcement learning method (RIO), which
allows to minimize user interaction throughout a debugging session on average compared to existing
strategies, for any quality of meta information (high potential at low risk). By virtue of its learning
capability, our approach is optimally suited for debugging ontologies where only vague or no meta infor-
mation is available. A learning parameter is constantly adapted based on the information gathered so far.
On the one hand, our method takes advantage of the given meta information as long as good performance
is achieved. On the other hand, it gradually gets more independent of meta information if suboptimal
behavior is measured.

Experiments on two datasets of faulty real-world ontologies show the feasibility, efficiency and scal-
ability of RIO. The evaluation will indicate that, on average, RIO is the best choice of strategy for both
good and bad meta information with savings as to user interaction of up to 80%.

The problem specification, basic concepts and a motivating example are provided in Chapter 22.
Chapter 23 explains the suggested approach and gives implementation details. Evaluation results are
described in Chapter 24. Related work is discussed in Chapter 25. Chapter 26 concludes.

Chapter 22

Motivation and Basic Concepts

First we provide an informal introduction to ontology debugging, particularly addressing readers unfa-
miliar with the topic. Later we introduce precise formalizations. We assume the reader to be familiar with
description logics [BCM+07].

Ontology debugging deals with the following problem: Given is an ontology O which does not meet
postulated requirements R, e.g. R = {coherency, consistency}. O is a set of axioms formulated in some
monotonic knowledge representation language, e.g. OWL DL. The task is to find a subset of axioms
in O, called diagnosis, that needs to be altered or eliminated from the ontology in order to meet the
given requirements. The presented approach to ontology debugging does not rely upon a specific know-
ledge representation formalism, it solely presumes that it is logic-based and monotonic. Additionally, the
existence of sound and complete procedures for deciding logical consistency and for calculating logical
entailments is assumed. These procedures are used as a black box. For OWL DL, e.g., both functionalities
are provided by a standard DL-reasoner.

A diagnosis is a hypothesis about the state of each axiom in O of being either correct or faulty.
Generally, there are many diagnoses for one and the same faulty ontologyO. The problem is then to figure
out the single diagnosis, called target diagnosis D∗, that complies with the knowledge to be modeled by
the intended ontology. In interactive ontology debugging we assume a user, e.g. the author of the faulty
ontology or a domain expert, interacting with an ontology debugging system by answering queries about
entailments of the desired ontology, called the target ontologyO∗. The target ontology can be understood
as O minus the axioms of D∗ plus a set of axioms needed to preserve the desired entailments, called
positive test cases. Note that the user is not expected to know O∗ explicitly (in which case there would
be no need to consult an ontology debugger), but implicitly in that they are able to answer queries about
O∗.

A query is a set of axioms and the user is asked whether the conjunction of these axioms is entailed
by O∗. Every positively (negatively) answered query constitutes a positive (negative) test case fulfilled
by O∗. The set of positive (entailed) and negative (non-entailed) test cases is denoted by P and N ,
respectively. So, P and N are sets of sets of axioms, which can be, but do not need to be, initially empty.
Test cases can be seen as constraints O∗ must satisfy and are therefore used to gradually reduce the
search space for valid diagnoses. Roughly, the overall procedure consists of (1) computing a predefined
number of diagnoses, (2) gathering additional information by querying the user, (3) incorporating this
information to prune the search space for diagnoses, and so forth, until a stopping criterion is fulfilled,
e.g. one diagnosis D∗ has overwhelming probability.

The general debugging setting we consider also envisions the opportunity for the user to specify some
background knowledge B, i.e. a set of axioms that are known to be correct. B is then incorporated in
the calculations throughout the ontology debugging procedure, but no axiom in B may take part in a

301

302 CHAPTER 22. MOTIVATION AND BASIC CONCEPTS

diagnosis. For example, in case the user knows that a subset of axioms in O is definitely sound, all
axioms in this subset are added to B before initiating the debugging session. The advantage of this over
simply not considering the axioms in B at all is, that the semantics of axioms in B is not lost and can be
exploited, e.g., in query generation. B and O \ B partition the original ontology into a set of correct
and possibly incorrect axioms, respectively. In the debugging session, only O := O \ B is used to
search for diagnoses. This can reduce the search space for diagnoses substantially. Another application
of background knowledge could be the reuse of an existing ontology to support successful debugging. For
example, when formulating an ontology about medical terms, a thoroughly curated reference ontology
B could be leveraged to find own formulations contradicting the correct ones in B, which would not be
found without integration of B into the debugging procedure.

More formally, ontology debugging can be defined in terms of a diagnosis problem instance, for
which we search for solutions, i.e. diagnoses, that enable to formulate the target ontology:

Definition 22.1 (Diagnosis Problem Instance, Target Ontology). Let O = T ∪ A be an ontology with
terminological axioms T and assertional axioms A, B a set of axioms which are assumed to be correct
(background knowledge), R a set of requirements to O, P and N respectively a set of positive and
negative test cases, where each test case p ∈ P and n ∈ N is a set of axioms. Then we call the
tuple 〈O,B,P ,N 〉R a diagnosis problem instance (DPI). An ontology O∗ is called target ontology w.r.t.
〈O,B,P ,N 〉R iff all the following conditions hold:

∀ r ∈ R : O∗ ∪ B fulfills r

∀ p ∈ P : O∗ ∪ B |= p

∀n ∈ N : O∗ ∪ B 6|= n.

Definition 22.2 (Diagnosis). We call D ⊆ O a diagnosis w.r.t. a DPI 〈O,B,P ,N 〉R iff (O \ D) ∪
(
⋃

p∈P p) is a target ontology w.r.t. 〈O,B,P ,N 〉R. A diagnosis D w.r.t. a DPI is minimal iff there is no
D′ ⊂ D such that D′ is a diagnosis w.r.t. this DPI. The set of minimal diagnoses w.r.t. a DPI is denoted
by mD.

Note that a diagnosis D gives complete information about the correctness of each axiom axk ∈ O,
i.e. all axi ∈ D are assumed to be faulty and all axj ∈ O \ D are assumed to be correct.

Example 22.1 Consider O := T ∪ A with terminological axioms T := O1 ∪ O2 ∪M12:

O1 ax 1 : PhD v Researcher
ax 2 : Researcher v DeptEmployee

O2 ax 3 : PhDStudent v Student
ax 4 : Student v ¬DeptMember

M12 ax 5 : PhDStudent v PhD
ax 6 : DeptEmployee v DeptMember

and an assertional axiom A = {PhDStudent(s)}, where M12 is an automatically generated set of
axioms serving as semantic links between O1 and O2. The given ontology O is inconsistent since it
describes s as both a DeptMember and not.

Let us assume that the assertion PhDStudent(s) is considered as correct and is thus added to the
background theory, i.e. B := A, and that no test cases are initially specified, i.e. the sets P and N are
empty. For the resulting DPI 〈T ,A, ∅, ∅〉{coherence} the set of minimal diagnoses mD = {D1 : [ax 1],D2 :

[ax 2],D3 : [ax 3],D4 : [ax 4],D5 : [ax 5],D6 : [ax 6]}. mD can be computed by a diagnosis algorithm
such as the one presented in [FS05].

303

With six minimal diagnoses for only six ontology axioms, this example already gives an idea that in
many cases |mD| can get very large. Note that generally the computation of all minimal diagnoses w.r.t.
a given DPI is not feasible within reasonable time due to the complexity of the underlying algorithms.
Therefore, in practice, especially in an interactive scenario where reaction time is essential, a set of
leading diagnoses D ⊆mD is considered as a representative for mD.36 Concerning the optimal number
of leading diagnoses, a trade-off between representativeness and complexity of associated computations
w.r.t. D needs to be found.

Without any prior knowledge in terms of diagnosis fault probabilities or specified test cases, each
diagnosis in D is equally likely to be the target diagnosis D∗. In other words, for each D ∈ D w.r.t.
the DPI 〈T ,A, ∅, ∅〉{coherence}, the ontology (O \ D) ∪ (

⋃
p∈P p) meets all the conditions defining a

target ontology. However, besides postulating coherence the user might want the target ontology to entail
that s is a student as well as a researcher, i.e. O∗ |= t1 where t1 := {Researcher(s), Student(s)}.
Formulating t1 as a positive test case yields the DPI 〈T ,A, {t1}, ∅〉{coherence}, for which only diagnoses
D2,D4,D6 ∈ D are valid and enable to formulate a correspondingO∗. All other diagnoses in D are ruled
out by the fact that t1 ∈ P , which means they have a probability of zero of being the target diagnosis. If
t1 ∈ N , in contrast, this would imply that D2,D4,D6 had to be rejected.

So, it depends on the test cases specified by a user which diagnosis will finally be identified as target
diagnosis. Also, the order in which test cases are specified, is crucial. For instance, consider the test
cases t1 := {PhD(s)} and t2 := {Student(s)}. If t1 ∈ P is specified before t2 ∈ N , then t1 ∈ P is
redundant, since the only diagnosis agreeing with t2 ∈ N is D3 which preserves also the entailment t1 in
the resulting target ontology O∗ = (O \ D3) ∪ ∅ without explicating it as a positive test case.

Since it is by no means trivial to get the right – in the sense of most informative – test cases formulated
in the proper order such that the number of test cases necessary to detect the target diagnosis is minimized,
interactive debugging systems offer the functionality to automatize selection of test cases. The benefit is
that the user can just concentrate on “answering” the provided test cases which means assigning them to
either P or N . We call such automatically generated test cases queries. The theoretical foundation for
the application of queries is the fact that O \ Di and O \ Dj for Di 6= Dj ∈ D entail different sets of
axioms.

Definition 22.3 (Query, Partition). Let D be a set of minimal diagnoses w.r.t. a DPI 〈O,B,P ,N 〉R and
O∗i := (O \ Di) ∪ B ∪ (

⋃
p∈P p) for Di ∈ D. Then a set of axioms Xj 6= ∅ is called a query w.r.t. D iff

D+
j := {Di ∈ D | O∗i |= Xj} 6= ∅ and D−j := {Di ∈ D | ∃x ∈ N ∪ R : O∗i ∪Xj violates x} 6= ∅. The

(unique) partition of a query Xj is denoted by 〈D+
j ,D

−
j ,D

0
j 〉 where D0

j = D\ (D+
j ∪D

−
j). XD terms a

set of queries and associated partitions w.r.t. D in which one and the same partition of D occurs at most
once and only if there is an associated query for this partition.

Note that, in general, there can be nq queries for a particular partition of D where nq can be zero or
some positive integer. We are interested in (1) only those partitions for each of which nq ≥ 1 and (2) only
one query for each such partition. The set XD includes elements such that (1) and (2) holds. XD for
a given set of minimal diagnoses D w.r.t. a DPI can be generated as shown in Algorithm 13. In each
iteration, given a set of diagnoses D+

k ⊂ D, common entailments37 Xk :=
{
e | ∀Di ∈ D+

k : O∗i |= e
}

are computed (GETENTAILMENTS) and used to classify the remaining diagnoses in D \ D+
k to obtain

the partition 〈D+
k ,D

−
k ,D

0
k〉 associated with Xk. Then, if the partition 〈D+

k ,D
−
k ,D

0
k〉 does not already

occur in XD (INCLUDESPARTITION), the query Xk is minimized [SFFR12] (MINIMIZEQUERY) such
that its partition is preserved, yielding a query X ′k ⊆ Xk such that any X ′′k ⊂ X ′k is not a query or has

36So, we will speak of D instead of mD throughout this work. Note that the restriction to a subset of mD does not necessarily
have implications on the completeness of the associated ontology debugging algorithm. E.g., the algorithm can be iterative and
recompute new diagnoses on demand and nevertheless guarantee completeness (as the algorithm presented in this work).

37Note, when we speak of entailments throughout this work, we address (only) the finite set of entailments computed by the
classification and realization services of a DL-reasoner.

304 CHAPTER 22. MOTIVATION AND BASIC CONCEPTS

Algorithm 13 Generation of Queries and Partitions
Input: DPI 〈O,B,P ,N 〉R, set of minimal diagnoses D w.r.t. 〈O,B,P ,N 〉R
Output: a set of queries and associated partitions XD

1: XD ← ∅
2: for D+

k ⊂ D do
3: Xk ← GETENTAILMENTS(O,B,P ,D+

k)
4: if Xk 6= ∅ then
5: for Dr ∈ D \D+

k do
6: if O∗r |= Xk then
7: D+

k ← D+
k ∪ {Dr}

8: else if REQVIOLATED(O∗r ∪Xk) then
9: D−k ← D−k ∪ {Dr}

10: else
11: D0

k ← D0
k ∪ {Dr}

12: if ¬INCLUDESPARTITION(XD,
〈
D+

k ,D
−
k ,D

0
k

〉
) then

13: XD ← XD ∪ MINIMIZEQUERY(
〈
Xk,

〈
D+

k ,D
−
k ,D

0
k

〉〉
)

14: return XD

not the same partition. Finally, X ′k is added to XD together with its partition 〈D+
k ,D

−
k ,D

0
k〉. Function

REQVIOLATED(arg) returns true if arg violates some requirement in R or entails some negative test
case in N .

Asking the user a query Xj means asking them (O∗ |= Xj?). Let the answering of queries by a user
be modeled as function u : XD → {t, f}. If uj := u(Xj) = t, then P ← P ∪ {Xj} and D← D \D−j .
Otherwise, N ← N ∪ {Xj} and D ← D \D+

j . Prospectively, according to Definition 22.2, only those
diagnoses are considered in the set D that comply with the new DPI obtained by the addition of a test
case. This allows us to formalize the problem we address in this work:

Problem Definition 22.1 (Query Selection). Given D w.r.t. a DPI 〈O,B,P ,N 〉R, a stopping criterion
stop : D → {t, f} and a user u, find a next query Xj ∈ XD such that (1) (Xj , . . . , Xq) is a
query sequence of minimal length and (2) there exists a D∗ ∈ D w.r.t. 〈O,B,P ′,N ′〉R such that
stop(D∗) = t, where P ′ := P ∪ {Xi |Xi ∈ {Xj , . . . , Xq}, ui = t} and N ′ := N ∪ {Xi |Xi ∈
{Xj , . . . , Xq}, ui = f}.

Two strategies for selecting the “best” next query have been proposed [SFFR12]:

Split-In-Half Strategy (SPL) selects the query Xj which minimizes the following scoring function:

scsplit(Xj) :=
∣∣|D+

j | − |D
−
j |
∣∣+ |D0

j |

So, SPL prefers queries which eliminate half of the diagnoses independently of the query outcome.

Entropy-Based Strategy (ENT) uses information about prior probabilities pt for the user to make a
mistake when using a syntactical construct of type t ∈ CT (L), where CT (L) is the set of constructors
available in the used knowledge representation language L, e.g. {∀,∃,v,¬,t,u} ⊂ CT (OWL DL).
These fault probabilities pt are assumed to be independent and used to calculate fault probabilities of
axioms axk as

p(axk) = 1−
∏

t∈CT

(1− pt)n(t)

305

where n(t) is the number of occurrences of construct type t in axk. The probabilities of axioms can in
turn be used to determine fault probabilities of diagnoses Di ∈ D as

p(Di) =
∏

axr∈Di

p(ax r)
∏

axs∈O\Di

(1− p(ax s)). (22.1)

ENT selects the query Xj ∈ XD with highest expected information gain, i.e. that minimizes the follow-
ing scoring function [SFFR12]:

scent(Xj) =
∑

a∈{t,f}

p(uj = a) log2 p(uj = a) + p(D0
j) + 1

where

p(uj = t) =
∑
Dr∈D+

j

p(Dr) +
1

2
p(D0

j)

and

p(D0
j) =

∑
Dr∈D0

j

p(Dr)

The answer uj = a is used to update probabilities p(Dk) for Dk ∈ D according to the Bayesian formula,
yielding p(Dk|uj = a).

The result of the evaluation in [SFFR12] shows that ENT reveals better performance than SPL in most
of the cases. However, SPL proved to be the best strategy in situations when misleading prior information
is provided, i.e. the target diagnosis D∗ has low probability. So, one can regard ENT as a high risk
strategy with high potential to perform well, depending on the priorly unknown quality of the given fault
information. SPL, in contrast, can be seen as a no-risk strategy without any potential to leverage good
meta information. Therefore, selection of the proper combination of prior probabilities {pt | t ∈ CT (L)}
and query selection strategy is crucial for successful diagnosis discrimination and minimization of user
interaction.

Example 22.2 (Example 22.1 continued) To illustrate this, let a user who wants to debug our example
ontology O set p(ax i) := 0.001 for axi(i=1,...,4) and p(ax 5) := 0.1, p(ax 6) := 0.15, e.g. because the
user doubts the correctness of ax 5, ax 6 while being quite sure that axi(i=1,...,4) are correct. Assume that
D2 corresponds to the target diagnosis D∗, i.e. the settings provided by the user are inept. Application
of ENT starts with computation of prior fault probabilities of diagnoses p(D1) = p(D2) = p(D3) =
p(D4) = 0.003, p(D5) = 0.393, p(D6) = 0.591 (Formula 22.1). Then (O∗ |= X1?) with X1 :=
{DeptEmployee(s), Student(s)}, will be identified as the optimal query since it has the minimal score
scent(X1) = 0.02 (see Table 22.1 for queries and partitions w.r.t. the example ontology). However, since
the unfavorable answer u1 = f is given, this query eliminates only two of six diagnoses D4 and D6. The
Bayesian probability update then yields p(D2) = p(D3) = p(D4) = 0.01 and p(D5) = 0.97. As next
query X2 with scent(X2) = 0.811 is selected and answered unfavorably (u2 = t) as well which results
in the elimination of only one of four diagnoses D5. By querying X3 (scent(X3) = 0.082, u3 = t) and
X4 (sc(X4) = 0, u4 = t), the further execution of this procedure finally leads to the target diagnosis D2.
So, application of ENT requires four queries to find D∗. If SPL is used instead, only three queries are
required. The algorithm can select one of the two queries X5 or X9 because each eliminates half of all
diagnoses in any case. Let the strategy select X5 which is answered positively (u5 = t). As successive
queries, X6 (u6 = f) and X1 (u1 = f) are selected, which leads to the revelation of D∗ = D2.

306 CHAPTER 22. MOTIVATION AND BASIC CONCEPTS

Query D+
i D−i D0

i

X1 : {DeptEmployee(s), D4,D6 D1,D2,D3,D5 ∅
Student(s)}

X2 : {PhD(s)} D1,D2,D3,D4,D6 D5 ∅
X3 : {Researcher(s)} D2,D3,D4,D6 D1,D5 ∅
X4 : {Student(s)} D1,D2,D4,D5,D6 D3 ∅
X5 : {Researcher(s), D2,D4,D6 D1,D3,D5 ∅

Student(s)}
X6 : {DeptMember(s)} D3,D4 D1,D2,D5,D6

X7 : {PhD(s), D1,D2,D4,D6 D3,D5 ∅
Student(s)}

X8 : {DeptMember(s), D2 D1,D3,D4,D5,D6 ∅
Student(s)}

X9 : {DeptEmployee(s)} D3,D4,D6 D1,D2,D5 ∅

Table 22.1: A set XD of queries and associated partitions w.r.t. the initial DPI 〈T ,A, ∅, ∅〉{coherence} of the
example ontology O.

This scenario demonstrates that the no-risk strategy SPL (three queries) is more suitable than ENT
(four queries) for fault probabilities which disfavor the target diagnosis. Let us suppose, on the other
hand, that probabilities are assigned more reasonably in our example, e.g. D∗ = D6. Then it will take
ENT only two queries (X1, X6) to find D∗ while SPL will still require three queries, e.g. (X5, X1, X6).

This example indicates that, unless the target diagnosis is known in advance, one can never be sure to
select the best strategy from SPL and ENT. In Chapte 23 we present a learning query selection algorithm
that combines the benefits of both SPL and ENT. It adapts the way of selecting the next query depend-
ing on the elimination rate (like SPL) and on information gain (like ENT). Thereby its performance
approaches the performance of the better of both SPL and ENT.

Chapter 23

RIO: Risk Optimization for Query
Selection

The proposed Risk Optimization Algorithm (RIO) extends ENT strategy with a dynamic learning proce-
dure that learns by reinforcement how to select the next query. Its behavior is determined by the achieved
performance in terms of diagnosis elimination rate w.r.t. the set of leading diagnoses D. Good perfor-
mance causes similar behavior to ENT, whereas aggravation of performance leads to a gradual neglect of
the given meta information, and thus to a behavior akin to SPL. Like ENT, RIO continually improves the
prior fault probabilities based on new knowledge obtained through queries to a user.

RIO learns a “cautiousness” parameter c whose admissible values are captured by the user-defined
interval [c, c]. The relationship between c and queries is as follows:

Definition 23.1 (Cautiousness of a Query). We define the cautiousness cq(Xi) of a query Xi ∈ XD as
follows:

cq(Xi) :=
min

{
|D+

i |, |D
−
i |
}

|D|
∈

0,

⌊
|D|
2

⌋
|D|

 =: [cq, cq]

A query Xi is called braver than query Xj iff cq(Xi) < cq(Xj). Otherwise Xi is called more cautious
than Xj . A query with maximum cautiousness cq is called no-risk query.

Definition 23.2 (Elimination Rate). Given a query Xi and the corresponding answer ui ∈ {t, f}, the
elimination rate

e(Xi, ui) =
|D−i |
|D|

if ui = t

and

e(Xi, ui) =
|D+

i |
|D|

if ui = f

The answer ui to a query Xi is called favorable iff it maximizes the elimination rate e(Xi, ui). Otherwise
ui is called unfavorable. The minimal or worst case elimination rate minui∈{t,f}(e(Xi, ui)) of Xi is
denoted by ewc(Xi).

307

308 CHAPTER 23. RIO: RISK OPTIMIZATION FOR QUERY SELECTION

So, the cautiousness cq(Xi) of a query Xi is exactly the worst case elimination rate, i.e. cq(Xi) =
ewc(Xi) = e(Xi, ui) given that ui is the unfavorable query result. Intuitively, parameter c characterizes
the minimum proportion of diagnoses in D which should be eliminated by the successive query.

Definition 23.3 (High-Risk Query). Given a query Xi and cautiousness c, Xi is called a high-risk query
iff cq(Xi) < c, i.e. the cautiousness of the query is lower than the algorithm’s current cautiousness value
c. Otherwise,Xi is called non-high-risk query. By NHRc(XD) ⊆ XD we denote the set of non-high-risk
queries w.r.t. c. For given cautiousness c, the set of queries XD can be partitioned in high-risk queries
and non-high-risk queries.

Example 23.1 (Example 22.2 continued) Let the user specify c := 0.3 for the set D with |D| =
6. Given these settings, X1 := {DeptEmployee(s), Student(s)} is a non-high-risk query since its
partition 〈D+

1 ,D
−
1 ,D

0
1〉 = 〈{D4,D6} , {D1,D2,D3,D5} , ∅〉 and thus its cautiousness cq(X1) = 2/6 ≥

0.3 = c. The query X2 := {PhD(s)} with the partition 〈{D1,D2,D3,D4,D6} , {D5} , ∅〉 is a high-risk
query because cq(X2) = 1/6 < 0.3 = c andX3 := {Researcher(s), Student(s)} with 〈{D2,D4,D6},
{D1,D3,D5}, ∅〉 is a no-risk query due to cq(X3) = 3/6 = cq .

Given a user’s answer us to a query Xs, the cautiousness c is updated depending on the elimination
rate e(Xs, us) by c ← c + cadj where the cautiousness adjustment factor cadj := 2 (c − c)adj . The
scaling factor 2 (c−c) regulates the extent of the cautiousness adjustment depending on the interval length
c− c. More crucial is the factor adj that indicates the sign and magnitude of the cautiousness adjustment:

adj :=

⌊
|D|
2 − ε

⌋
|D|

− e(Xs, us)

where ε ∈ (0, 1
2) is a constant which prevents the algorithm from getting stuck in a no-risk strategy for

even |D|. E.g., given c = 0.5 and ε = 0, the elimination rate of a no-risk query e(Xs, us) = 1
2 resulting

always in adj = 0. The value of ε can be set to an arbitrary real number, e.g. ε := 1
4 . If c + cadj is

outside the user-defined cautiousness interval [c, c], it is set to c if c < c and to c if c > c. Positive cadj is
a penalty telling the algorithm to get more cautious, whereas negative cadj is a bonus resulting in a braver
behavior of the algorithm. Note, for the user-defined interval [c, c] ⊆ [cq, cq] must hold. c− cq and cq− c
represent the minimal desired difference in performance to a high-risk (ENT) and no-risk (SPL) query
selection, respectively. By expressing trust (disbelief) in the prior fault probabilities through specification
of lower (higher) values for c and/or c, the user can take influence on the behavior of RIO.

Example 23.2 (Example 23.1 continued) Assume p(ax i) := 0.001 for axi(i=1,...,4) and p(ax 5) := 0.1,
p(ax 6) := 0.15 and the user rather disbelieves these fault probabilities and thus sets c = 0.4, c = 0 and
c = 0.5. In this case RIO selects a no-risk query X3 just as SPL would do. Given u3 = t and |D| = 6,
the algorithm computes the elimination rate e(X3, t) = 0.5 and adjusts the cautiousness by cadj = −0.17
which yields c = 0.23. This allows RIO to select a higher-risk query in the next iteration, whereupon the
target diagnosis D∗ = D2 is found after asking three queries. In the same situation, ENT (starting with
high-risk query X1) would require four queries.

RIO, described in Algorithm 14, starts with the computation of minimal diagnoses. GETDIAGNOSES
function implements a combination of HS-Tree and QuickXPlain algorithms [SFFR12]. Using uniform-
cost search, the algorithm extends the set of leading diagnoses D with a maximum number of most
probable minimal diagnoses such that |D| ≤ n.

Then the GETPROBABILITIES function calculates the fault probabilities p(Di) for each diagnosis
Di of the set of leading diagnoses D using Formula (22.1). Next it adjusts the probabilities as per
the Bayesian theorem taking into account all previous query answers which are stored in P and N .
Finally, the resulting probabilities padj(Di) are normalized. Based on the set of leading diagnoses D,

309

Algorithm 14 Risk Optimization Algorithm (RIO)

Input: DPI 〈O,B,P ,N 〉R, fault probabilities of diagnoses DP , cautiousness C = (c, c, c), number of leading
diagnoses n to be considered, acceptance threshold σ

Output: a minimal diagnosis D w.r.t. 〈O,B,P ,N 〉R

1: D← ∅
2: repeat
3: D← GETDIAGNOSES(D, n,O,B,P ,N)
4: DP ← GETPROBABILITIES(DP,D,P ,N)
5: XD ← GENERATEQUERIES(O,B,P ,D)
6: Xs ← GETMINSCOREQUERY(DP,XD)
7: if GETQUERYCAUTIOUSNESS(Xs,D) < c then
8: Xs ← GETALTERNATIVEQUERY(c,XD, DP,D)

9: if GETANSWER(Xs) = yes then
10: P ← P ∪ {Xs}
11: else
12: N ← N ∪ {Xs}
13: c← UPDATECAUTIOUSNESS(D,P ,N , Xs, c, c, c)
14: until ABOVETHRESHOLD(DP, σ) ∨ ELIMINATIONRATE(Xs) = 0
15: return MOSTPROBABLEDIAG(D, DP)

GENERATEQUERIES generates queries according to Algorithm 13. GETMINSCOREQUERY determines
the best query Xsc ∈ XD according to scent:

Xsc = arg min
Xk∈XD

(scent(Xk))

If Xsc is a non-high-risk query, i.e. c ≤ cq(Xsc) (determined by GETQUERYCAUTIOUSNESS), Xsc is
selected. In this case, Xsc is the query with best information gain in XD and moreover guarantees the
required elimination rate specified by c.

Otherwise, GETALTERNATIVEQUERY selects the query Xalt ∈ XD (Xalt 6= Xsc) which has mini-
mal score scent among all least cautious non-high-risk queries Lc. That is,

Xalt = arg min
Xk∈Lc

(scent(Xk))

where

Lc := {Xr ∈ NHRc(XD) | ∀Xt ∈ NHRc(XD) : cq(Xr) ≤ cq(Xt)}

If there is no such query Xalt ∈ XD, then Xsc is selected.
Given the user’s answer us, the selected query Xs ∈ {Xsc ,Xalt} is added to P or N accordingly (see

Chapter 22). In the last step of the main loop the algorithm updates the cautiousness value c (function
UPDATECAUTIOUSNESS) as described above.

Before the next query selection iteration starts, a stop condition test is performed. The algorithm
evaluates whether the most probable diagnosis is at least σ% more likely than the second most probable
diagnosis (ABOVETHRESHOLD) or none of the leading diagnoses has been eliminated by the previous
query, i.e. GETELIMINATIONRATE returns zero for Xs. If a stop condition is met, the presently most
likely diagnosis is returned (MOSTPROBABLEDIAG).

Chapter 24

Evaluation

Goals. This evaluation should demonstrate that (1) there is a significant discrepancy between existing
strategies SPL and ENT concerning user effort where the winner depends on the quality of meta infor-
mation, (2) RIO exhibits superior average behavior compared to ENT and SPL w.r.t. the amount of user
interaction required, irrespective of the quality of specified fault information, (3) RIO scales well and (4)
its reaction time is well suited for an interactive debugging approach.

Provenance of Test Data. As data source for the evaluation we used faulty real-world ontologies pro-
duced by automatic ontology matching systems (cf. Example 22.1). Matching of two ontologies Oi and
Oj is understood as detection of correspondences between elements of these ontologies [SE13]:

Definition 24.1 (Ontology matching). Let Q(O) ⊆ S(O) denote the set of matchable elements in an
ontology O, where S(O) denotes the signature of O. An ontology matching operation determines an
alignmentMij , which is a set of correspondences between matched ontologies Oi and Oj . Each corre-
spondence is a 4-tuple 〈xi, xj , r, v〉, such that xi ∈ Q(Oi), xj ∈ Q(Oj), r is a semantic relation and
v ∈ [0, 1] is a confidence value. We call OiMj := Oi ∪ φ(Mij) ∪ Oj the aligned ontology for Oi and
Oj where φ maps each correspondence to an axiom.

Let in the followingQ(O) be the restriction to atomic concepts and roles in S(O), r ∈ {v,w,≡} and
φ the natural alignment semantics [MS09] that maps correspondences one-to-one to axioms of the form
xi r xj . We evaluate RIO using aligned ontologies by the following reasons: (1) Matching results often
cause inconsistency/incoherence of ontologies. (2) The (fault) structure of different ontologies obtained
through matching generally varies due to different authors and matching systems involved in the genesis
of these ontologies. (3) For the same reasons, it is hard to estimate the quality of fault probabilities, i.e.
it is unclear which of the existing query selection strategies to chose for best performance. (4) Available
reference mappings can be used as correct solutions of the debugging procedure.

Test Datasets. We used two datasets D1 and D2: Each faulty aligned ontologyOiMj in D1 is the result
of applying one of four ontology matching systems to a set of six independently created ontologies in the
domain of conference organization. For a given pair of ontologies Oi 6= Oj , each system produced an
alignmentMij . The average size of OiMj per matching system was between 312 and 377 axioms. D1
is a superset of the dataset used in [Stu08] for which all debugging systems under evaluation manifested
correctness or scalability problems. D2, used to assess the scalability of RIO, is the set of ontologies from
the ANATOMY track in the Ontology Alignment Evaluation Initiative38 (OAEI) 2011.5 [SE13], which

38http://oaei.ontologymatching.org

311

312 CHAPTER 24. EVALUATION

comprises two input ontologies O1 (11545 axioms) and O2 (4838 axioms). The size of the aligned on-
tologies generated by results of seven different matching systems was between 17530 and 17844 axioms.
39

Reference Solutions. For the dataset D1, based on a manually produced reference alignment Rij ⊆
Mij for ontologies Oi,Oj (cf. [MST08]), we were able to fix a target diagnosis D∗ := φ(Mij \ Rij)
for each incoherent OiMj . In cases where D∗ represented a non-minimal diagnosis, it was randomly
redefined as a minimal diagnosis D∗ ⊂ φ(Mij \ Rij). In case of D2, given the ontologies O1 and
O2, the output M12 of a matching system, and the correct reference alignment R12, we fixed D∗ as
follows: We carried out (prior to the actual experiment) a debugging session with DPI 〈φ(M12 \ R12),
O1 ∪ O2 ∪ φ(M12 ∩R12), ∅, ∅〉{coherence} and randomly chose one of the identified diagnoses as D∗.

Test Settings. We conducted 4 experiments EXP-i (i = 1, . . . , 4), the first two with dataset D1 and the
other two with D2. In experiments 1 and 3 we simulated good fault probabilities by setting p(axk) :=
0.001 for axk ∈ Oi ∪ Oj and p(axm) := 1 − vm for axm ∈ Mij , where vm is the confidence of the
correspondence underlying axm. Unreasonable fault information was used in experiments 2 and 4. In
EXP-4 the following probabilities were defined: p(axk) := 0.01 for axk ∈ Oi ∪ Oj and p(axm) :=
0.001 for axm ∈ Mij . In EXP-2, in contrast, we used probability settings of EXP-1, but altered the
target diagnosis D∗ in that we precomputed (before the actual experiment started) the 30 most probable
minimal diagnoses, and from these we selected the diagnosis with the highest number of axioms axk ∈
OiMj \ φ(Mij) as D∗.

Throughout all four experiments, we set |D| := 9 (which proved to be a good trade-off between
computation effort and representativeness of the leading diagnoses), σ := 85% and as input parameters
for RIO we set c := 0.25 and [c, c] := [cmin, cmax] = [0, 4

9]. To let tests constitute the highest challenge
for the evaluated methods, the initial DPI was specified as 〈OiMj , ∅, ∅, ∅〉{coherence}, i.e. the entire search
space was explored without adding parts ofOiMj to B, althoughD∗ was always a subset of the alignment
Mij only. In practice, given such prior knowledge, the search space could be severely restricted and
debugging greatly accelerated. All tests were executed on a Core-i7 (3930K) 3.2Ghz, 32GB RAM with
Ubuntu Server 11.04 and Java 6 installed.40

Metrics. Each experiment involved a debugging session of ENT, SPL as well as RIO for each ontology
in the respective dataset. In each debugging run we measured the number of required queries (q) until D∗
was identified, the overall debugging time (debug) assuming that queries are answered instantaneously
and the reaction time (react), i.e. the average time between two successive queries. The queries generated
in the tests were answered by an automatic oracle by means of the target ontology OiMj \ D∗.

Observations. The difference w.r.t. the number of queries per test run between the better and the worse
strategy in {SPL,ENT} was absolutely significant, with a maximum of 2300% in EXP-4 and averages
of 190% to 1145% throughout all four experiments (Figure 24.2). Moreover, results show that varying
quality of fault probabilities in {EXP-1,EXP-3} compared to {EXP-2,EXP-4} clearly affected the perfor-
mance of ENT and SPL (see first two rows in Figure 24.2). This perfectly motivates the application of
RIO.

Results of both experimental sessions, 〈EXP-1,EXP-2〉 and 〈EXP-3,EXP-4〉, are summarized in Fig-
ures 24.1(a) and 24.1(b), respectively. The figures show the (average) number of queries asked by RIO

39Source ontologies, produced alignments by each matcher, and reference alignments were downloaded from http://bit.ly/Zffkow
(D1) and http://bit.ly/Koh1NB as well as http://bit.ly/MU5Ca9 (D2).

40See http://code.google.com/p/rmbd/wiki for code and details.

313

EXP-1 EXP-2 EXP-3 EXP-4
debug react q debug react q debug react q debug react q

ENT 1860 262 3.67 1423 204 5.26 60928 12367 5.86 74463 5629 11.86
SPL 1427 159 5.70 1237 148 5.44 104910 4786 19.43 98647 4781 18.29
RIO 1592 286 3.00 1749 245 4.37 62289 12825 5.43 66895 8327 8.14

Table 24.1: Average time (ms) for the entire debugging session (debug), average time (ms) between two suc-
cessive queries (react), and average number of queries (q) required by each strategy.

0,00

2,00

4,00

6,00

8,00

10,00

12,00

HMatch Falcon-AO OWL-Ctxmatch COMA++

q

EXP-1 EXP-2

(a)

0,00
5,00

10,00
15,00
20,00
25,00
30,00
35,00
40,00
45,00

q

EXP-3 EXP-4

(b)

Figure 24.1: The bars show the avg. number of queries (q) needed by RIO, grouped by matching tools. The
distance from the bar to the lower (upper) end of the whisker indicates the avg. difference of RIO to the queries
needed by the per-session better (worse) strategy of SPL and ENT, respectively.

and the (average) differences to the number of queries needed by the per-session better and worse strat-
egy in {SPL,ENT}, respectively. The results illustrate clearly that the average performance achieved by
RIO was always substantially closer to the better than to the worse strategy. In both EXP-1 and EXP-2,
throughout 74% of 27 debugging sessions, RIO worked as efficiently as the best strategy (Figure 24.2).
In 26% of the cases in EXP-2, RIO even outperformed both other strategies; in these cases, RIO could
save more than 20% of user interaction on average compared to the best other strategy. In one scenario
in EXP-1, it took ENT 31 and SPL 13 queries to finish, whereas RIO required only 6 queries, which
amounts to an improvement of more than 80% and 53%, respectively. In 〈EXP-3,EXP-4〉, the savings
achieved by RIO were even more substantial. RIO manifested superior behavior to both other strategies
in 29% and 71% of cases, respectively. Not less remarkable, in 100% of the tests in EXP-3 and EXP-4,
RIO was at least as efficient as the best other strategy. Recalling Figure 24.2, this means that RIO can

EXP-1 EXP-2 EXP-3 EXP-4
qSPL < qENT 11% 37% 0% 29%
qENT < qSPL 81% 56% 100% 71%
qSPL = qENT 7% 7% 0% 0%
qRIO < min 4% 26% 29% 71%
qRIO ≤ min 74% 74% 100% 100%

Table 24.2: Percentage rates indicating which strategy performed best/better w.r.t. the required user interaction,
i.e. number of queries. EXP-1 and EXP-2 involved 27, EXP-3 and EXP-4 seven debugging sessions each. qstr
denotes the number of queries needed by strategy str and min is an abbreviation for min(qSPL, qENT).

314 CHAPTER 24. EVALUATION

Printed by Mathematica for Students

%

ov
er

he
ad

Figure 24.2: Box-Whisker Plots presenting the distribution of overhead (qw−qb)/qb∗100 (in %) per debugging
session of the worse strategy qw := max(qSPL, qENT) compared to the better strategy qb := min(qSPL, qENT).
Mean values are depicted by a cross.

avoid query overheads of over 2000%. Table 24.1, which provides average values for q, react and debug
per strategy, demonstrates that RIO is the best choice in all experiments w.r.t. q. Consequently, RIO is
suitable for both good and poor meta information.

As to time aspects, RIO manifested good performance, too. Since times consumed in 〈EXP-1,EXP-2〉
are almost negligible, consider the more meaningful results obtained in 〈EXP-3,EXP-4〉. While the best
reaction time in both experiments was achieved by SPL, we can clearly see that SPL was significantly
inferior to both ENT and RIO concerning q and debug. RIO revealed the best debugging time in EXP-4,
and needed only 2.2% more time than the best strategy (ENT) in EXP-3. However, if we assume the user
being capable of reading and answering a query in, e.g., 30 sec on average, which is already quite fast,
then the overall time savings of RIO compared to ENT in EXP-3 would already account for 5%. Doing
the same thought experiment for EXP-4, RIO would save 25% (w.r.t. ENT) and 50% (w.r.t. SPL) of
debugging time on average. All in all, the measured times confirm that RIO is well suited for interactive
debugging.

Chapter 25

Related Work

A similar interactive technique was presented in [NRG12], where a user is successively asked single on-
tology axioms in order to obtain a partition of a given ontology into a set of desired and a set of undesired
consequences. However, given an inconsistent/incoherent ontology, this technique starts from an empty
set of desired consequences aiming at adding to this set only axioms which preserve coherence, whereas
our approach starts from the complete ontology aiming at finding a minimal set of axioms responsible for
the violation of pre-specified requirements.

An approach for alignment debugging was proposed in [Mei11]. This work describes approximate
algorithms for computing a “local optimal diagnosis” and complete methods to discover a “global optimal
diagnosis”. Optimality in this context refers to the maximum sum of confidences in the resulting coherent
alignment. In contrast to our framework, diagnoses are determined automatically without support for user
interaction. Instead, techniques for manual revision of the alignment as a procedure independent from
debugging are demonstrated.

315

Chapter 26

Summary and Conclusions

We have shown problems of state-of-the-art interactive ontology debugging strategies w.r.t. the usage
of unreliable meta information. To tackle this issue, we proposed a learning strategy which combines
the benefits of existing approaches, i.e. high potential and low risk. Depending on the performance
of the diagnosis discrimination actions, the trust in the a-priori information is adapted. Tested under
various conditions, our algorithm revealed good scalability and reaction time as well as superior average
performance to two common approaches in the field in all tested cases w.r.t. required user interaction.
Highest achieved savings amounted to more than 80% and user interaction overheads resulting from the
wrong choice of strategy of up to 2300% could be saved. In the hardest test cases, the new strategy was
not only on average, but in 100% of the test cases at least as good as the best other strategy.

317

Part VI

A Direct Approach to Sequential
Diagnosis of High Cardinality Faults in

Knowledge Bases

319

321

In this part we cover the topic of efficiently dealing with KB debugging problems involving high car-
dinality faults. This part relies on material [SFRF14c, SFRF14a, SFRF14b] published in the Proceedings
of the 21st European Conference on Artificial Intelligence (ECAI 2014), in DX 2014 - 25th International
Workshop on Principles of Diagnosis and in the Proceedings of the Third International Workshop on
Debugging Ontologies and Ontology Mappings (WoDOOM14), respectively.41

41We are glad to report that the publication [SFRF14a] was awarded the Best Paper Award at the DX Workshop that took place
in Graz, Austria in September 2014 (see http://dx-2014.ist.tugraz.at).

Chapter 27

Introduction to the Problem

Model-based diagnosis (MBD) [Rei87] is a general method which can be used to find errors in hardware,
software, knowledge-bases (KBs), orchestrated web-services, configurations, etc. In particular, ontol-
ogy (KB) debugging tools [KPHS07, FS05, HPS08] can localize a (potential) fault by finding sets of
axioms D ⊆ K called diagnoses for the KB K. Diagnoses are generated using minimal conflict sets,
i.e. irreducible sets of axioms CS ⊆ K that violate some requirements, by using a consistency checker
(black-box approach). At least all axioms of a minimal diagnosis must be modified or deleted in order to
formulate a fault-free knowledge-base K∗. A knowledge-base K is faulty if some requirements, such as
consistency of K, presence or absence of specific entailments, are violated.

Sequential MBD methods [dKW87] applied to KB debugging acquire additional information in order
to discriminate between diagnoses [SFFR12]. Generated queries are answered by some oracle providing
additional observations about the entailments of a valid KB. As various applications show, the standard
methods work very satisfactorily for cases where the number of faults (minimal conflict sets) is low (single
digit number), consistency checking is fast (single digit number of seconds), and sufficient possibilities
for observations are available.

However, there are situations when KBs comprise a large number of faults. For example, in ontology
matching scenarios two KBs with several thousands of axioms are merged into a single one. High quality
matchers (e.g. [JRG11]) require the diagnosis of such substantially extended KBs, but could not apply
standard diagnosis methods because of the large number of minimal diagnoses and their high cardinality.
E.g. there are cases when the minimum cardinality of diagnoses is greater than 20.

In order to deal with hard diagnosis instances, we propose to relax the requirement for sequential diag-
nosis to compute a set of preferred minimal diagnoses, such as a set of most probable diagnoses. Instead,
we compute just some set of minimal diagnoses which can be used for query generation. This allows to
use direct computation of diagnoses [SU06] without computing conflict sets. The direct approach was
applied for non-interactive diagnosis of ontologies [DQPS11, BKP12] and constraints [FSZ11]. A recent
approach [SKFP12] does not generate the standard HS-TREE, but still depends on the minimization of
conflict sets, i.e. |D| minimized conflicts have to be discovered. Consequently, if |D| � m, substantially
more consistency checks are required, where |D| is the cardinality of the minimal diagnosis and m is the
number of minimal diagnoses required for query generation.

Since we are replacing the set of most probable diagnoses by just a set of minimal diagnoses, some
important practical questions have to be addressed. (1) Is a substantial number of additional queries
needed, (2) is this approach able to locate the faults, and (3) how efficient is this approach?

In order to answer these questions we have exploited the most difficult diagnosis problems of the
ontology alignment competition [EFvH+11]. Our evaluation shows that sequential diagnosis by direct
diagnosis generation needs approximately the same number of queries (±1) in order to identify the faults.

323

324 CHAPTER 27. INTRODUCTION TO THE PROBLEM

This evaluation was carried out for cases where the standard sequential diagnosis method was applicable.
Furthermore, the evaluation shows that our proposed method is able to locate faults in all cases correctly,
particularly in those cases where debugging sessions by means of the standard method are not successful
(due to overwhelming time or space consumption). Moreover, for the hardest cases (i.e., more than 4
minutes overall debugging time), the additional computation costs introduced by the direct method apart
from the costs needed for theorem proving are less than 50%, i.e. reasoning costs amount to more than
two thirds of overall computation time.

The rest of Part VI is organized as follows: Chapter 28 gives a brief introduction to the main notions
of sequential KB diagnosis. The details of the suggested algorithms are presented in Chapter 29. In
Chapter 30 we provide evaluation results whereupon Chapter 31 gives a conclusion.

Chapter 28

Basic Concepts

In the following we present (1) the fundamental concepts regarding the diagnosis of KBs and (2) the
interactive localization of axioms which must be changed.

Diagnosis of KBs. Given a knowledge-baseK which is a set of logical sentences (axioms), the user can
specify particular requirements during the knowledge-engineering process. The most basic requirement
is satisfiability, i.e. a logical model exists. A further frequently employed requirement is coherence.
Coherence requires that there exists a model s.t. the interpretation of every unary predicate is non-empty.
In other words, if we add ∃Y a(Y) to K for every unary predicate a, then the resulting KB must be
satisfiable. In addition, as it is common practice in software engineering, the knowledge-engineer (user
for short) may specify test cases. Test cases are axioms which must (not) be entailed by a valid KB.

Definition 28.1. Given a set of axioms P (called positive test cases) and a set of axioms N (called
negative test cases), a knowledge-base K∗ is valid iff it fulfills the following requirements:

1. K∗ is satisfiable (and coherent if required)

2. K∗ |= p ∀p ∈ P

3. K∗ 6|= n ∀n ∈ N

Let us assume that there is a non-valid KB K, then a set of axioms D ⊆ K must be removed and
possibly some axioms EX must be added by the user s.t. an updated K∗ becomes valid, i.e. K∗ :=
(K \D) ∪EX . The goal of diagnosis is to provide information to the users which are the sets of axioms
D (which is called a diagnosis) that must be changed. In order to prevent unnecessary changes,D is often
required to be subset-minimal, i.e. the set should be as small as possible. Furthermore, we allow the user
to define a set of axioms B (called the background theory) which must not be changed (i.e. the correct
axioms). More formally:

Definition 28.2. Given a diagnosis problem instance (DPI) specified by 〈K,B, P,N〉 where

• K is a knowledge-base,

• B a background theory,

• P a set of axioms which must be implied by a valid knowledge-base K∗ and

• N a set of axioms, each of which must not be implied by K∗

325

326 CHAPTER 28. BASIC CONCEPTS

D ⊆ K is a diagnosis w.r.t. 〈K,B, P,N〉 iff K \D can be extended by a set of logical sentences EX such
that:

1. (K \ D) ∪ B ∪ EX is consistent

2. (K \ D) ∪ B ∪ EX |= p for all p ∈ P

3. (K \ D) ∪ B ∪ EX 6|= n for all n ∈ N

D is a minimal diagnosis iff there is no D′ ⊂ D such that D′ is a diagnosis. D is a minimum cardinality
diagnosis iff there is no diagnosis D′ such that |D′| < |D|.42

The following proposition of [SFFR12] characterizes diagnoses by replacing EX with the positive
test cases.

Corollary 28.1. Given a DPI 〈K,B, P,N〉, a set of axioms D ⊆ K is a diagnosis w.r.t. 〈K,B, P,N〉 iff

(K \ D) ∪ B ∪ {
∧
p∈P

p}

is satisfiable (coherent) and

∀n ∈ N : (K \ D) ∪ B ∪ {
∧
p∈P

p} 6|= n

Hereafter we assume that a diagnosis always exists.

Proposition 28.1. A diagnosisD w.r.t. a DPI 〈K,B, P,N〉 exists iff B∪{
∧

p∈P p} is consistent (coherent)
and ∀n ∈ N : B ∪ {

∧
p∈P p} 6|= n

For the computation of diagnoses conflict sets are usually employed to constrain the search space. A
conflict set is the part of the KB that preserves the inconsistency/incoherency.

Definition 28.3. Given a DPI 〈K,B, P,N〉, a set of axiomsCS ⊆ K is a conflict set w.r.t. 〈K,B, P,N〉 iff
CS∪B∪{

∧
p∈P p} is inconsistent (incoherent) or there is an n ∈ N such that CS∪B∪{

∧
p∈P p} |= n.

CS is minimal iff there is no CS′ ⊂ CS such that CS′ is a conflict set.43

Minimal conflict sets can be used to compute the set of minimal diagnoses as it is shown in [Rei87].
The idea is that each diagnosis must include at least one element of each minimal conflict set.44

Proposition 28.2. D is a (minimal) diagnosis w.r.t. the DPI 〈K,B, P,N〉 iff D is a (minimal) hitting set
for the set of all minimal conflict sets w.r.t. 〈K,B, P,N〉.

For the generation of a minimal conflict set, diagnosis systems use a divide-and-conquer method (e.g.
QUICKXPLAIN [Jun04], for short QX), which we discussed in Sections 4.4.1 and 4.4.2. In the worst
case, QX requires O(|CS| log(|K||CS|)) calls to the reasoner, where CS is the returned minimal conflict
set.

The computation of minimal diagnoses in KB debugging systems is implemented using Reiter’s Hit-
ting Set HS-TREE algorithm [Rei87] (cf. Algorithm 2 in Chapter 4). The algorithm constructs a directed

42If clear from the context, we will often callD simply a diagnosis without explicitly stating the DPI w.r.t. which it is a diagnosis
in the rest of Part VI.

43If clear from the context, we will often call CS simply a conflict set without explicitly stating the DPI w.r.t. which it is a conflict
set in the rest of Part VI.

44In the rest of Part VI, we consider only minimal conflict sets to avoid the issues concerning the pruning rule [Rei87] described
in [GSW89].

327

tree from the root to the leaves, where each non-leave node is labeled with a minimal conflict set and
leave nodes are labeled by X (no conflicts) or × (pruned).

Each (X) node corresponds to a minimal diagnosis. The minimality of the diagnoses is guaranteed by
the minimality of conflict sets used for labeling the nodes, the pruning rule and the breadth-first strategy of
the tree generation. Moreover, because of the breadth-first strategy the minimal diagnoses are generated
in increasing order of their cardinality. Under the assumption that diagnoses with lower cardinality are
more probable than those with higher cardinality, HS-TREE generates most probable minimal diagnoses
first.

Diagnoses Discrimination. For many real-world DPIs, a diagnosis system can return a large number
of (minimal) diagnoses. Each minimal diagnosis corresponds to a different set of axioms in the given KB
K. All the axioms of any minimal diagnosis might be deleted from K or changed accordingly in order to
formulate a valid K∗. The user may extend the test cases P and N such that diagnoses are eliminated,
thus identifying exactly the correct minimal diagnosis. For discriminating between minimal diagnoses
we assume that the user knows some of the sentences a valid K∗ must (not) entail, that is the user serves
as an oracle.

Property 3. Given a DPI 〈K,B, P,N〉, a set of diagnoses D w.r.t. 〈K,B, P,N〉, and a logical sentence
Q representing the oracle query K∗ |= Q . If the oracle gives the answer yes then Di ∈ D is a diagnosis
w.r.t. 〈K,B, P ∪ {Q}, N〉 iff both conditions hold:

(K \ Di) ∪ B ∪ {
∧
p∈P

p} ∪ {Q} is consistent

∀n ∈ N : (K \ Di) ∪ B ∪ {
∧
p∈P

p} ∪ {Q} 6|= n

If the oracle gives the answer no then Di ∈ D is a diagnosis w.r.t. 〈K,B, P,N ∪ {Q}〉 iff both
conditions hold:

(K \ Di) ∪ B ∪ {
∧
p∈P

p} is consistent

∀n ∈ (N ∪ {Q}) : (K \ Di) ∪ B ∪ {
∧
p∈P

p} 6|= n

However, many different queries might exist for some set of diagnoses |D| ≥ 2, in the extreme case
exponentially many (in |D|). To select the best query, the authors in [SFFR12] suggest two query selection
strategies: SPLIT-IN-HALF (SPL) and ENTROPY (ENT). The first strategy is a greedy approach preferring
queries which allow to remove half of the diagnoses in D, for both answers to the query. The second is an
information-theoretic measure, which estimates the information gain for both outcomes of each query and
returns the query that maximizes the expected information gain. The prior fault probabilities required for
evaluating the ENT measure can be obtained from statistics of previous diagnosis sessions. For instance,
if the user has problems to apply “∃”, then the diagnosis logs are likely to contain more repairs of axioms
including this quantifier. Consequently, the prior fault probabilities of axioms including “∃” should be
higher. Given the fault probabilities of axioms, one can calculate prior fault probabilities of diagnoses as
well as evaluate ENT (see [SFFR12] for more details). The queries for both strategies are constructed
by exploiting so called classification and realization services provided by description logic reasoners.
Given a KB K and interpreting unary predicates as classes (rsp. concepts), the classification generates
the inheritance (subsumption) tree, i.e. the entailments K |= ∀X p(X) → q(X), if p is a subclass of q.
Realization computes, for each individual name t occurring in a KBK, a set of most specific classes p s.t.
K |= p(t) (see [BCM+07] for details).

328 CHAPTER 28. BASIC CONCEPTS

Due to the number of diagnoses and the complexity of diagnosis computation, not all diagnoses are
exploited for generating queries but a set of minimal diagnoses of size less or equal to some (small)
predefined number m [SFFR12]. We call this set the leading diagnoses and denote it by D from now on.
This set comprises the (most probable) minimal diagnoses which represent the set of all diagnoses.

The sequential KB debugging process can be sketched as follows. As input a DPI and some meta
information, such as prior fault estimates F , query selection strategy sQ (SPL or ENT) and stop criterion
σ, are given. As output a minimal diagnosis is returned that has a posterior probability of at least 1−σ. For
sufficiently small σ this means that the returned diagnosis is highly probable whereas all other minimal
diagnoses are highly improbable.

1. Using QX and HS-TREE, compute a set of leading diagnoses D of cardinality min(m, a), where
a is the number of all minimal diagnoses w.r.t. the DPI and m is the number of leading diagnoses
predefined by a user.

2. Use the prior fault probabilities F and the already specified test cases to compute (posterior) prob-
abilities of diagnoses in D by the Bayesian Rule (cf. [SFFR12]).

3. If some diagnosis D ∈ D has a probability greater than or equal to 1− σ or the user accepts D as
the axioms to be changed then stop and return D.

4. Use D to generate a set of queries and select the best query Q according to sQ.

5. Ask the user K∗ |= Q and, depending on the answer, add Q either to P or to N .

6. Remove elements from D violating the newly acquired test case.

7. Repeat at Step 1.

Chapter 29

Interactive Direct Diagnosis of
Knowledge Bases

The novelty of our approach is the interactivity combined with the direct calculation of diagnoses. To this
end we will utilize an “inverse” version of the QX algorithm [Jun04] called INV-QX and an associated
“inverse” version of HS-TREE termed INV-HS-TREE.

This combination of algorithms was first used in [FSZ11]. However, we introduced two modifications:
(i) a depth-first search strategy instead of breadth-first and (ii) a new pruning rule which moves axioms
from K to B instead of just removing them from K, since not adding them to B might result in losing
some of the minimal diagnoses.

INV-QX – Key Idea. INV-QX relies on the monotonic semantics of the used knowledge representation
language. The algorithm takes a DPI 〈K,B, P,N〉 and a ranking heuristic ≺ as input and outputs either
one minimal diagnosis or ’no diagnosis exists’. The ranking heuristic assigns a fault probability to each
axiom in K, if this information is available; otherwise every axiom has the same rank.

The main idea behind Algorithm 15 is to start with the set D0 = ∅ and extend it until a subset of
axioms D ⊆ K is found such that D is a minimal diagnosis with respect to Definition 28.2. In the first
steps (lines 1-3), Algorithm 15 defines a (potentially) faulty set of axioms K′ and a set B′ of axioms
assumed to be correct and sorts K′ w.r.t. the ranking heuristic (SORT). Next, INV-QX verifies whether
a diagnosis exists for the input data (line 4), i.e. if the conditions given by Proposition 28.1 are met.
This is accomplished by a call to the VERIFY function (defined in line 18 ff.) which requires a reasoner
that implements consistency checking (ISCONSISTENT) and allows to decide whether a set of axioms K′
entails some axiom n or not (ENTAILS). Concretely, VERIFY tests for given arguments B (set of correct
axioms), D (potential minimal diagnosis), K (potentially faulty set of axioms), N (negative test cases)
whether the set D is a minimal diagnosis or not according to Corollary 28.1. In case no diagnosis exists,
the algorithm returns ’no diagnosis exists’, otherwise it calls the function FINDDIAG in line 6.

FINDDIAG (line 7) is the main function of the algorithm which takes six arguments as input. The
values of the arguments B, K and N remain constant during the recursion and are required only for the
verification of requirements, i.e. calls to the VERIFY function. The values of D (potential diagnosis), ∆
(axioms most recently added toD) andK∆ (part of the original knowledge base that is currently analyzed
for the inclusion of axioms that are elements of the sought minimal diagnosis) on the other hand change
throughout the recursive calls of FINDDIAG. The two latter sets are obtained by recurrently partitioning
the set K∆ (SPLIT and GETELEMENTS in lines 12-14). In most of the implementations SPLIT is specified
so as to return k = b|K∆|/2c which causes the splitting of K∆ into partitions of equal cardinality (this
results in the best worst case time complexity [Jun04]). The algorithm pursues this to divide-and-conquer

329

330 CHAPTER 29. INTERACTIVE DIRECT KB DIAGNOSIS

Algorithm 15 INV-QX(K,B, P,N,≺)

Input: faulty set of axioms K, set of background axioms B, set of positive test cases P , set of negative test cases N ,
ranking heuristic ≺

Output: a minimal diagnosis D or ’no diagnosis exists’

1: K′ ← K \ B
2: B′ ← B ∪ P
3: K′ ← SORT(K′,≺)
4: if ¬VERIFY(B′, ∅, ∅, N) then
5: return ’no diagnosis exists’
6: return FINDDIAG(B′, ∅,K′,K′,K′, N)

7: procedure FINDDIAG(B,D,∆,K∆,K, N) returns a minimal diagnosis
8: if ∆ 6= ∅ ∧ VERIFY(B,D,K, N) then
9: return ∅

10: if |K∆| = 1 then
11: return K∆

12: k ← SPLIT(|K∆|)
13: K1 ← GETELEMENTS(K∆, 1, k)
14: K2 ← GETELEMENTS(K∆, k + 1, |K∆|)
15: D2 ← FINDDIAG(B,D ∪K1,K1,K2,K, N)
16: D1 ← FINDDIAG(B,D ∪D2,D2,K1,K, N)
17: return D1 ∪ D2

18: procedure VERIFY(B,D,K, N) returns true or false
19: K′ ← (K \ D) ∪ B
20: if ¬ISCONSISTENT(K′) then
21: return false

22: for n ∈ N do
23: if ENTAILS(K′, n) then
24: return false

25: return true

strategy (lines 15 and 16) until it identifies that the set D is a diagnosis (line 8). In further iterations the
algorithm minimizes this diagnosis by splitting it into sub-diagnoses of the form D = D′ ∪ K∆, where
K∆ contains only one axiom. In case D is a diagnosis and D′ is not, the algorithm decides that K∆ is a
subset of the sought minimal diagnosis. Just as the original QX algorithm, INV-QX always terminates
and it returns a minimal diagnosis for a given DPI (provided there exists one).

INV-QX requires O(|D| log(|K||D|)) calls to a reasoner to find a minimal diagnosis D. Moreover, in
opposite to SAT or CSP methods, e.g. [NPQW13], INV-QX can be used to compute diagnoses in cases
when satisfiability checking is beyond NP. For instance, reasoning for most of the KBs used in Chapter 30
is EXPTIME-complete.

INV-QX is a deterministic algorithm and returns one and the same minimal diagnosis if applied twice
to one and the same DPI. In order to obtain a different next diagnosis, the DPI used as input for INV-QX
must be modified accordingly. To this end, we employ the INV-HS-TREE algorithm.

INV-HS-TREE – Construction. The algorithm is inverse to the HS-TREE algorithm in the sense that
nodes are now labeled by minimal diagnoses (instead of minimal conflict sets) and a path from the root
to an open node is a partial conflict set (instead of a partial diagnosis). The algorithm constructs a
directed tree from the root to the leaves, where each node nd is labeled either with a minimal diagnosis

331

D or × (pruned) which indicates that the node is closed. For each s ∈ D there is an outgoing edge
labeled by s. Let H(nd) be the set of edge labels on the path from the root to the node nd. Initially the
algorithm generates an empty root node and adds it to a LIFO-queue, thereby implementing a depth-first
search strategy. Until the required number m of minimal diagnoses is reached or the queue is empty, the
algorithm removes the first node nd from the queue and labels nd by applying the following steps:

1. (reuse): D ∈ D if D ∩H(nd) = ∅, add for each s ∈ D a node to the LIFO-queue, or

2. (pruned): × if INV-QX(K \ H(nd),B ∪ H(nd), P,N) = ’no-diagnosis-exists’, (according to
Proposition 28.1), or

3. (compute): D if INV-QX(K \H(nd),B ∪H(nd), P,N) = D; add D to D and add for each s ∈ D
a node to the LIFO-queue.

Reuse of known diagnoses in Step 1 and the addition ofH(nd) to the background theory B in Steps 2 and
3 allows the algorithm to force INV-QX to search for a minimal diagnosis that is different to all already
computed minimal diagnoses in D. So, if neither Step 1 nor Step 2 are applicable, INV-HS-TREE calls
INV-QX which is guaranteed to compute a new minimal diagnosis D which is then added to the set D.

INV-HS-TREE – Update Procedure for Interactivity. Since paths in INV-HS-TREE are (1) irrelevant
and need not be maintained, and (2) only a small (linear) number of nodes/paths is in memory due to
the application of a depth-first search, the update procedure after a query Q has been answered involves
a reconstruction of the tree. In particular, by answering Q, m − k of (maximally) m leading diagnoses
are invalidated and deleted from memory. The k still valid minimal diagnoses are used to build a new
tree. To this end, the root is labeled by any of these k minimal diagnoses and a tree is constructed as
described above where the k diagnoses are incorporated for the reuse check. Note that the recalculation
of a diagnosis that has been invalidated by a query is impossible as in subsequent iterations a new DPI is
considered which includes the answered query as a test case.

INV-HS-TREE – Comparison to HS-TREE. Since INV-QX(K,B ∪ H(nd), P,N) = ’no diagnosis
exists’ means H(nd) is a conflict set w.r.t. the current DPI 〈K,B, P,N〉, in INV-HS-TREE any path that
is a conflict set is automatically closed. This makes a pruning rule similar to the one in HS-TREE which
closes a node nd given an alternative path H(nd′) to a closed node nd′ with H(nd′) ⊆ H(nd) obsolete.
So, INV-HS-TREE benefits from the fact that minimality of diagnoses is independent of path-minimality,
and thereby might save time for comparison of exponentially many paths over HS-TREE.

Another great advantage of INV-HS-TREE over HS-TREE is that it can be constructed using a space-
saving depth-first strategy. The reason for this is again that minimality of paths (conflict sets) is irrelevant
in INV-HS-TREE whereas in HS-TREE minimality of paths (diagnoses) is essential. In an implementa-
tion where successors of a node are generated one at a time in INV-HS-TREE, the space complexity of the
entire tree construction is linear and amounts to O(2m) = O(m) where m is the predefined maximum
number of leading diagnoses. This holds as k < m still valid diagnoses from the previous iteration are in
memory, plus a path in the tree can comprise a maximum of m nodes corresponding to different (reused
or new) diagnoses before the search is stopped (|D| = m). No conflict sets are stored.

For HS-TREE, by contrast, the worst-case space complexity is exponential, i.e. O(|CSmax|d) where
|CSmax| is the size of the minimal conflict set with maximum cardinality (among all minimal conflict
sets w.r.t. the given DPI) and d is the tree depth were m minimal diagnoses have been generated.

The crucial disadvantage of INV-HS-TREE compared to HS-TREE is that the former cannot guarantee
the computation of diagnoses in a special order, e.g. minimum cardinality or maximum fault probability
first.

332 CHAPTER 29. INTERACTIVE DIRECT KB DIAGNOSIS

1 :

D = ∅
∆ = {ax1, ax2, ax3, ax4, ax5}
K∆ = {ax1, ax2, ax3, ax4, ax5}

VERIFY �

2 :

D = {ax1, ax2}
∆ = {ax1, ax2}

K∆ = {ax3, ax4, ax5}
VERIFY �

3 :

D = {ax1, ax2, ax3}
∆ = {ax3}

K∆ = {ax4, ax5}
VERIFY �

4 :

D = {ax1, ax2}
∆ = ∅

K∆ = {ax3}
VERIFY �

zz

��
∅

PP

��

{ax3}∪∅

NN

5 :

D = {ax3}
∆ = {ax3}

K∆ = {ax1, ax2}
VERIFY �

6 :

D = {ax3, ax1}
∆ = {ax1}
K∆ = {ax2}

VERIFY �

7 :

D = {ax3, ax2}
∆ = {ax2}
K∆ = {ax1}

VERIFY �

$$

�� {ax2}

PP

��

{ax3,ax2}∪∅

ll return {ax3, ax2}//

Figure 29.1: INV-QX recursion tree. Each node shows values of FINDDIAG input variables as well as the result
of the VERIFY function called in line 8.

[ax3, ax4]

[ax2, ax3]
ax2

��

〉 D:
D1 = [ax2, ax3]
D2 = [ax3, ax4]
Query: K∗ |= c(w)
Answer: no

〉
[ax1, ax4, ax5]

[ax3, ax4]

ax3��

〉 D:
D2 = [ax3, ax4]
D3 = [ax1, ax4, ax5]
Query: K∗ |= ∀X a(X)→ c(X)
Answer: yes

→ No further minimal diagnoses, return [ax3, ax4]

Figure 29.2: Identification of the target diagnosis [ax3, ax4] using INV-HS-TREE.

Example 29.1 Consider a DPI with the following knowledge base K:

ax 1 : ∀X c(X)→ a(X) ax 4 : ∀X b(X)→ c(X)

ax 2 : ∀X c(X)→ e(X) ax 5 : ∀X b(X)→ ¬d(X)

ax 3 : ∀X a(X)→ ¬(c(X) ∨ ¬b(X))

the background knowledge B = {a(v), b(w), c(s)}, one positive P = {d(v)} and one negative N =
{e(w)} test case.

Let us first show how a minimal diagnosis is computed by INV-QX (see Figure 29.1). The algorithm
starts with an empty diagnosis D = ∅ and K∆ containing all axioms of K 1 . VERIFY called in line 8
returns false since (B ∪ P) ∪ (K \ ∅) is inconsistent. Since moreover |K∆| 6= 1 (line 10), the algorithm
splits K∆ into {ax 1, ax 2} and {ax 3, ax 4, ax 5} (lines 12-14) and passes the sub-problem (line 15) to the
next level of recursion 2 . Since the setD = {ax 1, ax 2} is not a diagnosis, i.e. the KB (B∪P)∪(K\D) is
inconsistent and |K∆| = | {ax 3, ax 4, ax 5} | 6= 1, the problem in K∆ is split one more time (lines 12-14).
On the second level of recursion 3 the set D is a diagnosis, yet not a minimal one. The function VERIFY
returns true and the algorithm starts to analyze the found diagnosis. Therefore, it verifies whether the
last extension of the set D is a subset of a minimal diagnosis 4 . Since the extension includes only one
axiom ax 3 and the extended set {ax 1, ax 2} is not a diagnosis, the algorithm concludes that ax 3 must be
an element of the a minimal diagnosis. The leftmost branch of the recursion tree terminates and returns

333

XX

〈ax 2, ax 4〉C 〈ax 2, ax 4〉R

〈ax 3, ax 5〉C 〈ax 3, ax 5〉R

〈ax 1, ax 3〉C

ax4

$$
ax2

zz

ax1zz ax3 $$

ax2
�� ax4 $$

〉 Minimal diagnoses:
D1 = [ax 3, ax 4]
D2 = [ax 2, ax 3]

Query: K∗ |= c(w)
Answer: no

〉

Iteration 1

X

×

×

X

×

〈ax 3, ax 5〉R

〈ax 2, ax 4〉R

〈ax 3, ax 4〉C

〈ax 3, ax 5〉C

〈ax 2, ax 4〉C

〈ax 1, ax 3〉C

ax5

$$
ax3
��

ax5

$$ax3zz

ax4

$$
ax2
��ax4 $$ax2zz

ax3

$$
ax1

zz 〉
Minimal diagnoses:
D1 = [ax 3, ax 4]
D3 = [ax 1, ax 4, ax 5]

Query: K∗ |= ∀X a(X)→ c(X)
Answer: yes

No further minimal
diagnoses, return
D = {[ax 4, ax 3]}

Iteration 2

Figure 29.3: Identification of the target diagnosis [ax4, ax3] using HS-TREE and QX computing conflicts
on-demand. All computed node labels are denoted with C and all reused with R.

{ax 3}. This axiom is added to the set D and the algorithm starts investigating whether the two axioms
{ax 1, ax 2} also belong to a minimal diagnosis 5 . First, it tests the set {ax 3, ax 1} 6 , which is not a
diagnosis, and in the next iteration it identifies {ax 3, ax 2} as a minimal diagnosis in node 7 which is
the final output of INV-QX.

In general, for the sample DPI there are three minimal diagnoses {D1 : [ax 2, ax 3], D2 : [ax 3, ax 4],
D3 : [ax 1, ax 4, ax 5]} and four minimal conflict sets {CS1 : 〈ax 1, ax 3〉 , CS2 : 〈ax 2, ax 4〉 , CS3 :
〈ax 3, ax 5〉 , CS4 : 〈ax 3, ax 4〉}.

Now we show how INV-HS-TREE can be applied to find the (correct) diagnosis that allows the for-
mulation of a valid KB (with the desired semantics in terms of entailments and non-entailments). Assume
that the number of leading diagnoses required for query generation is set tom = 2. Applied to the sample
DPI, INV-HS-TREE computes a minimal diagnosis D1 := [ax 2, ax 3] = INV-QX(K,B, P,N) to label
the root node, see Figure 29.2. Next, it generates one successor node that is linked with the root by an
edge labeled with ax 2. For this node INV-QX(K \ {ax 2} ,B ∪ {ax 2} , P,N) yields a minimal diagno-
sis D2 := [ax 3, ax 4] disjoint with {ax 2}. Now |D| = 2 and a query is generated and answered as in
Figure 29.2. Adding c(w) to the negative test cases invalidates D1 since (K \ D1) ∪ B ∪ P |= c(w).
In the course of the update, D1 is deleted and D2 used as the root of a new tree. An edge labeled with
ax3 is created and diagnosis D3 := [ax 1, ax 4, ax 5] is generated. After the answer to the second query
is added to the positive test cases, D3 is invalidated and all outgoing edge labels ax 3, ax 4 of the root D2

of the new tree are conflict sets for the current DPI 〈K,B, {d(v),∀X a(X)→ c(X)} , {e(w), c(w)}〉, i.e.
all leaf nodes are labeled by × and the tree construction is complete. So, D2 is returned as its probability
is 1.

Finally, let us compare the performance of HS-TREE [Rei87] with the one of INV-HS-TREE. Ap-
plied to our sample DPI, the standard interactive diagnosis process using HS-TREE first calls QX [Jun04]

334 CHAPTER 29. INTERACTIVE DIRECT KB DIAGNOSIS

which returns a minimal conflict set 〈ax 1, ax 3〉 (Figure 29.3). This minimal conflict set is used to label
the root node of the HS-TREE. By reuse (R) of already computed minimal conflict sets or further calls
(C) to QX (if there is no conflict set to reuse) the algorithm extends the HS-TREE until m = 2 leading
minimal diagnoses D := {D1,D2} for the DPI are computed. To discriminate between diagnoses in
D, the query K∗ |= c(w) is computed. Given the answer no, D2 is invalidated which is reflected by
the closing of the corresponding node in the tree (label ×). The second iteration considers the new DPI
〈K,B, {d(v)} , {e(w), c(w)}〉 and involves further expansion of (open nodes in) the tree under considera-
tion of the pruning rule until the size of leading diagnoses D is 2, i.e. {D1,D3}. After the positive answer
to the second query and closing of the invalidated diagnosis D3, the recalculation of D (not shown in
Figure 29.3) yields no further minimal diagnoses. So, the algorithm terminates and returns D1. As we
can see, HS-TREE comprises a lot of intermediate nodes in comparison to INV-HS-TREE. That leads to
a dramatic difference in memory consumption between these two approaches.

Chapter 30

Evaluation

We evaluated our approach DIR (based on INV-QX and INV-HS-TREE) versus the standard technique
STD [SFFR12] (based on QX and HS-TREE) using a set of KBs created by automatic matching systems.
Given two knowledge bases Ki and Kj , a matching system outputs an alignment Mij which is a set
of correspondences between semantically related entities of Ki and Kj . Let Q(K) denote the set of all
elements ofK for which correspondences can be produced, i.e. names of predicates. Each correspondence
is a tuple 〈xi, xj , r, v〉, where xi ∈ Q(Ki), xj ∈ Q(Kj) and xi, xj have the same arity, r ∈ {←,↔,→}
is a logical operator and v ∈ [0, 1] is a confidence value. The latter expresses the probability of a
correspondence to be correct. Let X be a vector of distinct logical variables with a length equal to
the arity of xi, then each 〈xi, xj , r, v〉 ∈Mij is translated to the axiom ∀X xi(X) r xj(X). Let K(Mij)
denote the set of axioms resulting from such a translation for the alignment Mij . Then the result of the
matching process is an aligned KB Kij = Ki ∪ K(Mij) ∪ Kj .

The KBs considered in this section were created by ontology matching systems participating in the
Ontology Alignment Evaluation Initiative (OAEI) 2011 [EFvH+11]. Each matching experiment in the
framework of OAEI represents a scenario in which a user obtains an alignment Mij by means of some
(semi)automatic tool for two real-world ontologies Ki and Kj . The latter are KBs expressed by the Web
Ontology Language (OWL) [GHM+08] whose semantics is compatible with the SROIQ description
logic (DL). This DL is a decidable fragment of first-order logic for which a number of effective reason-
ing methods exist [BCM+07]. Note that, SROIQ is a member of a broad family of DL knowledge
representation languages. All DL KBs considered in this evaluation are expressible in SROIQ.

The goal of the first experiment was to compare the performance of STD and DIR on a set of large, but
diagnostically uncomplicated KBs, generated for the Anatomy experiment of OAEI.45 In this experiment
the matching systems had to find correspondences between two KBs describing the human and the mouse
anatomy. K1 (Human) andK2 (Mouse) include 11545 and 4838 axioms, respectively, whereas the size of
the alignmentM12 produced by different matchers varies between 1147 and 1461 correspondences. Seven
matching systems produced a classifiable but incoherent output. One system generated a classifiable and
coherent aligned KB. However, this system employes a built-in heuristic diagnosis engine which does
not guarantee to produce minimal diagnoses. That is, some axioms are removed without reason. Four
systems produced KBs which could not be processed by current reasoning systems (e.g. HermiT) since
these KBs could not be classified within 2 hours.

For testing the performance of our system we have to define the correct output of sequential diagnosis
which we call the target diagnosis Dt. We assume that the only available knowledge is Mij together
with Ki and Kj . In order to measure the performance of the matching systems the organizers of OAEI

45All KBs and source code of programs used in the evaluation can be downloaded from http://code.google.com/p/rmbd/wiki/
DirectDiagnosis. The tests were performed on Core i7, 64GB RAM running Ubuntu, Java 7 and HermiT as DL reasoner.

335

336 CHAPTER 30. EVALUATION

HS-TREE INV-HS-TREE
System Scoring Time #Queries Reaction Time #Queries Reaction
AgrMaker ENT 19.62 1 19.10 20.83 1 18.23
AgrMaker SPL 36.04 4 8.76 36.03 4 8.28
GOMMA-bk ENT 18.34 1 18.07 14.47 1 12.68
GOMMA-bk SPL 18.95 3 6.15 19.51 3 5.91
GOMMA-nobk ENT 18.26 1 17.98 14.26 1 12.49
GOMMA-nobk SPL 18.74 3 6.08 19.47 3 5.89
Lily ENT 78.54 1 77.71 82.52 1 72.83
Lily SPL 82.94 4 20.23 115.24 4 26.93
LogMap ENT 6.60 1 6.30 13.41 1 11.36
LogMap SPL 6.61 2 3.17 15.13 2 6.82
LogMapLt ENT 14.85 1 14.54 12.89 1 11.34
LogMapLt SPL 15.59 3 5.05 17.45 3 5.29
MapSSS ENT 81.06 4 19.86 56.17 3 17.32
MapSSS SPL 88.32 5 17.26 77.59 6 12.43

Table 30.1: HS-TREE and INV-HS-TREE applied to Anatomy benchmark. Time is given in sec, Scoring
stands for query selection strategy, Reaction is the average system reaction time between queries.

provided a golden standard alignmentMt considered as correct. Nevertheless, we cannot assume thatMt

is explicitly available since the matching system would have used this information. W.r.t. the knowledge
available, any minimal diagnosis w.r.t. the DPI 〈K(Mij),Ki ∪ Kj , ∅, ∅〉 (i.e. K(Mij) is the KB and Ki ∪
Kj used as background theory) can be selected as Dt. However, for every alignment we selected a
minimal diagnosis as target diagnosis Dt which is outside the golden standard. By this procedure we
mimic cases where additional information can be acquired such that no correspondence of the golden
standard is removed in order to establish coherence. We stress that this setting is unfavorable for diagnosis
since providing more information by exploiting the golden standard would reduce the number of queries
to ask. Consequently, we limit the knowledge to Kij and use Kij \ Dt to answer the queries.

In particular, the selection of a target diagnosis Dt for each Kij output by a matching system was
done in two steps: (i) compute the set of all minimal diagnoses AD w.r.t. the correspondences which are
not in the golden standard, i.e.K(Mij \Mt), and use Ki∪Kj ∪K(Mij ∩Mt) as background theory. The
set of test cases are empty. I.e. the DPI is 〈K(Mij \Mt),Ki ∪ Kj ∪ K(Mij ∩Mt), ∅, ∅〉. (ii) select Dt

randomly from AD. The prior fault probabilities of axioms ax ∈ K(Mij) expressing correspondences
were set to 1− vax where vax is the confidence value provided by the matcher.

The tests were performed for the mentioned seven incoherent alignments where the input DPI is
〈K(Mij),Ki ∪ Kj , ∅, ∅〉 and the output is a minimal diagnosis. We tested DIR and STD with both query
selection strategies SPLIT-IN-HALF (SPL) and ENTROPY (ENT) in order to evaluate the quality of fault
probabilities based on confidence values. Moreover, for generating a query, the number of leading diag-
noses was limited to m = 9.

The results of the first experiment are presented in Table 30.1. DIR computed Dt within 36 sec. on
average and slightly outperformed STD which required 36.7 sec. The number of asked queries was equal
for both methods in all but two cases resulting from KBs produced by the MapSSS system. For these
KBs, DIR required one query more using ENT and one query less using SPL. In general, the results
obtained for the Anatomy case show that DIR and STD have similar performance in both runtime and
number of queries. Both DIR and STD identified the target diagnosis. Moreover, the confidence values

337

Ontology (Expressivity) 30 Diag min |D| Scoring Time #Queries Reaction #CC CC

ldoa-conference-confof 48.06 16 ENT 11.6 6 1.5 430 0.003
SHIN (D) SPL 11.3 7 1.6 365 0.004
ldoa-cmt-ekaw 42.28 12 ENT 48.6 21 2.2 603 0.016
SHIN (D) SPL 139.1 49 2.8 609 0.054
mappso-confof-ekaw 55.66 10 ENT 10 5 1.9 341 0.007
SHIN (D) SPL 31.6 13 2.3 392 0.021
optima-conference-ekaw 62.13 19 ENT 16.8 5 2.6 553 0.008
SHIN (D) SPL 16.1 8 1.9 343 0.012
optima-confof-ekaw 44.52 16 ENT 24 20 1.1 313 0.014
SHIN (D) SPL 17.6 10 1.7 501 0.006
ldoa-conference-ekaw 56.98 16 ENT 56.7 35 1.5 253 0.053
SHIN (D) SPL 25.5 9 2.7 411 0.016
csa-conference-ekaw 62.82 17 ENT 6.7 2 2.8 499 0.003
SHIN (D) SPL 22.7 8 2.7 345 0.02
mappso-conference-ekaw 70.46 19 ENT 27.5 13 1.9 274 0.028
SHIN (D) SPL 71 16 4.2 519 0.041
ldoa-cmt-edas 15.47 16 ENT 24.7 22 1 303 0.008
ALCOIN (D) SPL 11.2 7 1.4 455 0.002
csa-conference-edas 39.74 26 ENT 18.4 6 2.7 419 0.005
ALCHOIN (D) SPL 240.8 37 6.3 859 0.036
csa-edas-iasted 377.36 20 ENT 1744.6 3 349.2 1021 1.3
ALCOIN (D) SPL 7751.9 8 795.5 577 11.5
ldoa-ekaw-iasted 229.72 13 ENT 23871.5 9 1886 287 72.6
SHIN (D) SPL 20449 9 2100.1 517 37.2
mappso-edas-iasted 293.74 27 ENT 18400.3 5 2028.3 723 17.8
ALCOIN (D) SPL 159299 11 13116.6 698 213.2

Table 30.2: Sequential diagnosis using direct computation of diagnoses. 30 Diag is the time required to find 30
minimal diagnoses, min |D| is the cardinality of a minimum cardinality diagnosis, Scoring indicates the query
selection strategy, Reaction is the average system reaction time between queries, #CC number of consistency
checks, CC gives average time needed for one consistency check. Time is given in sec.

provided by the matching systems appeared to be a good estimate for fault probabilities. Thus, in many
cases ENT was able to find Dt using one query only, whereas SPL used 4 queries on average.

In the first experiment, the identification of the target diagnosis by sequential STD required the com-
putation of 19 minimal conflicts on average. Moreover, the average size of a minimum cardinality diag-
nosis over all KBs in this experiment was 7. In the second experiment (see below), where STD is not
applicable, the cardinality of the target diagnosis is significantly higher.

The second experiment was performed on KBs of the OAEI Conference benchmark which turned out
to be problematic for STD. For these KBs we observed that the minimum cardinality diagnoses comprise
18 elements on average. In 11 of the 13 KBs of the second experiment (see Table 30.2), STD was
unable to find any diagnosis within 2 hours. In the other two cases STD succeeded to find one minimal
diagnosis for csa-conference-ekaw and nine for ldoa-conference-confof. However, DIR
even succeeded to find 30 minimal diagnoses for each KB within time acceptable for interactive diagnosis
settings. Moreover, on average DIR was able to find 1 minimal diagnosis in 8.9 sec., 9 minimal diagnoses
in 40.83 sec. and 30 minimal diagnoses in 107.61 sec. (see Column 2 of Table 30.2). This result shows
that DIR is a stable and practically applicable method even in cases where a knowledge base comprises
high-cardinality faults.

338 CHAPTER 30. EVALUATION

In the Conference experiment, we first selected the target diagnosis Dt for each Kij just as it was
done in the described Anatomy case. Next, we evaluated the performance of sequential DIR using both
query selection methods. The results of the experiment presented in Table 30.2 show that DIR found Dt

for each KB. On average DIR solved the problems more efficiently using ENT than SPL because also in
the Conference case the confidence values provided a reasonable estimation of axiom fault probabilities.
Only in three cases ENT required more queries than SPL.

Moreover, the experiments show that the efficiency of debugging methods depends highly on the
runtime of the underlying reasoner. For instance, in the hardest case consistency checking took 93.4%
of the total time whereas all other operations – including construction of the search tree, generation and
selection of queries – took only 6.6% of time. Consequently, sequential DIR requires only a small fraction
of computation effort. Runtime improvements can be achieved by advances in reasoning algorithms or
the reduction of the number of consistency checks. Currently, in order to generate a query, DIR requires
O(m ∗ |D| log(|K||D|)) checks to find m leading diagnoses.

A further source for improvements can be observed for the ldoa-ekaw-iasted ontology where
both methods asked the same number of queries. In this case, a sequential diagnosis session using ENT
query selection method required only half of the consistency checks SPL did. However, an average con-
sistency check made in the session using ENT took almost twice as long as an average consistency check
using SPL. The analysis of this ontology showed that there is a small subset of axioms (called “hot spot”
in [GPS12]) which made reasoning considerably harder. As practice shows, they can be resolved by suit-
able queries. This can be observed in the ldoa-ekaw-iasted case where SPL acquired appropriate
test cases early and thereby foundDt faster. Therefore, research and application of methods allowing fast
identification of such hot spots might result in a significant improvement of diagnosis runtime.

Chapter 31

Summary and Conclusions

In this part, we presented a sequential diagnosis method for faulty KBs which is based on the direct
computation of minimal diagnoses. We were able to reduce the number of consistency checks by avoiding
the computation of minimized conflict sets and by computing just some set of minimal diagnoses instead
of a set of most probable diagnoses or a set of minimum cardinality diagnoses. The presented evaluation
results in Chapter 30 indicate that the performance of the suggested sequential diagnosis system is either
comparable with or outperforms the existing approach in terms of runtime and required number of queries
in case a KB includes a large number of faults. The scalability of the algorithms was demonstrated on a
set of large KBs including thousands of axioms.

339

Part VII

Epilog

341

343

In this part we provide a discussion of related work in Chapter 32,46 summarize the contributions of
this work in Chapter 33 and deal with our future work topics in Chapter 34.

46Note that related work specific to topics addressed in Parts IV-VI is separately treated in these parts.

Chapter 32

Related Work

To the best of our knowledge no interactive KB debugging methods that ask a user automatically se-
lected queries have been proposed to repair faulty (monotonic) KBs so far (except for our own previous
works [SF10, SFFR12, RSFF13, SFRF14c]).

Non-interactive debugging methods for KBs (ontologies) are introduced in [SHCH07, KPHS07,
FS05]. Ranking of diagnoses and proposing a “best” diagnosis is presented in [KPSCG06]. This method
uses a number of measures such as (a) the frequency with which a formula appears in conflict sets,
(b) the impact on the KB in terms of its “lost” entailments when some formula is modified or removed,
(c) provenance information about the formula and (d) syntactic relevance of a formula. All these mea-
sures are evaluated for each formula in a conflict set. The scores are then combined in a rank value which
is associated with the corresponding formula. These ranks are then used by a modified hitting set tree
algorithm that identifies diagnoses with a minimal rank. In this work no query generation and selec-
tion strategy is proposed if the intended diagnosis cannot be determined reliably with the given a-priori
knowledge. In our work additional information is acquired until the minimal diagnosis with the intended
semantics can be identified with confidence. In general, the work of [KPSCG06] can be combined with
the approaches presented in our work as ranks of logical formulas can be taken into account together with
other observations for calculating the prior probabilities of minimal diagnoses (see Section 4.6.1).

The idea of selecting the next query based on certain query selection measures was exploited in the
generation of decisions trees [Qui86] and for selecting measurements in the model-based diagnosis of
circuits [dKW87] (in both works, the minimal expected entropy measure was used). We extended these
methods to query selection in the domain of KB debugging [SF10] and devised further query selection
measures [SFFR12, RSFF13].

An approach for the debugging of faulty aligned KBs (ontologies) was proposed by [Mei11]. An
aligned KB is the union of two KBs K1 and K2 and an alignment A1,2 (which is properly formatted
as a set of logical formulas, cf. Definition 18 in [Mei11]). A1,2 is a set of correspondences (each with
an associated automatically computed confidence value) produced by an automatic system (an ontology
matcher) given K1 and K2 as inputs where each correspondence represents a (possible) semantic rela-
tionship between a term occurring in the first and a term occurring in the second input KB. The goal
of a debugging system for faulty aligned KBs is usually the determination of a subset of the alignment
A′1,2 ⊂ A1,2 such that the aligned KB using A′1,2 is not faulty. In terms of our approaches, this corre-
sponds to the setting K := A1,2 and B := K1 ∪ K2. We have already shown in [RSFF12, SFRF12] that
our systems can also be applied for fault localization in aligned KBs. The work of [Mei11] describes
approximate algorithms for computing a “local optimal diagnosis” and complete methods to discover a
“global optimal diagnosis”. Optimality in this context refers to the maximum sum of confidences in the
resulting repaired alignment A′1,2. In contrast to our framework, diagnoses are determined automatically

345

346 CHAPTER 32. RELATED WORK

without support for user interaction. Instead, [Mei11] demonstrates techniques for the manual revision of
the alignment as a procedure independent from debugging. Another difference to our approach is the way
of detecting sources of faults. We rely on a divide-and-conquer algorithm [Jun04] for the identification of
a minimal conflict set C ⊆ A1,2 (in [Mei11] C is called a MIPS, cf. [FS05, SHCH07]). In the worst case
the method we use exhibits only O(|C| ∗ log(|A1,2|/|C|)) calls of some function that performs a check
for faults in a KB and internally uses a reasoner (in our case ISKBVALID, see Algorithm 1). The “shrink”
strategy applied in [Mei11] (which is similar to the “expand-and-shrink” method used in [KPHS07]), on
the other hand, requires a worst case number of O(|A1,2|) calls to such a function. Empirical evaluations
and a theoretical analysis of the best and worst case complexity of the “expand-and-shrink” method com-
pared to the divide-and-conquer method performed in [SFJ08] revealed that the latter is preferable over
the former. It should be noted that a similar divide-and-conquer method as used in our work could most
probably also be plugged into the system in [Mei11] instead of the “shrink” method.

There are some ontology matchers which incorporate alignment repair features: CODI [HSNM11],
YAM++ [NB12], ASMOV [JMSK09] and KOSIMap [RP10], for instance, employ logic-based tech-
niques to search for a set of predefined “anti-patterns” which must not occur in the aligned ontology,
either to avoid inconsistencies or incoherencies or to eliminate unwanted or redundant entailments. In
case such a pattern is revealed, it is resolved by eliminating from the alignment some correspondences
responsible for its occurrence. All the techniques incorporated in these matchers are distinct from the
presented approaches in that they implement incomplete or approximate methods of alignment repair,
i.e. not all alternative solutions to the alignment debugging problem are taken into account. As a conse-
quence of this, on the one hand, the final alignment produced by these systems may still trigger faults in
the aligned KB. On the other hand, a suboptimal solution may be found, e.g. in terms of the user-intended
semantics w.r.t. the aligned ontology or other criteria such as alignment confidence or cardinality.

Another ontology matcher, LogMap 2 [JRGZH12], provides integrated debugging features and the
opportunity for a user to interact during this process. However, the system is not really comparable with
ours since it is very specialized and dedicated to the goal of producing a fault-free alignment. Concretely,
there are at least two differences to our approach. First, LogMap 2 uses incomplete reasoning mechanisms
in order to speed up the matching process. Hence, the output is not guaranteed to be fault-free. Second,
the option for user interaction aims in fact at the revision of a set of correspondences, i.e. the sequential
assessing of single correspondences as ’faulty’ or ’correct’. Our approach, on the contrary, asks the user
queries (i.e. entailments of non-faulty parts of the KB).

An interactive technique similar to our approaches was presented in [NRG12], where a user is suc-
cessively asked single KB formulas (ontology axioms) in order to obtain a partition of a given ontology
into a set of desired or correct and a set of undesired or incorrect formulas. Whereas our strategies
aim at finding a parsimonious solution involving minimal change to the given faulty KB in order to re-
pair it, the method proposed in [NRG12] pursues a (potentially) more invasive approach to KB quality
assurance, namely a (reasoner-supported) exhaustive manual inspection of (parts of) a KB. Given an in-
consistent/incoherent KB, this technique starts from an empty set of desired formulas aiming at adding
to this set only correct formulas of the KB which preserve consistency and coherency. Our approach, on
the other hand, works its way forward the other way round in that it starts from the complete KB aiming
at finding a minimal set of formulas to be deleted or modified which are responsible for the violation
of the pre-specified requirements. Another difference of our approach compared to the one suggested in
[NRG12] is the type of queries asked to the user and the way these are selected. Our method allows for
the generation of queries which are not explicit formulas in the KB, but implicit consequences of non-
faulty parts of the KB. Besides, the set of selectable queries in our approach differs from one iteration
to the next due to the changing set of leading diagnoses whereas queries (i.e. KB formulas) in [NRG12]
are known in advance and the challenge is to figure out the best ordering of formulas to be assessed by
the user. Whereas we apply mostly information theoretic measures (e.g. the minimal expected entropy in
the set of leading diagnoses after a query has been answered), the authors in [NRG12] employ “impact

347

measures” which, roughly speaking, indicate the number of automatically classifiable formulas in case of
positive and, respectively, negative classification of a query (i.e. a particular formula).

Chapter 33

Summary

In this work we motivated why appropriate tool assistance is a must when it comes to repairing faulty KBs.
For, KBs that do not satisfy some minimal quality criteria such as logical consistency can make artificial
intelligence applications relying on the domain knowledge modeled by this KB completely useless. In
such a case, no meaningful reasoning or answering of queries about the domain is possible.

Non-interactive debugging systems published in research literature often cannot localize all possible
faults (incompleteness), suggest the deletion or modification of unnecessarily large parts of the KB (non-
minimality), return incorrect solutions which lead to a repaired KB not satisfying the imposed quality
requirements (unsoundness) or suffer from poor scalability due to the inherent complexity of the KB de-
bugging problem [Stu08]. Even if a system is complete and sound and considers only minimal solutions,
there are generally exponentially many solution candidates to select one from. However, any two repaired
KBs obtained from these candidates differ in their semantics in terms of entailments and non-entailments.
Selection of just any of these repaired KBs might result in unexpected entailments, the loss of desired
entailments or unwanted changes to the KB which in turn might cause unexpected new faults during the
further development or application of the repaired KB. Also, manual inspection of a large set of solution
candidates can be time-consuming (if not practically infeasible), tedious and error-prone since human
beings are normally not capable of fully realizing the semantic consequences of deleting a set of formulas
from a KB.

To account for this issue, we evolved a comprehensive theory on which provably complete, sound
and optimal (in terms of given probability information) interactive KB debugging systems can be built
which suggest only minimal changes to repair a present KB. Interaction with a user is realized by asking
the user queries. That is, a conjunction of logical formulas must be classified either as an intended or
a non-intended entailment of the correct KB. To construct a query, only a minimal set of two solution
candidates must be available. After the answer to a query is known, the search space for solutions is
pruned. Iteration of this process until there is only a single solution candidate left yields a (repaired)
solution KB which features exactly the semantics desired and expected by the user.

We presented algorithms for the computation of minimal conflict sets, i.e. irreducible faulty subsets
of the KB, and for the computation of minimal diagnoses, i.e. irreducible sets of KB formulas that must
be properly modified or deleted in order to repair the KB. We combined these algorithms with methods
that derive probabilities of diagnoses from meta information about faults (e.g. the outcome of a statistical
analysis) to constitute a non-interactive debugging system for monotonic KBs which computes minimal
diagnoses in best-first order. Building on the idea of this non-interactive method, we devised a complete
and sound best-first algorithm for the interactive debugging of monotonic KBs that allows a user to take
part in the debugging process in order to figure out the best solution.

In order to integrate the new information collected by successive consultations of the user, the diag-

349

350 CHAPTER 33. SUMMARY

noses computation in an interactive system must be regularly stopped. That is, there must be alternating
phases, on the one hand for the further exploration of the solution space in order to gain new evidence for
query generation and on the other hand for user interaction. To this end, we proposed two new strategies
for the iterative computation of minimal diagnoses that exactly serve this purpose. The first strategy,
STATICHS, takes advantage of an artificial fixation of the solution set which guarantees the monotonic
reduction of the solution space independently of the asked queries, the given answers or other parameters
of the algorithm. In this vein, the complexity of this algorithm is initially known and the maximum over-
head compared to the non-interactive algorithm is polynomially bound.47 On the downside, STATICHS
cannot optimally exploit the information given by the answered queries and thus cannot employ powerful
methods that enable a more efficient pruning of the solution search space.

Such powerful methods can be incorporated by the second suggested strategy, DYNAMICHS, the per-
formance of which can be orders of magnitude better than the (initially fixed) performance of STATICHS
in the best case. That is, the ability to fully incorporate the information gained from user interaction
might lead to a modified problem instance for which only a single (best) solution exists with only a small
fraction of the time, space and user effort needed by STATICHS. Moreover, the (exact) solution located by
means of an interactive debugging session applying DYNAMICHS is generally a better (verified) solution
than the (exact) solution found by use of STATICHS. However, the complexity of DYNAMICHS depends
to a great degree on which queries are generated and which input parameters are chosen and the worst
case complexity is not initially bound as in case of STATICHS. In the design of DYNAMICHS we put a
particular emphasis on memory saving behavior which is manifested, for instance, by the manner how
duplicate search tree paths are handled.

For selecting the best subsequent query in interactive debugging we first proposed and exhaustively
analyzed two strategies: The “split-in-half” strategy prefers queries which allow eliminating a half of
the leading diagnoses. The entropy-based strategy employs information theoretic concepts to exploit
knowledge about the likelihood of formulas to be faulty. Based on the probability of a formula containing
an error we can predict the (expected) information gain produced by a query result, enabling us to select
the best subsequent query according to a one-step-lookahead entropy-based scoring function.

In comprehensive experiments using real-world KBs we compared the entropy-based method with
the “split-in-half” strategy and witnessed a significant reduction in the number of queries required to
identify the correct diagnosis when the entropy-based method is applied. Depending on the quality of
the given prior fault probabilities, the required number of queries could be reduced by up to 60%. In
order to evaluate the robustness of the entropy-based method we experimented with different prior fault
probability distributions as well as different qualities of the prior probabilities. Furthermore, we investi-
gated cases where knowledge about fault probabilities is missing or inaccurate. In case such knowledge
is unavailable, the entropy-based methods ranks the diagnoses based on the number of syntax elements
contained in a formula and the number of formulas in a diagnosis. Given that this is a reasonable guess
(i.e. the sought diagnosis is not at the lower end of the diagnoses ranked by their prior probabilities),
the entropy-based method outperformed “split-in-half”. Moreover, even if the initial guess is not reason-
able, the entropy-based method improves the accuracy of the probabilities as more questions are asked.
Furthermore, the applicability of the approach to real-world KBs containing thousands of formulas was
demonstrated by an extensive set of evaluations.

We showed that unconditional reliance upon the entropy-based method might still be problematic in
the presence of fault information that is considerably uncertain. For, the entropy-based strategy fully
exploits and gains from the given fault information. In this vein, it proved to speed up the debugging
procedure in the normal case. However, we found out in experiments that it might also have a negative
impact on the performance in the bad case where the actual solution diagnosis is rated as highly improb-

47This holds under the reasonable assumption that, in practice, a debugging session will involve only a polynomial number of
queries to an interacting user. Recall that a user can abort the debugging session at any time and select the currently most probable
diagnosis as their solution to the debugging problem.

351

able. As an alternative, one might prefer to rely on a tool (e.g. “split-in-half”) which does not consider
any fault information at all. In this case, however, possibly well-chosen information cannot be exploited,
resulting again in inefficient debugging actions.

Minimal effort for the interacting user can be achieved if both the query selection method is chosen
carefully and the provided fault information satisfies some minimum quality requirements. In particular,
for deficient fault information and unfavorable strategy for query selection, we reported on cases where
the overhead in terms of user effort exceeds 2000% (!) in comparison to employing a more favorable
query selection strategy. Unfortunately, assessment of the fault information is only possible a-poteriori
(after the debugging session is finished and the correct solution is known). To tackle this issue, we
proposed a reinforcement learning strategy (RIO) which combines the benefits of the entropy-based and
the “’split-in-half’ approaches, i.e. high potential (to perform well) and low risk (to perform badly). RIO
continuously adapts its behavior depending on the performance achieved and in this vein minimizes the
risk of integrating low-quality fault information into the debugging process.

The RIO approach makes interactive debugging practical even in scenarios where reliable fault esti-
mates are difficult to obtain. Tested under various conditions, the RIO algorithm revealed good scalability
and reaction time as well as superior average performance to both the entropy-based as well as the “split-
in-half” strategy in all tested cases w.r.t. required amount of user interaction. Highest achieved savings of
RIO as against the best other strategy amounted to more than 80%. Further on, the performed evaluations
provided evidence that for 100% of the cases in the hardest (from the debugging point of view) class of
faulty test KBs, RIO performed at least as good as the best other strategy and in more than 70% of these
cases it even manifested superior behavior to the best other strategy. Choosing RIO over other approaches
can involve an improvement by the factor of up to 23, meaning that more than 95% of user time and effort
might be saved per debugging session.

Moreover, we came up with mechanisms for efficiently dealing with KB debugging problems involv-
ing high cardinality faults. In the standard interactive debugging approach described in the first parts of
this work, the computation of queries is based on the generation of the set of most probable (or minimum
cardinality) leading diagnoses. By this postulation, certain quality guarantees about the output solution
can be given. However, we learned that dropping this requirement can bring about substantial savings
in terms of time and especially space complexity of interactive debugging, in particular in debugging
scenarios where faulty KBs are (partly) generated as a result of the application of automatic systems, e.g.
KB (ontology) learning or matching systems.

To cope with such situations, we proposed to base query computation on any set of leading diagnoses
using a “direct” method for diagnosis generation. Contrary to the standard method that exploits minimal
conflict sets, this approach takes advantage of the duality between minimal diagnoses and minimal con-
flict sets and employs “inverse” algorithms to those used in the standard approach in order to determine
minimal diagnoses directly from the DPI without the indirection via conflict sets.

We studied the application of this direct method to high cardinality faults in KBs and noticed that the
number of required queries per debugging session is hardly affected for cases when the standard approach
is also applicable. However, the direct method proved applicable and able to locate the correct solution
diagnosis also in situations when the standard approach (albeit one that not yet incorporates the powerful
search tree pruning techniques introduced in this work) is not due to time or memory issues.

We want to point out that this work is unique in that it provides an in-depth theoretical workup of the
topic of interactive KB debugging which (to the best of our knowledge) cannot be found in such a detailed
fashion in other works. Furthermore, this is the first work that gives precise definitions of the problems
addressed in interactive KB debugging. Additionally, it is unique in that it features (new) algorithms
that provably solve these interactive KB debugging problems. To account for a tradeoff between solution
quality and execution time, these algorithms are equipped with a feature to compute approximate solu-
tions where the goodness of the approximation can be steered by the user. Another unique characteristic
of this work is that it deals with an entire system of algorithms that are required for the interactive debug-

352 CHAPTER 33. SUMMARY

ging of monotonic KBs, considers and details all algorithms separately, analyzes their complexity, proves
their correctness and demonstrates how all these algorithms are orchestrated to make up a full-fledged
and provably correct interactive KB debugging system.

Chapter 34

Future Work Topics

This work has given rise to several questions we will elaborate on in our future work:

Query Generation and Selection. Our discussions of the presented query generation methods have
revealed some drawbacks (cf. Chapter 8). Albeit being a fixed-parameter tractable problem as argued, the
exponential time complexity regarding the number of leading diagnoses |D| in case an optimal query is
desired is clearly an aspect that should be improved. This high complexity arises from the paradigm of
computing an optimal query w.r.t. some measure qsm() by calculating a (generally exponentially large)
pool QP of queries in a first stage, whereupon the best query in QP according to qsm() is filtered out in
a second stage.

A key to solving this issue is the use of a different paradigm that does not rely on the computation of
the pool QP. Instead, qualitative measures can be derived from quantitative measures that have been used
in interactive debugging scenarios [SFFR12, RSFF13, SF10]. These qualitative measures provide a way
to estimate the qsm() value of partial q-partitions, i.e. ones where not all leading diagnoses have been
assigned to the respective set in the q-partition yet. In this way a direct search for a query with (nearly)
optimal properties is possible. A similar strategy called CKK has been employed in [SFFR12] for the
information gain measure qsm() := ENT() (see Section 9.3). From such a technique we can expect to
save a high number of reasoner calls. Because usually only a small subset of q-partitions included in a
query pool (of exponential cardinality) is required to find a query with desirable properties if the search
is implemented by means of a heuristic that involves the exploration of seemingly favorable (potential)
queries and (partial) q-partitions, respectively, first.

Another shortcoming of the paradigm of query pool generation and subsequent selection of the best
query is the extensive use of reasoning services which may be computationally expensive (depending
on the given DPI). Instead of computing a set of common entailments Q of a set of KBs K∗i first and
consulting a reasoner to fill up the (q-)partition for Q in order to test whether Q is a query at all (see
Chapter 8), the idea enabling a significant reduction of reasoner dependence is to compute some kind
of canonical query without a reasoner and use simple set comparisons to decide whether the associated
partition is a q-partition. Guided by qualitative properties mentioned before, a search for such q-partition
with desirable properties can be accomplished without reasoning at all. Also, a set-minimal version of
the optimal canonical query can be computed without reasoning aid. Only for the optional enrichment of
the identified optimal canonical query by additional entailments and for the subsequent minimization of
the enriched query, the reasoner may be employed. We will present strategies accounting for these ideas
in the near future.

Another aspect that can be improved is that only one minimized version of each query is computed
by Algorithm 4. That is, per q-partition P, there might be some set-minimal queries which do not occur

353

354 CHAPTER 34. FUTURE WORK TOPICS

in the output set QP. From the point of view of how well a query might be understood by an interacting
user, of course not all minimized queries can be assumed equally good in general. For instance, consider
the minimized queries Q4 and Q10 in Table 8.3 on page 113. Both are equally good regarding their q-
partitions (just the sets D+ and D− are commuted), but most people will probably agree that Q4 is much
easier to comprehend from the logical point of view and thus much easier to answer.

Hence, in order to avoid a situation where a potentially best-understood query w.r.t. P is not included
in QP, the query minimization process (see Section 8.3) might be adapted to take into account some
information about faults the interacting user is prone to. This could be exploited to estimate how well
this user might be able to understand and answer a query. For instance, given that the user frequently
has problems to apply ∃ in a correct manner to express what they intend to express, but has never made
any mistakes in formulating implications→, then the query Q1 = {∀X p(X)→ q(X), r(a)} might be
better comprehended than Q2 = {∀X∃Y s(X,Y)}. One way to achieve the finding of a well-understood
query for some q-partition P is to run the query minimization MINQ more than once, each time with a
modified input (using a hitting set tree to accomplish this in a systematic manner – cf. Chapter 4, where
an analogue idea is used to compute different minimal conflict sets w.r.t. a DPI). In this way, different
set-minimal queries for P can be identified and the process can be stopped when a suitable query is found.

In order to come up with such a strategy, however, one must first gain insight into how well a user
might understand certain logical formalisms and what properties make a query easy to comprehend from
the logical perspective. It is planned to gather corresponding data about different users in the scope of
a user study and to utilize the results to achieve a model of “query hardness” (by sticking to a similar
overall methodology as used in [HBP11]) in order to come up with strategies for the determination of
minimal queries that are easily understood. Note that such a model could also act as a guide how to
specify the initial fault probabilities of syntactical elements that are used to obtain diagnoses probabilities
(see Section 4.6).

Incorporating A-Posteriori Probabilities into Diagnosis Search. As we discussed in Remark 9.3 on
page 125, the a-priori (pD,prio()) and the a-posteriori (pD()) diagnoses probabilities might not only differ
in terms of the probability values assigned to different diagnoses, but also in terms of the probability order
of diagnoses. Incorporation of updated probabilities directly into the hitting set tree algorithms to be used
for the determination of leading diagnoses in the order prescribed by an updated probability measure is
only possible if there is an additional update operator (besides Bayes’ Theorem for adapting diagnoses
probabilities) that can be applied to formula probabilities. For, the latter are exploited in the hitting set tree
to assign probability weights to paths that are not yet diagnoses (cf. pnodes() specified by Definition 4.9
and the discussion of Formula 4.6) in order to guide the search for minimal diagnoses in best-first order.
Updated diagnosis probabilities are not helpful at all for this purpose. Devising a reasonable mechanism
of updating formula probabilities seems to be hard mostly due to the lack of suitable data that might be
collected during the debugging session to accomplish that. What would be imaginable during the debug-
ging session is to try to learn something about the fault probability of syntactical elements by examining
the positive (all formulas are definitely correct) and singleton negative (the single formula is definitely
incorrect) test cases. However, a drawback of such a strategy comes into effect when only syntactically
very simple queries are used which is, for instance, the case in Example 8.1 (see the definition of the
GETENTAILMENTS function there). From such queries not many useful insights concerning faulty syn-
tactical elements might be gained. On the other hand, such queries are absolutely desirable from the point
of view of how well a user might comprehend the formulas asked by the system. Hence, these two aspects
seem to contradict each other. Still, it is a topic for future research to attempt to elaborate a solution for
that issue.

Facilitation of More Informative User Answers. The debugging system described in this work is
designed to get along with just a “minimal” feedback of a user regarding an asked query. That is, we

355

assume the user’ answer to a query Q to be merely true , i.e. each formula in Q (or the conjunction
of formulas in Q) must be entailed by the correct KB, or false , i.e. at least one formula in Q (or the
conjunction of formulas in Q) must not be entailed by the correct KB. However, imagine a user being
presented Q and think of how they might proceed in order to come up with an answer to Q. The first
observation is that, in order to respond by true , a user must definitely scrutinize each single formula in
Q because otherwise they could never decide for sure whether the conjunction of all formulas in Q is
correct. Another observation is that a user might cease to go through the rest of the formulas in case they
have already identified one that must not be an entailment of the desired KB. For, in this situation, the
overall query Q is already false . This however indicates that at least one formula must be known to be
correct or false whatever answer is given to Q. Therefore, we can usually expect a user to be able to give
exactly this information, namely one formula in Q that must be incorrect, additionally to answering by
false . This extra piece of information can be exploited to achieve better space and time efficiency in the
context of diagnosis computation since knowing which formula must definitely not be entailed gives more
information that just a set of formulas of which we know that at least one among those is not entailed.
Apart from that, there might be other pieces of additional information a user might be easily able to give
additionally to the “minimal” feedback we assume in this work. Proposing more efficient algorithms that
exploit such tapes of additional information is on our future work agenda.

Usage of “Positive-Impact” Queries in Combination with DYNAMICHS. As we discussed in Sec-
tion 12.1 in the context of Algorithm 5 in dynamic mode, an added test case might give rise to some
pruning steps as well as it might induce the construction of new subtrees (where “new” means that these
would be no subtress of a hitting set tree w.r.t. the DPI not including this test case). The latter situation
occurs when “completely new” minimal conflict sets (those that are in no subset-relationship with exist-
ing ones) are introduced by the addition of a test case. If this is the only impact of a test case, then this test
case has only a negative influence on the time and space complexity of Algorithm 5 using DYNAMICHS.
In other words, none of the invalidated minimal diagnoses (and no other nodes in the tree) are redundant,
but all of them must additionally hit the set of “completely new” minimal conflict sets (in order to become
diagnoses w.r.t. new DPI). Hence, in this case, the transition from one DPI to another including this test
case results only in monotonic growth of the tree. If possible, such “negative-impact test cases” must be
avoided. On the other hand, one must strive for the usage of “positive-impact test cases”, i.e. those that
only trigger tree pruning, but no tree expansion. Defining and studying properties that constitute such
“positive-impact test cases” and “negative-impact test cases”, respectively, and developing specialized
algorithms for extracting exactly those types of queries that enable as substantial and effective pruning as
possible in the context of DYNAMICHS is part of our already ongoing research. Note that a rough intu-
ition of which properties make out a “positive-impact test case” is illustrated on the basis of an example
in Section 12.1.

Finding the Right Expert to Answer a Query in a Collaborative KB Development Setting. As we
mentioned in Chapter 1, there are collaborative KB development projects such as the OBO Project48 and
the NCI Thesaurus49, where many different people contribute to the specification of their knowledge in
large KBs. In such a setting, it may be hard to decide who is the person that has the highest chance of
being able to answer a concrete query correctly. The idea in such a scenario could be to use a combina-
tion of different measures such as educational level (e.g. professor versus PhD student) or hierarchy of
contributors (e.g. senior user versus regular user), statistical information about past faults of a contributor
(e.g., how many of the formulas originally authored by a person have been corrected by other persons
of higher educational level) or provenance information regarding terms occurring in the query (who has

48http://obo.sourceforge.net
49http://nciterms.nci.nih.gov/ncitbrowser

356 CHAPTER 34. FUTURE WORK TOPICS

authored most of the formulas in which these terms occur?) in order to learn an “expert model” and use
it to devise some kind of recommender system [JZFF10] that suggests which person to ask a particular
query.

Once established, such an expert model together with provenance information of KB formulas and
other types of information discussed in Section 4.6.1 could also be exploited when it comes to the defini-
tion of the fault information provided as input to our debugging system. An example of a system which
enables the remote collaborative development of KBs (ontologies) and also provides logs of interesting
usage data such as formula change logs and provenance information is Web Protégé [TNNM13].

Studying the Performance of the Newly Proposed Iterative Diagnosis Computation Mechanisms.
We will conduct extensive experiments using faulty real-world KBs in order to assess the impact of the
usage of the powerful search tree pruning techniques of the DYNAMICHS method or the guaranteed “con-
vergence” towards the correct solution diagnosis of the STATICHS in comparison to interactive debugging
algorithms used in our previous works [SFFR12, RSFF13, SF10, SFRF14c].

Methods for Query Selection without Computation of Diagnoses. We are also working on “conflict-
based debugging” methods that do not rely on the computation of leading diagnoses for query generation.
Instead, queries might be generated directly from (minimal) conflict sets. Such methods might be used
together with a boolean hitting set search tree (which was originally proposed by [JL02] and optimized
by [PQ12]) where the tree is regularly pruned using test cases such that tree branching is mostly or
completely suppressed. In this manner, the tree remains small in size and all in all computes only a single
diagnosis, i.e. the one consistent with all answered queries. Such an approach could be very space saving.
Nevertheless, it is unclear whether the number of required queries and/or the computation time might
increase. Implementing such an approach and answering these open questions is a topic on our future
work agenda.

Employing Advanced Reasoning Techniques to Increase Debugging Efficiency. To cope with appli-
cation contexts where reasoning is the main obstacle for efficient debugging, a plan for future work is to
integrate advances reasoning techniques into our system.

For example, a modular combination of reasoners [RGH12] might be adopted. In such a system there
are two sound reasoners are combined where one (R1, e.g. HermiT [SMH08]) is complete for the full
logic L (e.g. OWL 2 [GHM+08]) and the other one (R2, e.g. ELK [KKS14]) is complete for only a
fragment L′ ⊂ L (e.g. the OWL 2 EL profile [GHM+08]), but L′ can be handles much more efficiently
by R2. The system in [RGH12] could be used to assign the bulk of the workload on R2 while relying on
R1 only if necessary.

Another interesting approach might be to employ techniques introduced in [GPS12] for detecting
so-called “hot spots” in KBs which, when deleted from the KB, lead to much more efficient reasoning.
Since reasoning in our approaches is mostly applied to fractions of the faulty KB, we could possibly
benefit from such an approach. For instance, queries are entailments of a set of different non-faulty
fractions K∗i = (K \ Di) ∪ B ∪ UP of the original KB. Now, given that a hot spot H is included, say in
B ∪ UP , then we might well delete H from this subset of K∗i and might still obtain meaningful queries.
The reason is that H does not include any formulas in UD (where D is the set of leading diagnoses)
which are essential for query computation from the diagnosis discrimination point of view. Formulas in
B ∪ UP , on the other hand, are included in all non-faulty fractions K∗i and thus do not directly serve
the discrimination between diagnoses. Since UD might be much smaller in size than B ∪ UP in many
scenarios (due to a usually small number of leading diagnoses in D), there might be a high chance for hot
spots to be located in B ∪ UP rather than in UD.

Bibliography

[ARW12] Rui Abreu, André Riboira, and Franz Wotawa. Constraint-based Debugging of Spread-
sheets. In CIbSE, pages 1–14, 2012.

[Baa03] Franz Baader. Appendix: Description Logic Terminology. In Franz Baader, Diego Cal-
vanese, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-Schneider, editors, De-
scription Logic Handbook, pages 485–495. Cambridge University Press, 2003.

[BATJ91] Tom Bylander, Dean Allemang, Michael Tanner, and John Josephson. The computational
complexity of abduction. Artificial Intelligence, 49:25–60, 1991.

[BBL05] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL envelope. In IJCAI,
pages 364–369, 2005.

[BCM+07] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, editors. The Description Logic Handbook: Theory, Implementation, and Appli-
cations. Cambridge University Press, 2007.

[BKP12] Franz Baader, Martin Knechtel, and Rafael Penaloza. Context-dependent views to axioms
and consequences of Semantic Web ontologies. Web Semantics: Science, Services and
Agents on the World Wide Web, 12-13:22–40, April 2012.

[BLHL+01] Tim Berners-Lee, James Hendler, Ora Lassila, et al. The Semantic Web. 2001. http:
//bit.ly/18ZvAXo.

[Bor96] Alex Borgida. On the relative expressiveness of description logics and predicate logics.
Artificial Intelligence, 82(1-2):353–367, 1996.

[BP08] Franz Baader and R. Penaloza. Axiom Pinpointing in General Tableaux. Journal of Logic
and Computation, 20(1):5–34, November 2008.

[CFD93] Luca Console, Gerhard Friedrich, and Daniele Theseider Dupre. Model-Based Diagnosis
Meets Error Diagnosis in Logic Programs. In IJCAI, pages 1494–1501, 1993.

[CGT89] Stefano Ceri, Georg Gottlob, and Letizia Tanca. What you always wanted to know about
Datalog (and never dared to ask). IEEE Transactions on Knowledge and Data Engineering,
I(1), 1989.

[Chu36] Alonzo Church. An unsolvable problem of elementary number theory. American Journal
of Mathematics, pages 345–363, 1936.

[CL73] Chin-Liang Chang and Richard Char-Tung Lee. Symbolic Logic and Mechanical Theorem
Proving. Academic Press Inc., 1973.

357

358 BIBLIOGRAPHY

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the
third annual ACM symposium on Theory of computing, pages 151–158. ACM, 1971.

[CP71] John Ceraso and Angela Provitera. Sources of error in syllogistic reasoning. Cognitive
Psychology, 2(4):400–410, 1971.

[CRV+09] Oscar Corcho, Catherine Roussey, Vilches Blázquez, Luis Manuel, and Ivan Pérez. Pattern-
based OWL Ontology Debugging Guidelines. In Eva Blomqvist, Kurt Sandkuhl, Francois
Scharffe, and Vojtech Svatek, editors, Workshop on Ontology Patterns (WOP 2009), collo-
cated with the 8th International Semantic Web Conference (ISWC 2009)., CEUR Workshop
proceedings, pages 68–82, 2009.

[DF95] Rod G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness I:
Basic results. SIAM Journal on Computing, 24(4):873–921, 1995.

[dKW87] Johan de Kleer and Brian C. Williams. Diagnosing multiple faults. Artificial Intelligence,
32(1):97–130, April 1987.

[DQPS11] Jianfeng Du, Guilin Qi, Jeff Z. Pan, and Yi-Dong Shen. A Decomposition-Based Approach
to OWL DL Ontology Diagnosis. In Proceedings of 23rd IEEE International Conference
on Tools with Artificial Intelligence, pages 659–664. IEEE Press, November 2011.

[Dur10] Rick Durrett. Probability: Theory and Examples, Fourth Edition. Cambridge University
Press, 2010.

[EFvH+11] Jérôme Euzenat, Alfio Ferrara, Willem Robert van Hage, Laura Hollink, Christian Meil-
icke, Andriy Nikolov, Dominique Ritze, François Scharffe, Pavel Shvaiko, Heiner Stucken-
schmidt, Ondrej Sváb-Zamazal, and Cássia Trojahn dos Santos. Final results of the Ontol-
ogy Alignment Evaluation Initiative 2011. In Proceedings of the 6th International Workshop
on Ontology Matching, pages 1–29. CEUR-WS.org, 2011.

[FFJS04] Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach, and Markus Stumptner.
Consistency-based diagnosis of configuration knowledge bases. Artificial Intelligence,
152(2):213 – 234, 2004.

[FS05] Gerhard Friedrich and Kostyantyn Shchekotykhin. A General Diagnosis Method for On-
tologies. In Yolanda Gil, Enrico Motta, Richard Benjamins, and Mark Musen, editors, Pro-
ceedings of the 4th International Semantic Web Conference (ISWC 2005), pages 232–246.
Springer, 2005.

[FSW99] Gerhard Friedrich, Markus Stumptner, and Franz Wotawa. Model-based diagnosis of hard-
ware designs. Artif. Intell., 111(1-2):3–39, 1999.

[FSZ11] Alexander Felfernig, Monika Schubert, and Christoph Zehentner. An efficient diagnosis
algorithm for inconsistent constraint sets. Artificial Intelligence for Engineering Design,
Analysis and Manufacturing, 26(1):53–62, June 2011.

[GHM+08] Bernardo Cuenca Grau, Ian Horrocks, Boris Motik, Bijan Parsia, Peter F. Patel-Schneider,
and Ulrike Sattler. OWL 2: The next step for OWL. Web Semantics: Science, Services and
Agents on the World Wide Web, 6(4):309–322, November 2008.

[GPS12] Rafael Goncalves, Bijan Parsia, and Ulrike Sattler. Performance Heterogeneity and Ap-
proximate Reasoning in Description Logic Ontologies. In Proceedings of 11th International
Semantic Web Conference (ISWC 2012), pages 82–98, 2012.

BIBLIOGRAPHY 359

[GSW89] Russell Greiner, Barbara A. Smith, and Ralph W. Wilkerson. A correction to the algorithm
in Reiter’s theory of diagnosis. Artificial Intelligence, 41(1):79–88, 1989.

[HBP11] Matthew Horridge, Samantha Bail, and Bijan Parsia. The cognitive complexity of OWL
justifications. In Proceedings of the 10th International Semantic Web Conference (ISWC
2011). Springer, 2011.

[HM01] Volker Haarslev and Ralf Müller. RACER System Description. In Rajeev Goré, Alexan-
der Leitsch, and Tobias Nipkow, editors, 1st International Joint Conference on Automated
Reasoning, volume 2083 of Lecture Notes in Computer Science, pages 701–705, Berlin,
Heidelberg, 2001. Springer Berlin Heidelberg.

[Hor11] Matthew Horridge. Justification based Explanation in Ontologies. PhD thesis, University
of Manchester, 2011.

[HPS08] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Laconic and Precise Justifications in
OWL. In Amit Shet, Steffen Staab, Mike Dean, Massimo Paolucci, Diana Maynard, Tim-
othy Finin, and Krishnaprasad Thirunarayan, editors, Proceedings of the 7th International
Semantic Web Conference (ISWC 2008), volume 5318 of Lecture Notes in Computer Sci-
ence, pages 323–338. Springer, 2008.

[HPS09] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Lemmas for Justifications in OWL.
In Proceedings of the 22nd Workshop of Description Logics DL2009. CEUR Workshop
Proceedings, 2009.

[HPS10] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Justification Oriented Proofs in OWL.
In Proceedings of the 9th International Semantic Web Conference (ISWC 2010). Springer,
2010.

[HPS12a] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Extracting justifications from BioPor-
tal ontologies. In Proceedings of the 11th International Semantic Web Conference (ISWC
2012), pages 287–299, 2012.

[HPS12b] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Justification Masking in Ontologies.
In Thirteenth International Conference on the Principles of Knowledge Representation and
Reasoning, 2012.

[HSNM11] Jakob Huber, Timo Sztyler, Jan Noessner, and Christian Meilicke. CODI: Combinatorial
Optimization for Data Integration - Results for OAEI 2011. In Proceedings of the 6th
International Workshop on Ontology Matching, 2011.

[JL99] Philip N. Johnson-Laird. Deductive reasoning. Annual review of psychology, 50:109–135,
1999.

[JL02] Yun-fei Jiang and Li Lin. Computing the minimal hitting sets with binary HS-tree. Journal
of software, 13(12):2267–2274, 2002.

[JMSK09] Yves R. Jean-Mary, E. Patrick Shironoshita, and Mansur R. Kabuka. Ontology Matching
with Semantic Verification. Web Semantics: Science, Services and Agents on the World
Wide Web, 7(3):235–251, September 2009.

[JRG11] Ernesto Jiménez-Ruiz and Bernardo Cuenca Grau. Logmap: Logic-based and scalable
ontology matching. In Proceedings of the 10th International Semantic Web Conference
(ISWC 2011), pages 273–288. Springer, 2011.

360 BIBLIOGRAPHY

[JRGZH12] Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, Yujiao Zhou, and Ian Horrocks. Large-scale
interactive ontology matching: Algorithms and implementation. In Proceedings of 20th
European Conference on Artificial Intelligence (ECAI2012), pages 444–449, 2012.

[Jun04] Ulrich Junker. QUICKXPLAIN: Preferred Explanations and Relaxations for Over-
Constrained Problems. In Deborah L. McGuinness and George Ferguson, editors, Proceed-
ings of the Nineteenth National Conference on Artificial Intelligence, Sixteenth Conference
on Innovative Applications of Artificial Intelligence, volume 3, pages 167–172. AAAI Press
/ The MIT Press, 2004.

[JZFF10] Dietmar Jannach, Markus Zanker, Alexander Felfernig, and Gerhard Friedrich. Recom-
mender Systems: An Introduction. Cambridge University Press, New York, NY, USA, 1st
edition, 2010.

[Kal06] Aditya Kalyanpur. Debugging and Repair of OWL Ontologies. PhD thesis, University of
Maryland, College Park, 2006.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. Complexity of Computer
Computations, pages 85–103, 1972.

[Kaz08] Yevgeny Kazakov. SRIQ and SROIQ are harder than SHOIQ. In Proceedings of the 21st
Workshop of Description Logics DL2008, 2008.

[KK06] Martin Kreuzer and Stefan Kühling. Logik für Informatiker. Pearson Studium, München,
Germany, 2006.

[KKLO86] Narendra Karmarkar, Richard M. Karp, George S. Lueker, and Andrew M. Odlyzko. Prob-
abilistic analysis of optimum partitioning. Journal of Applied Probability, 23(3):626–645,
1986.

[KKS14] Yevgeny Kazakov, Markus Krötzsch, and František Simančík. The incredible ELK. Journal
of automated reasoning, 53(1):1–61, 2014.

[Kor98] Richard E. Korf. A complete anytime algorithm for number partitioning. Artificial Intelli-
gence, 106(2):181–203, December 1998.

[KPHS07] Aditya Kalyanpur, Bijan Parsia, Matthew Horridge, and Evren Sirin. Finding all Justifica-
tions of OWL DL Entailments. In Karl Aberer, Key-Sun Choi, Natasha F. Noy, Dean Alle-
mang, Kyung-Il Lee, Lyndon J. B. Nixon, Jennifer Golbeck, Peter Mika, Diana Maynard,
Riichiro Mizoguchi, Guus Schreiber, and Philippe Cudré-Mauroux, editors, The Semantic
Web, 6th International Semantic Web Conference, 2nd Asian Semantic Web Conference,
ISWC 2007 + ASWC 2007, volume 4825 of LNCS, pages 267–280, Berlin, Heidelberg,
November 2007. Springer Verlag.

[KPS+06] Aditya Kalyanpur, Bijan Parsia, Evren Sirin, Bernardo Cuenca Grau, and James Hendler.
Swoop: A Web Ontology Editing Browser. J. Web Sem., 4(2):144–153, 2006.

[KPSCG06] Aditya Kalyanpur, Bijan Parsia, Evren Sirin, and Bernardo Cuenca Grau. Repairing Un-
satisfiable Concepts in OWL Ontologies. In York Sure and John Domingue, editors, The
Semantic Web: Research and Applications, 3rd European Semantic Web Conference, ESWC
2006, volume 4011 of Lecture Notes in Computer Science, pages 170–184, Berlin, Heidel-
berg, 2006. Springer.

BIBLIOGRAPHY 361

[KPSH05] Aditya Kalyanpur, Bijan Parsia, Evren Sirin, and James Hendler. Debugging Unsatisfiable
Classes in OWL Ontologies. Web Semantics: Science, Services and Agents on the World
Wide Web, 3(4):268–293, 2005.

[MB88] Stephen Muggleton and Wray L. Buntine. Machine Invention of First-order Predicates by
Inverting Resolution. In J Laird, editor, Proceedings of the 5th International Conference on
Machine Learning (ICML’88), pages 339–352. Morgan Kaufmann, 1988.

[Mei11] Christian Meilicke. Alignment Incoherence in Ontology Matching. PhD thesis, Universität
Mannheim, 2011.

[Men09] Elliott Mendelson. Introduction to Mathematical Logic, Fifth Edition. CRC Press, 2009.

[MPSP09] Boris Motik, Peter F. Patel-Schneider, and Bijan Parsia. OWL 2 Web Ontology Language
Structural Specification and Functional-Style Syntax. W3C recommendation, pages 1–133,
2009.

[MS72] Albert R. Meyer and Larry J. Stockmeyer. The equivalence problem for regular expressions
with squaring requires exponential space. In 13th Annual Symposium on Switching and
Automata Theory, pages 125–129. IEEE, 1972.

[MS09] Christian Meilicke and Heiner Stuckenschmidt. An Efficient Method for Computing Align-
ment Diagnoses. In Proceedings of the 3rd International Conference on Web Reasoning and
Rule Systems, pages 182–196. Springer-Verlag, 2009.

[MSH09] Boris Motik, Rob Shearer, and Ian Horrocks. Hypertableau Reasoning for Description
Logics. Journal of Artificial Intelligence Research, 36(1):165–228, 2009.

[MST07] Christian Meilicke, Heiner Stuckenschmidt, and Andrei Tamilin. Repairing Ontology Map-
pings. Proceedings of the 22nd National Conference on Artificial intelligence - AAAI’07,
pages 1408–1413, 2007.

[MST08] Christian Meilicke, Heiner Stuckenschmidt, and Andrei Tamilin. Reasoning Support for
Mapping Revision. Journal of Logic and Computation, 19(5):807–829, August 2008.

[Mug95] Stephen Muggleton. Inverse entailment and Progol 1 Introduction. New Generation Com-
puting, Special issue on Inductive Logic Programming, 13(3-4):245–286, 1995.

[NB12] Duyhoa Ngo and Zohra Bellahsene. YAM++ - A combination of graph matching and ma-
chine learning approach to ontology alignment task. Journal of Web Semantics - The Se-
mantic Web Challenge 2011 Special Issue, 2012.

[NCLM06] Natalya F. Noy, A. Chugh, W. Liu, and Mark A. Musen. A framework for ontology evolu-
tion in collaborative environments. In Proceedings of the 5th International Semantic Web
Conference (ISWC 2006), 2006.

[NPQW13] Iulia Nica, Ingo Pill, Thomas Quaritsch, and Franz Wotawa. The route to success: A per-
formance comparison of diagnosis algorithms. In Proceedings of the Twenty-Third interna-
tional Joint Conference on Artificial Intelligence, pages 1039–1045, 2013.

[NRG12] Nadeschda Nikitina, Sebastian Rudolph, and Birte Glimm. Interactive Ontology Revision.
Web Semantics: Science, Services and Agents on the World Wide Web, 12-13:118–130,
2012.

362 BIBLIOGRAPHY

[NSD+00] Natalya F. Noy, Michael Sintek, Stefan Decker, Monica Crubézy, Ray W. Fergerson, and
Mark A. Musen. Creating Semantic Web Contents with Protégé-2000. IEEE Intelligent
Systems, 16(2):60–71, 2000.

[PQ12] Ingo Pill and Thomas Quaritsch. Optimizations for the Boolean Approach to Computing
Minimal Hitting Sets. In Proceedings of the 20th European Conference on Artificial Intelli-
gence, pages 648–653, 2012.

[PSHH+04] Peter F. Patel-Schneider, Patrick Hayes, Ian Horrocks, et al. OWL Web Ontology Language
Semantics and Abstract Syntax. W3C recommendation, 10, 2004.

[PSK05] Bijan Parsia, Evren Sirin, and Aditya Kalyanpur. Debugging OWL ontologies. In Allan Ellis
and Tatsuya Hagino, editors, Proceedings of the 14th international conference on World
Wide Web, pages 633–640. ACM Press, May 2005.

[PW03] Bernhard Peischl and Franz Wotawa. Model-Based Diagnosis or Reasoning from First
Principles. IEEE Intelligent Systems, 18:32–37, 2003.

[Qui86] John Ross Quinlan. Induction of Decision Trees. Machine Learning, 1(1):81–106, 1986.

[RCVB09] Catherine Roussey, Oscar Corcho, and Luis Manuel Vilches-Blázquez. A catalogue of OWL
ontology antipatterns. In International Conference On Knowledge Capture, pages 205–206,
Redondo Beach, California, USA, 2009. ACM.

[RDH+04] Alan Rector, Nick Drummond, Matthew Horridge, Jeremy Rogers, Holger Knublauch,
Robert Stevens, Hai Wang, and Chris Wroe. OWL Pizzas: Practical Experience of Teach-
ing OWL-DL: Common Errors & Common Patterns. In Enrico Motta, Nigel R. Shadbolt,
Arthur Stutt, and Nick Gibbins, editors, Engineering Knowledge in the Age of the Seman-
ticWeb 14th International Conference, EKAW 2004, pages 63–81, Whittenbury Hall, UK,
2004. Springer.

[Rei87] Raymond Reiter. A Theory of Diagnosis from First Principles. Artificial Intelligence,
32(1):57–95, 1987.

[RGH12] Ana Armas Romero, Bernardo Cuenca Grau, and Ian Horrocks. MORe: Modular combina-
tion of OWL reasoners for ontology classification. In Proceedings of the 11th International
Semantic Web Conference (ISWC 2012), 2012.

[RN10] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pearson
Education, 3rd edition, 2010.

[Rod15] Patrick Rodler. A Theory of Interactive Debugging of Knowledge Bases in Monotonic
Logics. Master’s thesis, Alpen-Adria Universität Klagenfurt, 2015.

[RP10] Quentin Reul and Jeff Z. Pan. KOSIMap: Use of Description Logic Reasoning to Align
Heterogeneous Ontologies. In Volker Haarslev, David Toman, and Grant Weddell, editors,
Proceedings of the 23rd International Workshop on Description Logics DL2010, pages 489–
500. CEUR Workshop Proceedings, 2010.

[RSFF11] Patrick Rodler, Kostyantyn Shchekotykhin, Philipp Fleiss, and Gerhard Friedrich. Bal-
ancing Brave and Cautious Query Strategies in Ontology Debugging. In Tudor Groza Vit
Novacek, Zhisheng Huang, editor, Proceedings of the Joint Workshop on Knowledge Evolu-
tion and Ontology Dynamics 2011 (EvoDyn2011), Bonn, Germany, 2011. CEUR Workshop
Proceedings.

BIBLIOGRAPHY 363

[RSFF12] Patrick Rodler, Kostyantyn Shchekotykhin, Philipp Fleiss, and Gerhard Friedrich. RIO:
Minimizing User Interaction in Debugging of Aligned Ontologies. In Proceedings of the
7th International Workshop on Ontology Matching (OM-2012), 2012.

[RSFF13] Patrick Rodler, Kostyantyn Shchekotykhin, Philipp Fleiss, and Gerhard Friedrich. RIO:
Minimizing User Interaction in Ontology Debugging. In Wolfgang Faber and Domenico
Lembo, editors, Web Reasoning and Rule Systems, volume 7994 of Lecture Notes in Com-
puter Science, pages 153–167. Springer Berlin Heidelberg, 2013.

[SE13] Pavel Shvaiko and Jérôme Euzenat. Ontology matching: State of the art and future chal-
lenges. IEEE Transactions on Knowledge and Data Engineering, 25(1):158–176, 2013.

[SEA+02] York Sure, Michael Erdmann, Juergen Angele, Steffen Staab, Rudi Studer, and Dirk Wenke.
OntoEdit: Collaborative Ontology Development for the Semantic Web. In Proceedings of
the 1st International Semantic Web Conference (ISWC 2002), pages 221–235, 2002.

[Set12] Burr Settles. Active Learning. Morgan and Claypool Publishers, 2012.

[SF10] Kostyantyn Shchekotykhin and Gerhard Friedrich. Query strategy for sequential ontology
debugging. In Peter F. Patel-Schneider, Pan Yue, Pascal Hitzler, Peter Mika, Zhang Lei, Jeff
Pan, Ian Horrocks, and Birte Glimm, editors, Proceedings of the 9th International Semantic
Web Conference (ISWC 2010), pages 696–712, Shanghai, China, 2010.

[SFFR12] Kostyantyn Shchekotykhin, Gerhard Friedrich, Philipp Fleiss, and Patrick Rodler. Inter-
active Ontology Debugging: Two Query Strategies for Efficient Fault Localization. Web
Semantics: Science, Services and Agents on the World Wide Web, 12-13:88–103, 2012.

[SFJ08] Kostyantyn Shchekotykhin, Gerhard Friedrich, and Dietmar Jannach. On Computing Mini-
mal Conflicts for Ontology Debugging. In MBS 2008 - Workshop on Model-Based Systems,
2008.

[SFRF12] Kostyantyn Shchekotykhin, Philipp Fleiss, Patrick Rodler, and Gerhard Friedrich. Direct
computation of diagnoses for ontology alignment. In Pavel Shvaiko, Jérôme Euzenat, Anas-
tasios Kementsietsidis, Ming Mao, Natasha Noy, and Heiner Stuckenschmidt, editors, Pro-
ceedings of the 7th International Workshop on Ontology Matching (OM2012), pages 244–
245, Boston, MA USA, 2012. CEUR Workshop Proceedings.

[SFRF14a] Kostyantyn Shchekotykhin, Gerhard Friedrich, Patrick Rodler, and Philipp Fleiss. A direct
approach to sequential diagnosis of high cardinality faults in knowledge bases. In DX 2014
- 25th International Workshop on Principles of Diagnosis (DX 2014), 2014.

[SFRF14b] Kostyantyn Shchekotykhin, Gerhard Friedrich, Patrick Rodler, and Philipp Fleiss. Interac-
tive Ontology Debugging using Direct Diagnosis. In Patrick Lambrix, Guilin Qi, Matthew
Horridge, and Bijan Parsia, editors, Proceedings of the Third International Workshop on
Debugging Ontologies and Ontology Mappings (WoDOOM14). CEUR Workshop Proceed-
ings, 2014.

[SFRF14c] Kostyantyn Shchekotykhin, Gerhard Friedrich, Patrick Rodler, and Philipp Fleiss. Sequen-
tial diagnosis of high cardinality faults in knowledge-bases by direct diagnosis generation.
In Proceedings of the 21st European Conference on Artificial Intelligence (ECAI 2014). IOS
Press, 2014.

[Sha48] Claude Elwood Shannon. A mathematical theory of communication. Bell System Technical
Journal, 27(3):379–423, 1948.

364 BIBLIOGRAPHY

[Sha83] Ehud Shapiro. Algorithmic Program Debugging. MIT Press, 1983.

[SHCH07] Stefan Schlobach, Zhisheng Huang, Ronald Cornet, and Frank Harmelen. Debugging Inco-
herent Terminologies. Journal of Automated Reasoning, 39(3):317–349, 2007.

[SKFP12] Roni Stern, Meir Kalech, Alexander Feldman, and Gregory Provan. Exploring the Duality
in Conflict-Directed Model-Based Diagnosis. In Proceedings of the Twenty-Sixth AAAI
Conference on Artificial Intelligence Exploring, pages 828–834, 2012.

[SL89] Bart Selman and Hector Levesque. Abductive and default reasoning: A computational core.
Proceedings of the 8th National Conference on Artificial Intelligence, pages 343–348, 1989.

[SMH08] Rob Shearer, Boris Motik, and Ian Horrocks. HermiT : A Highly-Efficient OWL Reasoner.
In Proc. of the 5th Int. Workshop on OWL: Experiences and Directions (OWLED 2008 EU),
2008.

[SPG+07] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Y Katz. Pellet:
A practical OWL-DL reasoner. Web Semantics: Science, Services and Agents on the World
Wide Web, 5(2):51–53, 2007.

[SQJH08] Boontawee Suntisrivaraporn, Guilin Qi, Qiu Ji, and Peter Haase. A Modularization-Based
Approach to Finding All Justifications for OWL DL Entailments. In Proceedings of the 7th
International Semantic Web Conference (ISWC 2008), pages 1–15. Springer, 2008.

[SRF11] Kostyantyn Shchekotykhin, Patrick Rodler, and Gerhard Friedrich. Balancing brave and
cautious query strategies in ontology debugging. In 22nd International Workshop on Prin-
ciples of Diagnosis (DX 2011), pages 122–129, 2011.

[SS89] Manfred Schmidt-Schauß. Subsumption in KL-ONE is undecidable. In Proceedings of the
1st International Conference on Principles of Knowledge Representation and Reasoning,
pages 421–431. Morgan Kaufmann Publishers Inc., 1989.

[SSZ09] Ulrike Sattler, Thomas Schneider, and Michael Zakharyaschev. Which Kind of Module
Should I Extract? In Bernardo Cuenca Grau, Ian Horrocks, Boris Motik, and Ulrike Sattler,
editors, Proceedings of the 22nd International Workshop on Description Logics, volume
477 of CEUR Workshop Proceedings. CEUR-WS.org, 2009.

[Stu08] Heiner Stuckenschmidt. Debugging OWL Ontologies - A Reality Check. In Raul Garcia-
Castro, Asunción Gómez-Pérez, Charles J. Petrie, Emanuele Della Valle, Ulrich Küster,
Michal Zaremba, and Shafiq M. Omair, editors, Proceedings of the 6th International Work-
shop on Evaluation of Ontology-based Tools and the Semantic Web Service Challenge
(EON), pages 1–12, Tenerife, Spain, 2008.

[SU06] Ken Satoh and Takeaki Uno. Enumerating Minimally Revised Specifications Using Du-
alization. In Takashi Washio, Akito Sakurai, Katsuto Nakajima, Hideaki Takeda, Satoshi
Tojo, and Makoto Yokoo, editors, New Frontiers in Artificial Intelligence, volume 4012 of
Lecture Notes in Computer Science, pages 182–189. Springer Berlin Heidelberg, 2006.

[SW05] Gerald Steinbauer and Franz Wotawa. Detecting and locating faults in the control soft-
ware of autonomous mobile robots. In IJCAI International Joint Conference on Artificial
Intelligence, pages 1742–1743, 2005.

[SW09] Gerald Steinbauer and Franz Wotawa. Robust Plan Execution Using Model-Based Reason-
ing. Advanced Robotics, 23(10):1315–1326, 2009.

BIBLIOGRAPHY 365

[TH06] Dmitry Tsarkov and Ian Horrocks. FaCT++ description logic reasoner: System description.
In In Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2006), pages 292–297.
Springer, 2006.

[TNNM13] Tania Tudorache, Csongor Nyulas, Natalya F. Noy, and Mark A. Musen. WebProtégé: A
Collaborative Ontology Editor and Knowledge Acquisition Tool for the Web. Semantic
Web, 4(1):89–99, 2013.

[Tur37] Alan Mathison Turing. On Computable Numbers, with an Application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, 2(1):230–265, 1937.

[WSM02] Franz Wotawa, Markus Stumptner, and Wolfgang Mayer. Model-Based Debugging or How
to Diagnose Programs Automatically. In Tim Hendtlass and Moonis Ali, editors, Develop-
ments in Applied Artificial Intelligence, volume 2358 of Lecture Notes in Computer Science,
pages 746–757. Springer Berlin Heidelberg, 2002.

