Random vs. Best-First: Impact of Sampling Strategies on Decision Making in Model-Based Diagnosis

Model-Based Diagnosis (MBD)

An important task in MBD is the efficient localization of faults

Fault Localization:

- <u>Given: system</u>
- consisting of a set of components
- which does not behave as expected
- (e.g., SW, HW, KB, physical device, CSP, ontology, etc.) (e.g., lines of code, gates, logical sentences)

heuristics are used since optimal MP selection is NP-hard

common heuristics

evaluate MPs based on

exactly these two factors

3

Find: the faulty components that cause the misbehavior

Example: Full-Adder below does not add properly

Find diagnosis (\subseteq -minimal set of components that, when assumed faulty, explains misbehavior) !

Multiple diagnoses! Which one is the correct fault?

- 1. Use diagnosis probabilities (determined based on the likeliness of component failure)
- Apply Sequential Diagnosis to localize the correct fault with certainty 2.

Sequential Diagnosis

Example (cont'd): Which diagnosis among $D = \{D_1, D_2, D_3\}$ is the actual fault?

Collect further information to rule out spurious diagnoses \rightarrow make measurements

E.g.: Measurement point (MP) $out(A_2)$ is informative wrt. **D** eliminates at least one diagnosis in **D**, \rightarrow if outcome is 0, then D_3 is no longer a diagnosis regardless of the measurement outcome \rightarrow if outcome is 1, then D_1, D_2 are no longer diagnoses

General Process:

- Conduct measurements until a single (highly probable) diagnosis remains
- Always select best informative MP \rightarrow "best" defined based on a MP selection heuristic
- Basis for MP selection = computed set of diagnoses D + diagnosis probabilities
- Diagnoses + probabilities allow to estimate
- probability of different measurement outcomes, and
- (rate of) eliminated diagnoses for different measurement outcomes

Motivation & Contribution

Assume an election poll:

- Ask only university professors for whom they will vote
- Will the result of the poll be representative of the entire population?

Similar thing is often done in MBD

- Task: find actual diagnosis among a (large) set of diagnoses
- Computing all diagnoses intractable \rightarrow compute only a sample of diagnoses
- Use sample to make estimations that guide diagnostic actions (meaurements)
- Draw best-first samples (e.g. most probable diagnoses)

But:

Statistical Law:

"A randomly chosen unbiased sample from a population allows (on average) better conclusions and estimations about the whole population than any other sample."

Questions of Interest:

- Does this apply to MBD as well?
- Or are best-first samples really more informative than random ones in MBD?
- Can we do better by using randomized algorithms to generate diagnoses?

Contribution:

Comprehensive empirical evaluations to bring light to these questions

[Reiter, 1987] Raymond Reiter. A theory of diagnosis from first principles. Artif. Intell. 32(1), 57-95 1987. References [Rodler, 2015] Patrick Rodler. Interactive Debugging of Knowledge Bases. PhD Thesis, Univ. Klagenfurt. 2015. [Schekotihin et al, 2014] Konstantin Schekotihin, Gerhard Friedrich, Patrick Rodler, Philipp Fleiss. Sequential diagnosis of high cardinality faults in knowledge-bases by direct diagnosis generation. In: ECAI. 2014.

Diagnosis problem:

Sample Types: best-first random worst-first approx best-first approx random

Computation	
bf	u
rd	C
wf	C
abf	lr
ard	lr
awf	Ir

	Theoretical		
	•	pro	
	•	elir	
(Practic	al Re	
	•	# o	
	•	tim	
	rec	quire	
	Resear	ch Q	
	RQ1:	V	

RQ1:	V
RQ2:	٧
RQ3:	A
	(
RQ4:	C
RQ5:	C
	r
<u>Special</u>	Foc

Patrick Rodler, University of Klagenfurt, Austria

