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Abstract. Efficient ontology debugging is a cornerstone for many activities in
the context of the Semantic Web, especially when automatic tools produce (parts
of) ontologies such as in the field of ontology matching. The best currently known
interactive debugging systems rely upon some meta information in terms of fault
probabilities, which can speed up the debugging procedure in the good case, but
can also have negative impact on the performance in the bad case. The problem
is that assessment of the meta information is only possible a-posteriori. Conse-
quently, as long as the actual fault is unknown, there is always some risk of sub-
optimal interactive diagnoses discrimination. As an alternative, one might prefer
to rely on a tool which pursues a no-risk strategy. In this case, however, possi-
bly well-chosen meta information cannot be exploited, resulting again in ineffi-
cient debugging actions. In this work we present a reinforcement learning strategy
that continuously adapts its behavior depending on the performance achieved and
minimizes the risk of using low-quality meta information. Therefore, this method
is suitable for application scenarios where reliable a-priori fault estimates are
difficult to obtain. Using a corpus of incoherent real-world ontologies from the
field of ontology matching, we show that the proposed risk-aware query strategy
outperforms both meta information based approaches and no-risk strategies on
average in terms of required amount of user interaction.

1 Introduction

The foundation for widespread adoption of Semantic Web technologies is a broad com-
munity of ontology developers which is not restricted to experienced knowledge engi-
neers. Instead, domain experts from diverse fields should be able to create ontologies
incorporating their knowledge as autonomously as possible. The resulting ontologies
are required to fulfill some minimal quality criteria, usually consistency, coherency and
no undesired entailments, in order to grant successful deployment. However, the correct
formulation of logical descriptions in ontologies is an error-prone task which accounts
for a need for assistance in ontology development in terms of ontology debugging tools.
Usually, such tools [10,4,2,3] use model-based diagnosis [9] to identify sets of faulty
axioms, called diagnoses, that need to be modified or deleted in order to meet the im-
posed quality requirements. The major challenge inherent in the debugging task is often
a substantial number of alternative diagnoses.

In [11] this issue is tackled by letting the user take action during the debugging ses-
sion by answering queries about entailments and non-entailments of the desired ontol-
ogy. These answers pose constraints to the validity of diagnoses and thus help to sort out
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incompliant diagnoses step-by-step. In addition, a Bayesian approach is used to contin-
uously readjust the fault probabilities by means of the additional information given by
the user. The user effort in this interactive debugging procedure is strongly affected by
the quality of the initially provided meta information, i.e. prior knowledge about fault
probabilities of a user w.r.t. particular logical operators. To get this under control, the
selection of queries shown to the user can be varied correspondingly. To this end, two
essential paradigms for choosing the next “best” query have been proposed, split-in-half
and entropy-based.

In order to opt for the optimal strategy, however, the quality of the meta informa-
tion, i.e. good or bad (which means high or low probability of the correct solution),
must be known in advance. This would, however, implicate the pre-knowledge of the
initially unknown solution. Entropy-based methods can make optimal profit from ex-
ploiting properly adjusted initial fault probabilities (high potential), whereas they can
completely fail in the case of weak prior information (high risk). The split-in-half tech-
nique, on the other hand, manifests constant behavior independently of the probabilities
given (no risk), but lacks the ability to leverage appropriate fault information (no poten-
tial). This matter of fact is witnessed by the evaluation we conducted, which shows that
an unsuitable combination of meta information and query selection strategy can result
in a substantial increase of more than 2000% w.r.t. number of queries to a user. So, there
is a need to either (1) guarantee a sufficiently suited choice of prior fault information,
or (2) to manage the “risk” of unsuitable method selection. The task of (1) might not be
a severe problem in a debugging scenario involving a faulty ontology developed by a
single expert, since the meta information might be extracted from the logs of previous
sessions, if available, or specified by the expert based on their experience w.r.t. own
faults. However, realization of task (1) is a major issue in scenarios involving autom-
atized systems producing (parts of) ontologies, e.g. ontology alignment and ontology
learning, or numerous users collaborating in modeling an ontology, where the choice of
reasonable meta information is rather unclear. Therefore, we focus on accomplishing
task (2).

The contribution of this paper is a new RIsk Optimization reinforcement learning
method (RIO), which allows to minimize user interaction throughout a debugging ses-
sion on average compared to existing strategies, for any quality of meta information
(high potential at low risk). By virtue of its learning capability, our approach is op-
timally suited for debugging ontologies where only vague or no meta information is
available. A learning parameter is constantly adapted based on the information gath-
ered so far. On the one hand, our method takes advantage of the given meta information
as long as good performance is achieved. On the other hand, it gradually gets more
independent of meta information if suboptimal behavior is measured.

Experiments on two datasets of faulty real-world ontologies show the feasibility,
efficiency and scalability of RIO. The evaluation will indicate that, on average, RIO is
the best choice of strategy for both good and bad meta information with savings as to
user interaction of up to 80%.

The problem specification, basic concepts and a motivating example are provided in
Section 2. Section 3 explains the suggested approach and gives implementation details.
Evaluation results are described in Section 4. Related work is discussed in Section 5
Section 6 concludes.
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2 Basic Concepts and Motivation

First we provide an informal introduction to ontology debugging, particularly address-
ing readers unfamiliar with the topic. Later we introduce precise formalizations. We
assume the reader to be familiar with description logics [1].

Ontology debugging deals with the following problem: Given is an ontology O
which does not meet postulated requirementsR, e.g. R = {coherency, consistency}.O
is a set of axioms formulated in some monotonic knowledge representation language,
e.g. OWL DL. The task is to find a subset of axioms in O, called diagnosis, that needs
to be altered or eliminated from the ontology in order to meet the given requirements.
The presented approach to ontology debugging does not rely upon a specific knowl-
edge representation formalism, it solely presumes that it is logic-based and monotonic.
Additionally, the existence of sound and complete procedures for deciding logical con-
sistency and for calculating logical entailments is assumed. These procedures are used
as a black box. For OWL DL, e.g., both functionalities are provided by a standard DL-
reasoner.

A diagnosis is a hypothesis about the state of each axiom inO of being either correct
or faulty. Generally, there are many diagnoses for one and the same faulty ontology
O. The problem is then to figure out the single diagnosis, called target diagnosis D∗,
that complies with the knowledge to be modeled by the intended ontology. In interac-
tive ontology debugging we assume a user, e.g. the author of the faulty ontology or a
domain expert, interacting with an ontology debugging system by answering queries
about entailments of the desired ontology, called the target ontologyO∗. The target on-
tology can be understood as O minus the axioms of D∗ plus a set of axioms needed
to preserve the desired entailments, called positive test cases. Note that the user is not
expected to know O∗ explicitly (in which case there would be no need to consult an
ontology debugger), but implicitly in that they are able to answer queries aboutO∗.

A query is a set of axioms and the user is asked whether the conjunction of these
axioms is entailed by O∗. Every positively (negatively) answered query constitutes a
positive (negative) test case fulfilled by O∗. The set of positive (entailed) and negative
(non-entailed) test cases is denoted by P and N , respectively. So, P and N are sets of
sets of axioms, which can be, but do not need to be, initially empty. Test cases can be
seen as constraintsO∗ must satisfy and are therefore used to gradually reduce the search
space for valid diagnoses. Roughly, the overall procedure consists of (1) computing a
predefined number of diagnoses, (2) gathering additional information by querying the
user, (3) incorporating this information to prune the search space for diagnoses, and
so forth, until a stopping criterion is fulfilled, e.g. one diagnosis D∗ has overwhelming
probability.

The general debugging setting we consider also envisions the opportunity for the
user to specify some background knowledgeB, i.e. a set of axioms that are known to be
correct. B is then incorporated in the calculations throughout the ontology debugging
procedure, but no axiom in B may take part in a diagnosis. For example, in case the
user knows that a subset of axioms inO is definitely sound, all axioms in this subset are
added to B before initiating the debugging session. The advantage of this over simply
not considering the axioms in B at all is, that the semantics of axioms in B is not lost
and can be exploited, e.g., in query generation. B and O \ B partition the original on-
tology into a set of correct and possibly incorrect axioms, respectively. In the debugging
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session, only O := O \ B is used to search for diagnoses. This can reduce the search
space for diagnoses substantially. Another application of background knowledge could
be the reuse of an existing ontology to support successful debugging. For example,
when formulating an ontology about medical terms, a thoroughly curated reference on-
tology B could be leveraged to find own formulations contradicting the correct ones in
B, which would not be found without integration of B into the debugging procedure.

More formally, ontology debugging can be defined in terms of a diagnosis problem
instance, for which we search for solutions, i.e. diagnoses, that enable to formulate the
target ontology:

Definition 1 (Diagnosis Problem Instance, Target Ontology). Let O = T ∪A be an
ontology with terminological axioms T and assertional axioms A, B a set of axioms
which are assumed to be correct (background knowledge), R a set of requirements to
O, P and N respectively a set of positive and negative test cases, where each test case
p ∈ P and n ∈ N is a set of axioms. Then we call the tuple 〈O,B,P ,N 〉R a diagnosis
problem instance (DPI). An ontology O∗ is called target ontology w.r.t. 〈O,B,P ,N 〉R
iff all the following conditions hold:

∀ r ∈ R : O∗ ∪ B fulfills r

∀ p ∈ P : O∗ ∪ B |= p

∀n ∈ N : O∗ ∪ B �|= n.

Definition 2 (Diagnosis). We call D ⊆ O a diagnosis w.r.t. a DPI 〈O,B,P ,N 〉R iff
(O \ D) ∪ (

⋃
p∈P p) is a target ontology w.r.t. 〈O,B,P ,N 〉R. A diagnosis D w.r.t. a

DPI is minimal iff there is no D′ ⊂ D such that D′ is a diagnosis w.r.t. this DPI. The
set of minimal diagnoses w.r.t. a DPI is denoted by MD.

Note that a diagnosisD gives complete information about the correctness of each axiom
axk ∈ O, i.e. all axi ∈ D are assumed to be faulty and all axj ∈ O \D are assumed to
be correct.

Example: ConsiderO := T ∪ A with terminological axioms T := O1 ∪ O2 ∪M12:

O1 ax1 : PhD � Researcher
ax2 : Researcher � DeptEmployee

O2 ax3 : PhDStudent � Student
ax4 : Student � ¬DeptMember

M12 ax5 : PhDStudent � PhD
ax6 : DeptEmployee � DeptMember

and an assertional axiom A = {PhDStudent(s)}, where M12 is an automatically
generated set of axioms serving as semantic links between O1 and O2. The given on-
tologyO is inconsistent since it describes s as both a DeptMember and not.

Let us assume that the assertion PhDStudent(s) is considered as correct and is thus
added to the background theory, i.e.B := A, and that no test cases are initially specified,
i.e. the sets P and N are empty. For the resulting DPI 〈T ,A, ∅, ∅〉{coherence} the set of
minimal diagnoses MD = {D1 : [ax 1],D2 : [ax 2],D3 : [ax 3],D4 : [ax 4],D5 :
[ax 5],D6 : [ax 6]}. MD can be computed by a diagnosis algorithm such as the one
presented in [2].
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With six minimal diagnoses for only six ontology axioms, this example already gives
an idea that in many cases |MD| can get very large. Note that generally the computation
of all minimal diagnoses w.r.t. a given DPI is not feasible within reasonable time due
to the complexity of the underlying algorithms. Therefore, in practice, especially in an
interactive scenario where reaction time is essential, a set of leading diagnoses D ⊆
MD is considered as a representative for MD.1 Concerning the optimal number of
leading diagnoses, a trade-off between representativeness and complexity of associated
computations w.r.t. D needs to be found.

Without any prior knowledge in terms of diagnosis fault probabilities or specified test
cases, each diagnosis in D is equally likely to be the target diagnosisD∗. In other words,
for each D ∈ D w.r.t. the DPI 〈T ,A, ∅, ∅〉{coherence}, the ontology (O \D) ∪ (

⋃
p∈P p)

meets all the conditions defining a target ontology. However, besides postulating co-
herence the user might want the target ontology to entail that s is a student as well as
a researcher, i.e. O∗ |= t1 where t1 := {Researcher(s), Student(s)}. Formulating
t1 as a positive test case yields the DPI 〈T ,A, {t1}, ∅〉{coherence}, for which only diag-
nosesD2,D4,D6 ∈ D are valid and enable to formulate a correspondingO∗. All other
diagnoses in D are ruled out by the fact that t1 ∈ P , which means they have a proba-
bility of zero of being the target diagnosis. If t1 ∈ N , in contrast, this would imply that
D2,D4,D6 had to be rejected.

So, it depends on the test cases specified by a user which diagnosis will finally be
identified as target diagnosis. Also, the order in which test cases are specified, is crucial.
For instance, consider the test cases t1 := {PhD(s)} and t2 := {Student(s)}. If
t1 ∈ P is specified before t2 ∈ N , then t1 ∈ P is redundant, since the only diagnosis
agreeing with t2 ∈ N is D3 which preserves also the entailment t1 in the resulting
target ontologyO∗ = (O \ D3) ∪ ∅ without explicating it as a positive test case.

Since it is by no means trivial to get the right – in the sense of most informative –
test cases formulated in the proper order such that the number of test cases necessary
to detect the target diagnosis is minimized, interactive debugging systems offer the
functionality to automatize selection of test cases. The benefit is that the user can just
concentrate on “answering” the provided test cases which means assigning them to
either P or N . We call such automatically generated test cases queries. The theoretical
foundation for the application of queries is the fact that O \ Di and O \ Dj for Di �=
Dj ∈ D entail different sets of axioms.

Definition 3 (Query, Partition). Let D be a set of minimal diagnoses w.r.t. a DPI
〈O,B,P ,N 〉R andO∗i := (O \Di)∪B ∪ (

⋃
p∈P p) for Di ∈ D. Then a set of axioms

Xj �= ∅ is called a query w.r.t. D iff DP
j := {Di ∈ D | O∗i |= Xj} �= ∅ and DN

j :=
{Di ∈ D | ∃r ∈ R : O∗i ∪Xj violates r} �= ∅. The (unique) partition of a query Xj is
denoted by 〈DP

j ,D
N
j ,D∅j 〉 where D∅j = D \ (DP

j ∪DN
j ). XD terms a set of queries

and associated partitions w.r.t. D in which one and the same partition of D occurs at
most once and only if there is an associated query for this partition.

1 So, we will speak of D instead of MD throughout this work. Note that the restriction to a
subset of MD does not necessarily have implications on the completeness of the associated
ontology debugging algorithm. E.g., the algorithm can be iterative and recompute new diag-
noses on demand and nevertheless guarantee completeness (as the algorithm presented in this
work).
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Algorithm 1: Generation of Queries and Partitions
Input: DPI 〈O,B,P ,N 〉R , set of corresponding diagnoses D
Output: a set of queries and associated partitions XD

1 foreach DP
k ⊂ D do

2 Xk ← getEntailments(O,B,P ,DP
k );

3 if Xk 
= ∅ then
4 foreachDr ∈ D \DP

k do
5 if O∗

r |= Xk then DP
k ← DP

k ∪ {Dr};
6 else if reqViolated(O∗

r ∪Xk) then DN
k ← DN

k ∪ {Dr};
7 else D∅

k ← D∅
k ∪ {Dr};

8 if ¬includesPartition(XD,
〈
DP

k ,DN
k ,D∅

k

〉
) then

9 XD ← XD ∪ minimizeQuery(
〈
Xk,

〈
DP

k ,DN
k ,D∅

k

〉〉
)

10 return XD;

Note that, in general, there can be nq queries for a particular partition of D where nq can
be zero or some positive integer. We are interested in (1) only those partitions for each
of which nq ≥ 1 and (2) only one query for each such partition. The set XD includes
elements such that (1) and (2) holds. XD for a given set of minimal diagnoses D w.r.t.
a DPI can be generated as shown in Algorithm 1. In each iteration, given a set of diag-
nosesDP

k ⊂ D, common entailments2 Xk :=
{
e | ∀Di ∈ DP

k : O∗i |= e
}

are computed
(GETENTAILMENTS) and used to classify the remaining diagnoses in D\DP

k to obtain
the partition 〈DP

k ,D
N
k ,D∅k〉 associated with Xk. Then, if the partition 〈DP

k ,D
N
k ,D∅k〉

does not already occur in XD (INCLUDESPARTITION), the query Xk is minimized [11]
(MINIMIZEQUERY) such that its partition is preserved, yielding a query X ′k ⊆ Xk such
that any X ′′k ⊂ X ′k is not a query or has not the same partition. Finally, X ′k is added to
XD together with its partition 〈DP

k ,D
N
k ,D∅k〉. Function REQVIOLATED(arg) returns

true if arg violates some requirement r ∈ R.
Asking the user a query Xj means asking them (O∗ |= Xj?). Let the answering of

queries by a user be modeled as function u : XD → {t, f}. If uj := u(Xj) = t, then
P ← P ∪ {Xj} and D ← D \DN

j . Otherwise, N ← N ∪ {Xj} and D ← D \DP
j .

Prospectively, according to Definition 2, only those diagnoses are considered in the set
D that comply with the new DPI obtained by the addition of a test case. This allows us
to formalize the problem we address in this work:

Problem Definition (Query Selection) Given D w.r.t. a DPI 〈O,B,P ,N 〉R, a stop-
ping criterion stop : D → {t, f} and a user u, find a next query Xj ∈ XD such
that (1) (Xj , . . . , Xq) is a query sequence of minimal length and (2) there exists a
D∗ ∈ D w.r.t. 〈O,B,P ′,N ′〉R such that stop(D∗) = t, where P ′ := P ∪ {Xi |Xi ∈
{Xj, . . . , Xq}, ui = t} and N ′ := N ∪ {Xi |Xi ∈ {Xj , . . . , Xq}, ui = f}.

Two strategies for selecting the “best” next query have been proposed [11]:
Split-in-half strategy (SPL), selects the queryXj which minimizes the following scor-
ing function: scsplit(Xj) :=

∣
∣|DP

j | − |DN
j |

∣
∣ + |D∅j |. So, SPL prefers queries which

eliminate half of the diagnoses independently of the query outcome. Entropy-based

2 Note, when we speak of entailments throughout this work, we address (only) the finite set of
entailments computed by the classification and realization services of a DL-reasoner.
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strategy (ENT), uses information about prior probabilities pt for the user to make
a mistake when using a syntactical construct of type t ∈ CT (L), where CT (L) is
the set of constructors available in the used knowledge representation language L,
e.g. {∀, ∃,�,¬,�,�} ⊂ CT (OWL DL). These fault probabilities pt are assumed to
be independent and used to calculate fault probabilities of axioms axk as p(axk) =
1−

∏
t∈CT (1− pt)

n(t) where n(t) is the number of occurrences of construct type t in
axk. The probabilities of axioms can in turn be used to determine fault probabilities of
diagnosesDi ∈ D as

p(Di) =
∏

axr∈Di

p(ax r)
∏

axs∈O\Di

(1− p(ax s)). (1)

ENT selects the query Xj ∈ XD with highest expected information gain, i.e. that
minimizes the following scoring function [11]:

scent(Xj) =
∑

a∈{t,f}
p(uj = a) log2 p(uj = a) + p(D∅j ) + 1

where p(uj = t) =
∑
Dr∈DP

j
p(Dr) +

1
2p(D

∅
j ) and p(D∅j ) =

∑
Dr∈D∅

j
p(Dr). The

answer uj = a is used to update probabilities p(Dk) for Dk ∈ D according to the
Bayesian formula, yielding p(Dk|uj = a).

The result of the evaluation in [11] shows that ENT reveals better performance than
SPL in most of the cases. However, SPL proved to be the best strategy in situations
when misleading prior information is provided, i.e. the target diagnosis D∗ has low
probability. So, one can regard ENT as a high risk strategy with high potential to per-
form well, depending on the priorly unknown quality of the given fault information.
SPL, in contrast, can be seen as a no-risk strategy without any potential to leverage
good meta information. Therefore, selection of the proper combination of prior proba-
bilities {pt | t ∈ CT (L)} and query selection strategy is crucial for successful diagnosis
discrimination and minimization of user interaction.

Example (continued): To illustrate this, let a user who wants to debug our example
ontology O set p(ax i) := 0.001 for axi(i=1,...,4) and p(ax 5) := 0.1, p(ax6) := 0.15,
e.g. because the user doubts the correctness of ax 5, ax 6 while being quite sure that
axi(i=1,...,4) are correct. Assume that D2 corresponds to the target diagnosis D∗, i.e.
the settings provided by the user are inept. Application of ENT starts with computa-
tion of prior fault probabilities of diagnoses p(D1) = p(D2) = p(D3) = p(D4) =
0.003, p(D5) = 0.393, p(D6) = 0.591 (Formula 1). Then (O∗ |= X1?) with X1 :=
{DeptEmployee(s), Student(s)}, will be identified as the optimal query since it has
the minimal score scent(X1) = 0.02 (see Table 1 for queries and partitions w.r.t. the
example ontology). However, since the unfavorable answer u1 = f is given, this query
eliminates only two of six diagnoses D4 and D6. The Bayesian probability update
then yields p(D2) = p(D3) = p(D4) = 0.01 and p(D5) = 0.97. As next query
X2 with scent(X2) = 0.811 is selected and answered unfavorably (u2 = t) as well
which results in the elimination of only one of four diagnoses D5. By querying X3

(scent(X3) = 0.082, u3 = t) and X4 (sc(X4) = 0, u4 = t), the further execution of
this procedure finally leads to the target diagnosis D2. So, application of ENT requires
four queries to find D∗. If SPL is used instead, only three queries are required. The al-
gorithm can select one of the two queries X5 or X9 because each eliminates half of all
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diagnoses in any case. Let the strategy select X5 which is answered positively (u5 = t).
As successive queries, X6 (u6 = f ) and X1 (u1 = f ) are selected, which leads to the
revelation of D∗ = D2.

This scenario demonstrates that the no-risk strategy SPL (three queries) is more suit-
able than ENT (four queries) for fault probabilities which disfavor the target diagnosis.
Let us suppose, on the other hand, that probabilities are assigned more reasonably in
our example, e.g. D∗ = D6. Then it will take ENT only two queries (X1, X6) to find
D∗ while SPL will still require three queries, e.g. (X5, X1, X6).

This example indicates that, unless the target diagnosis is known in advance, one can
never be sure to select the best strategy from SPL and ENT. In section 3 we present
a learning query selection algorithm that combines the benefits of both SPL and ENT.
It adapts the way of selecting the next query depending on the elimination rate (like
SPL) and on information gain (like ENT). Thereby its performance approaches the
performance of the better of both SPL and ENT.

Table 1. A set XD of queries and associated partitions w.r.t. the initial DPI 〈T ,A, ∅, ∅〉{coherence}
of the example ontology O

Query DP
i DN

i D∅
i

X1 : {DeptEmployee(s), D4,D6 D1,D2,D3,D5 ∅
Student(s)}

X2 : {PhD(s)} D1,D2,D3,D4,D6 D5 ∅
X3 : {Researcher(s)} D2,D3,D4,D6 D1,D5 ∅
X4 : {Student(s)} D1,D2,D4,D5,D6 D3 ∅
X5 : {Researcher(s), D2,D4,D6 D1,D3,D5 ∅

Student(s)}
X6 : {DeptMember(s)} D3,D4 D1,D2,D5,D6

X7 : {PhD(s), D1,D2,D4,D6 D3,D5 ∅
Student(s)}

X8 : {DeptMember(s), D2 D1,D3,D4,D5,D6 ∅
Student(s)}

X9 : {DeptEmployee(s)} D3,D4,D6 D1,D2,D5 ∅

3 Risk Optimization for Query Selection

The proposed Risk Optimization Algorithm (RIO) extends ENT strategy with a dy-
namic learning procedure that learns by reinforcement how to select the next query. Its
behavior is determined by the achieved performance in terms of diagnosis elimination
rate w.r.t. the set of leading diagnoses D. Good performance causes similar behavior to
ENT, whereas aggravation of performance leads to a gradual neglect of the given meta
information, and thus to a behavior akin to SPL. Like ENT, RIO continually improves
the prior fault probabilities based on new knowledge obtained through queries to a user.

RIO learns a “cautiousness” parameter c whose admissible values are captured by
the user-defined interval [c, c]. The relationship between c and queries is as follows:

Definition 4 (Cautiousness of a Query). We define the cautiousness cq(Xi) of a query
Xi ∈ XD as follows:
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cq(Xi) :=
min

{
|DP

i |, |DN
i |

}

|D| ∈

⎡

⎣0,

⌊
|D|
2

⌋

|D|

⎤

⎦ =: [cq, cq]

A query Xi is called braver than query Xj iff cq(Xi) < cq(Xj). Otherwise Xi is called
more cautious than Xj . A query with maximum cautiousness cq is called no-risk query.

Definition 5 (Elimination Rate). Given a query Xi and the corresponding answer

ui ∈ {t, f}, the elimination rate e(Xi, ui) =
|DN

i |
|D| if ui = t and e(Xi, ui) =

|DP
i |
|D|

if ui = f . The answer ui to a query Xi is called favorable iff it maximizes the elim-
ination rate e(Xi, ui). Otherwise ui is called unfavorable. The minimal or worst case
elimination rate minui∈{t,f}(e(Xi, ui)) of Xi is denoted by ewc(Xi).

So, the cautiousness cq(Xi) of a query Xi is exactly the worst case elimination rate, i.e.
cq(Xi) = ewc(Xi) = e(Xi, ui) given that ui is the unfavorable query result. Intuitively,
parameter c characterizes the minimum proportion of diagnoses in D which should be
eliminated by the successive query.

Definition 6 (High-Risk Query). Given a query Xi and cautiousness c, Xi is called
a high-risk query iff cq(Xi) < c, i.e. the cautiousness of the query is lower than the
algorithm’s current cautiousness value c. Otherwise, Xi is called non-high-risk query.
By NHRc(XD) ⊆ XD we denote the set of non-high-risk queries w.r.t. c. For given
cautiousness c, the set of queries XD can be partitioned in high-risk queries and non-
high-risk queries.

Example (continued): Let the user specify c := 0.3 for the set D with |D| = 6. Given
these settings, X1 := {DeptEmployee(s), Student(s)} is a non-high-risk query since
its partition 〈DP

1 ,D
N
1 ,D∅1〉 = 〈{D4,D6} , {D1,D2,D3,D5} , ∅〉 and thus its cautious-

ness cq(X1) = 2/6 ≥ 0.3 = c. The query X2 := {PhD(s)} with the partition
〈{D1,D2,D3,D4,D6} , {D5} , ∅〉 is a high-risk query because cq(X2) = 1/6 < 0.3 =
c and X3 := {Researcher(s), Student(s)} with 〈{D2,D4,D6} , {D1,D3,D5} , ∅〉 is
a no-risk query due to cq(X3) = 3/6 = cq.

Given a user’s answer us to a query Xs, the cautiousness c is updated depending on
the elimination rate e(Xs, us) by c← c+cadj where the cautiousness adjustment factor
cadj := 2 (c−c)adj . The scaling factor 2 (c−c) regulates the extent of the cautiousness
adjustment depending on the interval length c − c. More crucial is the factor adj that
indicates the sign and magnitude of the cautiousness adjustment:

adj :=

⌊
|D|
2 − ε

⌋

|D| − e(Xs, us)

where ε ∈ (0, 1
2 ) is a constant which prevents the algorithm from getting stuck in a

no-risk strategy for even |D|. E.g., given c = 0.5 and ε = 0, the elimination rate of a
no-risk query e(Xs, us) =

1
2 resulting always in adj = 0. The value of ε can be set to

an arbitrary real number, e.g. ε := 1
4 . If c+cadj is outside the user-defined cautiousness

interval [c, c], it is set to c if c < c and to c if c > c. Positive cadj is a penalty telling the
algorithm to get more cautious, whereas negative cadj is a bonus resulting in a braver
behavior of the algorithm. Note, for the user-defined interval [c, c] ⊆ [cq, cq] must hold.
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c− cq and cq− c represent the minimal desired difference in performance to a high-risk
(ENT) and no-risk (SPL) query selection, respectively. By expressing trust (disbelief)
in the prior fault probabilities through specification of lower (higher) values for c and/or
c, the user can take influence on the behavior of RIO.

Example (continued): Assume p(ax i) := 0.001 for axi(i=1,...,4) and p(ax 5) := 0.1,
p(ax 6) := 0.15 and the user rather disbelieves these fault probabilities and thus sets
c = 0.4, c = 0 and c = 0.5. In this case RIO selects a no-risk query X3 just as SPL
would do. Given u3 = t and |D| = 6, the algorithm computes the elimination rate
e(X3, t) = 0.5 and adjusts the cautiousness by cadj = −0.17 which yields c = 0.23.
This allows RIO to select a higher-risk query in the next iteration, whereupon the target
diagnosis D∗ = D2 is found after asking three queries. In the same situation, ENT
(starting with high-risk query X1) would require four queries.

RIO, described in Algorithm 2, starts with the computation of minimal diagnoses.
GETDIAGNOSES function implements a combination of HS-Tree and QuickXPlain al-
gorithms [11]. Using uniform-cost search, the algorithm extends the set of leading di-
agnoses D with a maximum number of most probable minimal diagnoses such that
|D| ≤ n.

Then the GETPROBABILITIES function calculates the fault probabilities p(Di) for
each diagnosis Di of the set of leading diagnoses D using formula (1). Next it adjusts
the probabilities as per the Bayesian theorem taking into account all previous query
answers which are stored in P and N . Finally, the resulting probabilities padj(Di) are
normalized. Based on the set of leading diagnoses D, GENERATEQUERIES generates
queries according to Algorithm 1. GETMINSCOREQUERY determines the best query
Xsc ∈ XD according to scent: Xsc = argminXk∈XD

(scent(Xk)). If Xsc is a non-
high-risk query, i.e. c ≤ cq(Xsc) (determined by GETQUERYCAUTIOUSNESS), Xsc is
selected. In this case, Xsc is the query with best information gain in XD and moreover
guarantees the required elimination rate specified by c.

Otherwise, GETALTERNATIVEQUERY selects the query Xalt ∈ XD (Xalt �= Xsc)
which has minimal score scent among all least cautious non-high-risk queries Lc. That
is, Xalt = argminXk∈Lc

(scent(Xk)) where Lc := {Xr ∈ NHRc(XD) | ∀Xt ∈
NHRc(XD) : cq(Xr) ≤ cq(Xt)}. If there is no such query Xalt ∈ XD, then Xsc is
selected.

Algorithm 2: Risk Optimization Algorithm (RIO)
Input: diagnosis problem instance 〈O,B,P ,N 〉R , fault probabilities of diagnoses DP , cautiousness

C = (c, c, c), number of leading diagnoses n to be considered, acceptance threshold σ
Output: a diagnosisD

1 D← ∅;
2 repeat
3 D← getDiagnoses(D, n,O,B,P ,N );
4 DP ← getProbabilities(DP,D,P ,N );
5 XD ← generateQueries(O,B,P ,D);
6 Xs ← getMinScoreQuery(DP,XD);
7 if getQueryCautiousness(Xs,D) < c then Xs ← getAlternativeQuery(c,XD, DP,D);
8 if getAnswer(Xs) = yes then P ← P ∪ {Xs};
9 else N ← N ∪ {Xs};

10 c← updateCautiousness(D,P ,N , Xs, c, c, c);
11 until (aboveThreshold(DP, σ) ∨ eliminationRate(Xs) = 0);
12 return mostProbableDiag(D, DP );
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Given the user’s answer us, the selected query Xs ∈ {Xsc,Xalt} is added to P or N
accordingly (see Section 2). In the last step of the main loop the algorithm updates the
cautiousness value c (function UPDATECAUTIOUSNESS) as described above.

Before the next query selection iteration starts, a stop condition test is performed.
The algorithm evaluates whether the most probable diagnosis is at least σ% more likely
than the second most probable diagnosis (ABOVETHRESHOLD) or none of the lead-
ing diagnoses has been eliminated by the previous query, i.e.GETELIMINATIONRATE

returns zero for Xs. If a stop condition is met, the presently most likely diagnosis is
returned (MOSTPROBABLEDIAG).

4 Evaluation

Goals. This evaluation should demonstrate that (1) there is a significant discrepancy
between existing strategies SPL and ENT concerning user effort where the winner de-
pends on the quality of meta information, (2) RIO exhibits superior average behavior
compared to ENT and SPL w.r.t. the amount of user interaction required, irrespective of
the quality of specified fault information, (3) RIO scales well and (4) its reaction time
is well suited for an interactive debugging approach.

Provenance of Test Data. As data source for the evaluation we used faulty real-world
ontologies produced by automatic ontology matching systems (cf. Example in Sec-
tion 2). Matching of two ontologiesOi andOj is understood as detection of correspon-
dences between elements of these ontologies [12]:

Definition 7 (Ontology matching). Let Q(O) ⊆ S(O) denote the set of matchable el-
ements in an ontologyO, where S(O) denotes the signature ofO. An ontology matching
operation determines an alignment Mij , which is a set of correspondences between
matched ontologies Oi and Oj . Each correspondence is a 4-tuple 〈xi, xj , r, v〉, such
that xi ∈ Q(Oi), xj ∈ Q(Oj), r is a semantic relation and v ∈ [0, 1] is a confidence
value. We call OiMj := Oi ∪ φ(Mij) ∪Oj the aligned ontology forOi andOj where
φ maps each correspondence to an axiom.

Let in the following Q(O) be the restriction to atomic concepts and roles in S(O),
r ∈ {�,�,≡} and φ the natural alignment semantics [6] that maps correspondences
one-to-one to axioms of the form xi r xj . We evaluate RIO using aligned ontologies by
the following reasons: (1) Matching results often cause inconsistency/incoherence of
ontologies. (2) The (fault) structure of different ontologies obtained through matching
generally varies due to different authors and matching systems involved in the genesis
of these ontologies. (3) For the same reasons, it is hard to estimate the quality of fault
probabilities, i.e. it is unclear which of the existing query selection strategies to chose
for best performance. (4) Available reference mappings can be used as correct solutions
of the debugging procedure.

Test Datasets. We used two datasets D1 and D2: Each faulty aligned ontology OiMj

in D1 is the result of applying one of four ontology matching systems to a set of six
independently created ontologies in the domain of conference organization. For a given
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pair of ontologiesOi �= Oj , each system produced an alignmentMij . The average size
of OiMj per matching system was between 312 and 377 axioms. D1 is a superset of
the dataset used in [13] for which all debugging systems under evaluation manifested
correctness or scalability problems. D2, used to assess the scalability of RIO, is the set
of ontologies from the ANATOMY track in the Ontology Alignment Evaluation Initia-
tive3 (OAEI) 2011.5 [12], which comprises two input ontologies O1 (11545 axioms)
andO2 (4838 axioms). The size of the aligned ontologies generated by results of seven
different matching systems was between 17530 and 17844 axioms. 4

Reference Solutions. For the dataset D1, based on a manually produced reference
alignment Rij ⊆ Mij for ontologies Oi,Oj (cf. [7]), we were able to fix a target
diagnosis D∗ := φ(Mij \ Rij) for each incoherent OiMj . In cases where D∗ rep-
resented a non-minimal diagnosis, it was randomly redefined as a minimal diagnosis
D∗ ⊂ φ(Mij \ Rij). In case of D2, given the ontologies O1 and O2, the outputM12

of a matching system, and the correct reference alignment R12, we fixed D∗ as fol-
lows: We carried out (prior to the actual experiment) a debugging session with DPI
〈φ(M12 \ R12),O1 ∪ O2 ∪ φ(M12 ∩R12), ∅, ∅〉{coherence} and randomly chose one of
the identified diagnoses as D∗.
Test Settings. We conducted 4 experiments EXP-i (i = 1, . . . , 4), the first two with
dataset D1 and the other two with D2. In experiments 1 and 3 we simulated good fault
probabilities by setting p(axk) := 0.001 for axk ∈ Oi∪Oj and p(axm) := 1− vm for
axm ∈ Mij , where vm is the confidence of the correspondence underlying axm. Un-
reasonable fault information was used in experiments 2 and 4. In EXP-4 the following
probabilities were defined: p(axk) := 0.01 for axk ∈ Oi∪Oj and p(axm) := 0.001 for
axm ∈ Mij . In EXP-2, in contrast, we used probability settings of EXP-1, but altered
the target diagnosis D∗ in that we precomputed (before the actual experiment started)
the 30 most probable minimal diagnoses, and from these we selected the diagnosis with
the highest number of axioms axk ∈ OiMj \ φ(Mij) as D∗.

Throughout all four experiments, we set |D| := 9 (which proved to be a good
trade-off between computation effort and representativeness of the leading diagnoses),
σ := 85% and as input parameters for RIO we set c := 0.25 and [c, c] := [cmin, cmax] =
[0, 49 ]. To let tests constitute the highest challenge for the evaluated methods, the ini-
tial DPI was specified as 〈OiMj , ∅, ∅, ∅〉{coherence}, i.e. the entire search space was ex-
plored without adding parts of OiMj to B, although D∗ was always a subset of the
alignmentMij only. In practice, given such prior knowledge, the search space could
be severely restricted and debugging greatly accelerated. All tests were executed on a
Core-i7 (3930K) 3.2Ghz, 32GB RAM with Ubuntu Server 11.04 and Java 6 installed. 5

Metrics. Each experiment involved a debugging session of ENT, SPL as well as RIO
for each ontology in the respective dataset. In each debugging run we measured the
number of required queries (q) untilD∗ was identified, the overall debugging time (de-
bug) assuming that queries are answered instantaneously and the reaction time (react),

3 http://oaei.ontologymatching.org
4 Source ontologies, produced alignments by each matcher, and reference alignments were

downloaded from http://bit.ly/Zffkow (D1) and http://bit.ly/Koh1NB as
well as http://bit.ly/MU5Ca9 (D2).

5 See http://code.google.com/p/rmbd/wiki for code and details.
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i.e. the average time between two successive queries. The queries generated in the tests
were answered by an automatic oracle by means of the target ontologyOiMj \ D∗.
Observations. The difference w.r.t. the number of queries per test run between the
better and the worse strategy in {SPL,ENT} was absolutely significant, with a maxi-
mum of 2300% in EXP-4 and averages of 190% to 1145% throughout all four experi-
ments (Figure 1(b)). Moreover, results show that varying quality of fault probabilities in
{EXP-1,EXP-3} compared to {EXP-2,EXP-4} clearly affected the performance of ENT
and SPL (see first two rows in Figure 1(a)). This perfectly motivates the application of
RIO.

Results of both experimental sessions, 〈EXP-1,EXP-2〉 and 〈EXP-3,EXP-4〉, are
summarized in Figures 2(a) and 2(b), respectively. The figures show the (average) num-
ber of queries asked by RIO and the (average) differences to the number of queries
needed by the per-session better and worse strategy in {SPL,ENT}, respectively. The
results illustrate clearly that the average performance achieved by RIO was always sub-
stantially closer to the better than to the worse strategy. In both EXP-1 and EXP-2,
throughout 74% of 27 debugging sessions, RIO worked as efficiently as the best strat-
egy (Figure 1(a)). In 26% of the cases in EXP-2, RIO even outperformed both other
strategies; in these cases, RIO could save more than 20% of user interaction on aver-
age compared to the best other strategy. In one scenario in EXP-1, it took ENT 31 and
SPL 13 queries to finish, whereas RIO required only 6 queries, which amounts to an
improvement of more than 80% and 53%, respectively. In 〈EXP-3,EXP-4〉, the savings
achieved by RIO were even more substantial. RIO manifested superior behavior to both
other strategies in 29% and 71% of cases, respectively. Not less remarkable, in 100%
of the tests in EXP-3 and EXP-4, RIO was at least as efficient as the best other strategy.
Recalling Figure 1(b), this means that RIO can avoid query overheads of over 2000%.
Table 2, which provides average values for q, react and debug per strategy, demonstrates
that RIO is the best choice in all experiments w.r.t. q. Consequently, RIO is suitable for
both good and poor meta information.

As to time aspects, RIO manifested good performance, too. Since times consumed in
〈EXP-1,EXP-2〉 are almost negligible, consider the more meaningful results obtained
in 〈EXP-3,EXP-4〉. While the best reaction time in both experiments was achieved by
SPL, we can clearly see that SPL was significantly inferior to both ENT and RIO con-
cerning q and debug. RIO revealed the best debugging time in EXP-4, and needed only
2.2% more time than the best strategy (ENT) in EXP-3. However, if we assume the
user being capable of reading and answering a query in, e.g., 30 sec on average, which
is already quite fast, then the overall time savings of RIO compared to ENT in EXP-3
would already account for 5%. Doing the same thought experiment for EXP-4, RIO

Table 2. Average time (ms) for the entire debugging session (debug), average time (ms) between
two successive queries (react), and average number of queries (q) required by each strategy

EXP-1 EXP-2 EXP-3 EXP-4
debug react q debug react q debug react q debug react q

ENT 1860 262 3.67 1423 204 5.26 60928 12367 5.86 74463 5629 11.86
SPL 1427 159 5.70 1237 148 5.44 104910 4786 19.43 98647 4781 18.29
RIO 1592 286 3.00 1749 245 4.37 62289 12825 5.43 66895 8327 8.14
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EXP-1 EXP-2 EXP-3 EXP-4
qSPL < qENT 11% 37% 0% 29%
qENT < qSPL 81% 56% 100% 71%
qSPL = qENT 7% 7% 0% 0%
qRIO < min 4% 26% 29% 71%
qRIO ≤ min 74% 74% 100% 100%

(a) (b)

Fig. 1. (a) Percentage rates indicating which strategy performed best/better w.r.t. the required
user interaction, i.e. number of queries. EXP-1 and EXP-2 involved 27, EXP-3 and EXP-4 seven
debugging sessions each. qstr denotes the number of queries needed by strategy str and min is an
abbreviation for min(qSPL, qENT). (b) Box-Whisker Plots presenting the distribution of overhead
(qw − qb)/qb ∗ 100 (in %) per debugging session of the worse strategy qw := max(qSPL, qENT)
compared to the better strategy qb := min(qSPL, qENT). Mean values are depicted by a cross.
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Fig. 2. The bars show the avg. number of queries (q) needed by RIO, grouped by matching tools.
The distance from the bar to the lower (upper) end of the whisker indicates the avg. difference of
RIO to the queries needed by the per-session better (worse) strategy of SPL and ENT, respectively.

would save 25% (w.r.t. ENT) and 50% (w.r.t. SPL) of debugging time on average. All
in all, the measured times confirm that RIO is well suited for interactive debugging.

5 Related Work

A similar interactive technique was presented in [8], where a user is successively asked
single ontology axioms in order to obtain a partition of a given ontology into a set of
desired and a set of undesired consequences. However, given an inconsistent/incoherent
ontology, this technique starts from an empty set of desired consequences aiming at
adding to this set only axioms which preserve coherence, whereas our approach starts
from the complete ontology aiming at finding a minimal set of axioms responsible for
the violation of pre-specified requirements.

An approach for alignment debugging was proposed in [5]. This work describes ap-
proximate algorithms for computing a “local optimal diagnosis” and complete meth-
ods to discover a “global optimal diagnosis”. Optimality in this context refers to the
maximum sum of confidences in the resulting coherent alignment. In contrast to our
framework, diagnoses are determined automatically without support for user interaction.
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Instead, techniques for manual revision of the alignment as a procedure independentfrom
debugging are demonstrated.

6 Conclusion

We have shown problems of state-of-the-art interactive ontology debugging strategies
w.r.t. the usage of unreliable meta information. To tackle this issue, we proposed a
learning strategy which combines the benefits of existing approaches, i.e. high potential
and low risk. Depending on the performance of the diagnosis discrimination actions,
the trust in the a-priori information is adapted. Tested under various conditions, our
algorithm revealed good scalability and reaction time as well as superior average per-
formance to two common approaches in the field in all tested cases w.r.t. required user
interaction. Highest achieved savings amounted to more than 80% and user interaction
overheads resulting from the wrong choice of strategy of up to 2300% could be saved.
In the hardest test cases, the new strategy was not only on average, but in 100% of the
test cases at least as good as the best other strategy.
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