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With the advent and growing popularity of semantic web technologies in the last
two decades, the number of applications relying on knowledge specified in terms
of ontologies has considerably increased. One example of a vital field extensively
adopting ontologies for highly critical applications is biomedicine.! As the size
(up to hundreds of thousands of axioms) and complexity of the used ontologies is

This work is supported by Carinthian Science Fund (KWF), contract KWF-
3520/26767/38701.
! See, e.g., OBO project (http://obo.sourceforge.net) or NCI-Thesaurus (http://ncit.
nci.nih.gov).

On the Impact and Proper
Use of Heuristics in Test-Driven
Ontology Debugging

Patrick Rodler®)@® and Wolfgang Schmid

Alpen-Adria Universitiat Klagenfurt, 9020 Klagenfurt, Austria
{patrick.rodler,wolfgang.schmid}@aau.at

Abstract. Given an ontology that does not meet required properties
such as consistency or the (non-)entailment of certain axioms, Ontology
Debugging aims at identifying a set of axioms, called diagnosis, that
must be properly modified or deleted in order to resolve the ontology’s
faults. As there are, in general, large numbers of competing diagnoses and
the choice of each diagnosis leads to a repaired ontology with different
semantics, Test-Driven Ontology Debugging (TOD) aims at narrowing
the space of diagnoses until a single (highly probable) one is left. To this
end, TOD techniques automatically generate a sequence of queries to an
interacting oracle (domain expert) about (non-)entailments of the correct
ontology. Diagnoses not consistent with the answers are discarded. To
minimize debugging cost (oracle effort), various heuristics for selecting
the best next query have been proposed. We report preliminary results
of extensive ongoing experiments with a set of such heuristics on real-
world debugging cases. In particular, we try to answer questions such
as “Is some heuristic always superior to all others?”, “On which factors
does the (relative) performance of the particular heuristics depend?” or
“Under which circumstances should I use which heuristic?”.
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constantly growing, the likeliness of faults, e.g. wrong entailments or logical con-
tradictions, in these ontologies is significant. However, such defectiveness could
have severe consequences, e.g. in health-related applications, on the one hand, and
its root cause may be extremely hard to identify for humans on the other hand.

As a remedy, ontology debugging (OD) approaches [8,25], based on the gen-
eral model-based diagnosis framework [15], have been developed. Given an ontol-
ogy that does not satisfy requirements such as consistency, coherency or the
(non-)entailment of certain axioms, the goal of OD is to find an explanation of
the ontology’s faultiness in terms of a set of incorrect axioms. Such an axiom set
is called a diagnosis. However, the mere use of OD tools assisting a human by
the generation (and ranking [9]) of diagnoses often does not solve the problem
due to a couple of reasons. First [29], such (non-interactive) approaches often
suggest unnecessarily large diagnoses (non-parsimony), neglect some solutions
(incompleteness), return wrong explanations (unsoundness) or exhibit poor per-
formance. Second, even if such a system overcomes all the said issues, it does
unavoidably (due to a lack of additional information) suffer from the problem
of generally large solution spaces (comprising up to thousands [27]) of compet-
ing diagnoses. Although the deletion or adequate modification of any diagnosis
enables to formulate an ontology where all (initially present) faults are repaired,
each diagnosis’ choice leads necessarily to a solution ontology with different
semantics [16]. Even if they are ranked, opting for (one of) the top-ranked diag-
noses does not give any guarantees regarding the semantics of the resulting
repaired ontology.

Addressing this issue, inspired by [3,11], (interactive) test-driven ontology
debugging (TOD) techniques [16,24,27] were proposed and their general feasibil-
ity, scalability and practical efficiency was demonstrated by various conducted
studies [21,22,27,28]. TOD techniques build on an idea well known from soft-
ware engineering, which is the specification of test cases to successively narrow
down the possible causes of fault. In the context of ontology engineering, a pos-
itive (negative) test case represents a set of axioms that must (not) be entailed
by the intended ontology. The process of formulating test cases can be pursued
until one diagnosis has overwhelming probability or, ultimately, until a single one
remains. As the manual formulation of meaningful test cases — in the sense that
they distinguish well between diagnoses — might be a hard task due to the involved
mental reasoning with expressive logics (such as OWL 2 [6]), state-of-the-art TOD
systems undertake the task of test case formulation and quality assessment. The
workload for an oracle, usually a domain expert, interacting with the system thus
reduces to classifying these automatically generated test cases, called queries, as
positive or negative. This means answering questions whether presented axioms
are or are not entailments of the intended ontology. Since oracle consultations are
usually very costly, the practicality and efficiency of TOD approaches is inextri-
cably linked to the number (and, e.g., the difficulty) of queries asked in order to
pin down the actual diagnosis, i.e. the actually faulty axioms.
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Unfortunately, the global minimization of the oracle costs (i.e. finding a cost-
minimal sequence of queries revealing the actual diagnosis) is NP-hard [7]. As
a result, TOD methods have to confine themselves to a local optimization (i.e.
computing the best next query). To this end, a one-step lookahead evaluation
of queries (i.e. how favorable is the expected situation after asking one query?)
proved to be a very good trade-off between gained information and required
effort [10], and is thus state-of-the-art in TOD.

However, there is not a unified view of what it means for a query to be “good”,
but several (one-step lookahead) heuristics [11,18,22,27], many of them inspired
by active learning research [26]. These heuristics are expressed in terms of quan-
titative query selection measures (QSMs) that assign a real-valued goodness esti-
mate to each query. A few empirical studies of QSMs in the domain of TOD exist,
where [27,28] focus on two “traditional” QSMs [11,12] and [22] suggest and eval-
uate a novel QSM. Moreover, there are the theoretical analyses [17,18,21] which
derive a range of new QSMs as well as equivalences and superiorities between new
and traditional QSMs, and introduce efficient (heuristic) computation methods for
optimal queries wrt. QSMs. Complementary to these researches, we shed light on
the performance (in terms of oracle cost throughout a TOD session) of and rela-
tionships between both the traditional and the new QSMs in the present work. For
this purpose, we are currently conducting extensive evaluations where we inves-
tigate the particular QSMs under varying conditions, similar to [27], regarding
(a) diagnoses probability distributions, (b) quality (meaningfulness) of the prob-
abilities, (c) available evidence (size of the diagnoses sample) for query computa-
tion, and (d) diagnostic structure (ontology size; # and size of diagnoses; reasoning
complexity) using real-world debugging problems. The data of the (so-far finished)
experiments shall be exploited to approach i.a. the following questions:

— Do the factors (a)—(d) affect the (relative) performance of the QSMs?
— Which QSM is preferable under which circumstances?

Is there a (clear) winner among the QSMs?

— How far do the QSM performances differ under different conditions?

The rest of the paper is organized as follows. Section2 briefly introduces
technical basics wrt. TOD. Section 3 recaps the QSMs used in the experiments.
The evaluation setting is described in Sect. 4, and results discussed in Sect. 5.
Finally, Sect. 6 concludes.

2 Preliminaries

In this section we briefly characterize the basic technical concepts used through-
out this work, based on the framework of [16,27] which is originally based on
[15] (cf. [19)).
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Ontology Debugging Problem Instance. An ontology to be debugged is
given by O U B, where O includes the possibly faulty axioms and B the correct
background knowledge axioms. That is, one can lay the debugging focus on just
a subset O of the entire ontology, putting certain axioms, e.g. assertions, to B.
The pragmatics is that faults will only be sought within O, i.e. the considered
search space is restricted. Requirements to the intended ontology are captured
by sets of positive (P) and negative () test cases [3]. Each test case is a set
(interpreted as conjunction) of axioms; positive ones p € P must be and negative
ones n € N must not be entailed by the intended ontology. We call (O, B, P, N)
an (ontology) debugging problem instance (DPI).

Example 1. Consider the following ontology with the terminology 7:

{ az; : ActiveResearcher C Jwrites.(Paper Ll Review) ,
aty : Jwrites. T C Author ,  axs : Author © Employee 1 Person }

and assertions A : {az4 : ActiveResearcher(ann)}. To debug the terminology
while accepting as correct the assertion and stipulating that Ann is not neces-
sarily an employee (negative test case ny : { Employee(ann)}), one can specify
the following DPIL: dpi,, := (T, A,0,{n1}). 0

Diagnoses. Let C | := {C C L [ C class name in O} and Up := |J,cp p. Given
that the ontology to be debugged, along with the positive test cases, is incon-
sistent or incoherent, i.e. OUBUUp [ x for some z € {1} U C_, or some
negative test case is entailed, i.e. OUBUUp = n for some n € N, some axioms
in O must be accordingly modified or deleted to enable the formulation of the
intended ontology. We call such a set of axioms D C O a diagnosis for the DPI
(O,B,P,N) iff ( O\D)UBUUp [t x forallz € NU{L}UC,. D is a minimal
diagnosis iff there is no diagnosis D’ C D. We call D* the actual diagnosis iff
all ax € D* are faulty and all az € O\ D* are correct. For efficiency and to
suggest minimally-invasive repairs, modern TOD systems restrict the focus to
the computation of minimal diagnoses.

Ezample 2. For dpi,, = (O,B,P,N) from Example 1, O UB U Up entails the
negative test case n; € N, i.e. that Ann is an employee. The reason is that
according to azi(€ O) and az4(€ B), Ann writes some paper or review since
she is an active researcher. Due to the additional azo(€ O), Ann is also an
author because she writes something. Finally, since Ann is an author, she must
be both an employee and a person, as postulated by azz(€ O). Hence, D; : [az1],
Dy : lazs], D3 : [azs] are (all the) minimal diagnoses for dpi,,, as the deletion
of any az; € O breaks the unwanted entailment n. a

Diagnoses Probabilities. If axiom fault probabilities p(az;) for az; € O are
available, e.g. by considering common fault patterns [14,23] or other heuristic
information [9], probabilities of diagnoses D € D (of being the actual diagno-
sis) can be computed [11,27] as p(D) = [ ep P(a2) [[,pco\p(1 — p(az)) and
updated by means of Bayes’ Rule (see [16, p. 130]) each time a new test case
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is added. Sometimes however p(az) for ax € O might not be directly given,
but derivable from the structure of the axioms. For instance, fault probabilities
regarding logical (e.g. —,M,V) [27] or non-logical (e.g. class names) [16] sym-
bols occurring in axioms might be available. Regarding the former, the axiom
author might not properly use or fully understand these constructs from the
logical perspective; as to the latter, the axiom author, say an orthopedist, might
not possess the required (domain) expertise regarding certain concepts, say
Acne or Basalioma. Such fault information may originate from, e.g., experi-
ence, a subjective or expert guess, or through the analysis of relevant logs or
past debugging sessions. Let p(s;) be the probability that a (non-)logical sym-
bol s; is faulty and n; be the number of occurrences of s; in az. Then [27]:

p(ax) =1- ]-_[Si occurs in aa;(l - p(sl))n7

Example 3. Reconsider dpi,, from Example 1. Suppose that the ontology author
knows from past debugging sessions to make quite many mistakes using quanti-
fiers, some using negation, conjunction and disjunction, but almost none using
subsumption. This could lead to the fault probabilities (p(3), p(M), p(L), p(C)) =
(0.25,0.05,0.05,0.01) relevant to dpi,,. Using these, the fault probability of
axiom azq (including the symbols C, 3, LI) computes as p(az;) =1 — (1 —0.01)
(1-0.25)(1—0.05) = 0.29. Similarly, we obtain p(azz2) ~ 0.26 and p(az3) ~ 0.06.
Hence, we can derive p(D1) = (0.29)(1 — 0.26)(1 — 0.06) ~ 0.21, p(Ds) =~ 0.17
and p(D3) ~ 0.03. O

Queries and Q-Partition. Let D, called the leading diagnoses, be a set of
at least two (precomputed) minimal diagnoses for dpi = (O, B, P, N). Usually,
the diagnoses with highest probability or minimum cardinality are used for this
purpose. A query (wrt. D) is a set of axioms ¢ that rules out at least one diagnosis
in D, both if ¢ is classified as a positive test case (P «— P U {q}), and if ¢ is
classified as a negative test case (N «— N U{q}). That is, at least one D; € D is
not a diagnosis for (O, B, P U {q}, N) and at least one diagnosis D; € D is not a
diagnosis for (O, B, P, N U {q}). The classification of a query ¢ to either P or N
is accomplished by an oracle, e.g. a domain expert, answering the question “Is
(each axiom in) g an entailment of the intended (correct) ontology?”. Thus, the
oracle is a function class : Q — {P, N} where Q is the query space; class(q) = P
if the answer to the question is positive, else class(q) = N.

An expedient tool towards the verification and goodness estimation of query
candidates ¢ is the notion of a g-partition. Namely, every set of axioms ¢ parti-
tions any set of diagnoses D into three subsets:

~ D/ includes all D € D where D is not a diagnosis for (O, B, P, N U{q})
(diagnoses predicting that ¢ is a positive test case)

— Dy includes all D € D where D is not a diagnosis for (O, B, P U{q},N)
(diagnoses predicting that ¢ is a negative test case)

- D) = D\ (D} UD;): includes all D € D where D is a diagnosis for both
(0,B,PU{q},N) and (O,B, P, N U{q})

(uncommitted diagnoses, no prediction about q)
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A partition 8 of D into three sets is called ¢-partition iff there is a query g wrt.
D such that P = <Dq+7 D,, D2>. According to the definition of a query, it holds
that ¢ is a query iff both Dq+ and D~ are non-empty sets. This fact can be taken
advantage of for query verification. Coupled with diagnoses probabilities, the g-
partition provides useful hints [18] about the query quality in that it enables to

(1) test whether ¢ is a strong query, i.e. one without uncommitted diagnoses
(Dg = 0),
(2) estimate the impact ¢’s classification class(¢q) has in terms of diagnoses elim-
ination (potential a-posteriori change of the diagnoses space), and
(3) assess the probability of ¢’s positive and negative classification (e.g. to com-
pute the uncertainty of ¢).
For given D, we estimate [11]: p(class(q) = P) = p(D}) + 3p(DY) and
p(class(q) = N) = p(D;) + 3p(Dy) where p(DJ) = Y pepx p(D) for X €
{+,—,0} and p(D) for D € D is the probability of D normalized over D (i.e.
> pepP(D) =1).
Ezample 4. Let the computed leading diagnoses for dpi,, be D = {D;, D, D5}.
One query wrt. D is, e.g., ¢1 := {ActiveResearcher C Author}. Because,
(a) adding ¢; to P yields that the removal of D; or Dy from O no longer
breaks the unwanted entailment Employee(ann), i.e. D1, Dy are no longer min-
imal diagnoses, (b) moving ¢; to N means that D3 is not a minimal diagno-
sis anymore, as, to prevent the entailment of (the new negative test case) g1,
at least one of azxi, axs must be deleted. The resulting g-partition for ¢; is
thus <D3’1,D;1,D21> = ({D3},{D1,D2},0). Consequently, q; is a strong query
(D), = 0) and the estimated probability of ¢i’s positive (negative) classifi-
cation, based on the normalized diagnoses probabilities (p(D1),...,p(D3)) =
(0.5,0.42,0.08), is 0.08 (0.92). Note, e.g., g2 := {Author C Person}, having
the partition ({D1,D2},0,{Ds}), is not a query since no leading diagnoses
are invalidated after assigning g2 to P, i.e. a positive answer does not bring
along any useful information for diagnoses discrimination. Intuitively, this is
because g2 does not contribute to the violation of ny (in fact, the other “part”
Author © Employee of axs does so). a

Test-Driven Ontology Debugging. Formally, the (optimal) test-driven ontol-
ogy debugging problem (TOD) can be stated as follows:

Problem 1 ((Optimal) TOD). Given: DPI (O,B, P, N). Find: (Lowest-cost)
set of test cases P’ U N’ such that there is only one minimal diagnosis for
(0,B,PUP',NUN.

Ezample 5. Let the actual diagnosis be D3, i.e. azs is the (only) faulty axiom
in O (intuition: an author is not necessarily employed, but might be, e.g, a free-
lancer). Then, given dpi,, as an input, solutions to the TOD problem, yielding the
final diagnosis D3, are, e.g., P’ = 0, N’ = {{Jwrites. T C Employee}, { Author C
Employee}} or P = {{ActiveResearcher = Author}}, N’ = (). Measuring the
TOD cost by the number of test cases, the latter solution (cost: 1) is optimal, the
former (cost: 2) not. O
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Note, TOD is a symptom-driven approach to fault localization. That is, given
some discrepancies (symptom), such as inconsistency or unwanted entailments,
between the actual and the intended ontology, the goal is to (efficiently) collect
sufficient information to locate the faulty axioms (actual diagnosis) that ezplain
the observed problems. TOD must be distinguished from, but can nevertheless be
profitably combined with, other techniques, e.g. ones addressing ontology repair
[8,30] (how to correct the faulty axioms?), ontology revision [13] (find all faulty
axioms) or ontology enrichment [5] (find missing axioms; can help to detect
problems/symptoms).

Query Selection Measures (QSMs). The said query properties (1)—(3) char-
acterized by the g-partition are essentially what QSMs take into account to
quantitatively rate the query quality. Formally, a QSM is a function m : Q — R
that assigns a value m(q) to each query ¢ € Q. All QSMs are heuristics towards
Optimal TOD (Problem 1). That is, their goal is to minimize the expected cost
> - pp(D)cost(D) of locating the actual diagnosis D*. At this, cost(D) is usually
conceived of as the sum of individual query (answering) costs over all queries
required to unambiguously isolate D. For the purpose of this paper we assume
cost(D) represents the number of queries to isolate D (all queries assumed equally
costly).

Table 1. ([18, Table2]) QSM designators (column 1) and according functions m(q)
(column 2). Column 3 indicates whether the QSM is optimized by maximizing () or
minimizing (\,) the function m.

Key:
QSM m m(q) opt. 1): Dy min = arg minxe{Dqu_D;}(lX\)
ENT >ceqp,ny Pclass(q) = c)log, p(class(q) = ¢) 2): Dy pomin =
SPL ‘ IDf | - Dy | pY D, ifp(D;) < p(D])
“ " Zxe{pfn;) \D;f‘fj‘nq‘\ 082 p(D?:(LD 7 (])3; i:lsi(D;) <r(D;)
EMCb p(class(q) = P)|D;\ + p(class(q) = N)\Dqﬂ Va o —m ife >n
MPS P(Dgmin) if [Dg.min] = 1 Oelse 1 o ¥ Dan = {|1q3| e
BME [Dg,p,minl 2 A where ¢q := min{\D:H, |D, [} and n de-
RIO’ w + Dy 3 \ notes the minimal number of diagnoses the

selected query must eliminate [22]

3 The Evaluated Heuristics

In this section we briefly revisit and explain the QSMs — originally introduced
in other works — we use in our experiments. These include the “classical” fre-
quently used ones [11,27] and the newer ones proposed in [18,22] and discussed
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in-depth in [17]. Since we employ a query computation and selection method [21]
that guarantees to produce only (the more favorable, cf. [20, Sect. 2.4.1]) strong
queries, [18, Table 3] tells us that we have to deal with seven (non-equivalent)
QSMs in this case. We next illustrate the rough idea behind these heuristics,
listed in Table1l. Note, we also mention a random QSM which we used as a
baseline in our evaluations.

Information Gain ENT: [11,27] Chooses a query with the highest expected
information gain or, equivalently, with the lowest expected posterior entropy
wrt. the diagnoses set D. As derived in [11], ENT(g) is the better, the closer the
probabilities for positive and negative classification of ¢ are to 0.5 (cf. formula
in Table1).

Split-In-Half SPL: [12,27] Chooses a query g whose g-partition best splits
the diagnoses set D in half, i.e. where both [D{| and |D_ | are closest to 1D|.
Intuitively, an optimal ¢ wrt. SPL guarantees that a half of the (known) diagnoses
are eliminated by querying ¢’s classification.

Kullback-Leibler Divergence KL: [17,18,26] Chooses a query with largest
average disagreement between query-classification predictions of single diagnoses
D € D and the consensus (prediction) of all D € D, based on an information-
theoretic measure of the difference between two probability distributions [26].
As demonstrated in [17, Prop. 26], this QSM can be represented in terms of the
formula given in Table 1.

Expected Model Change EMCb: [17,18,26] Chooses a query for which the
expected number of invalidated diagnoses in D is maximized.

Most Probable Singleton MPS: [17,18] Chooses a query ¢ for which the
minimum-cardinality set among { D/, Dq_} is a singleton {D} where D has max-
imal probability. Intuitively, MPS seeks to eliminate, with a maximal probability,
the maximal possible number of |D| — 1 diagnoses in D.

Biased Maximal Elimination BME: [17,18] Chooses a query with a bias
(probability >0.5) towards one classification (P or N) such that this more likely
classification rules out an as high as possible number of diagnoses in D.

Risk Optimization RIO’: [17,22] Chooses a query with optimal information
gain (ENT-value) among those that, in the worst case, eliminate (at least) n <
%\D| diagnoses in D. At this, the parameter n is learned by reinforcement based
on the diagnoses elimination performance achieved so far during a TOD session.?

2 We consider the slightly modified version RIO’ of the original RIO [22], as suggested
in [18].
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Table 2. g-partitions for the queries ¢; := {az;} in Example 6.

a D D, p(DS)  p(D,)
{az1} {D1,D2,D3,D4,Ds} {Ds} 0.59 0.41
{az2} {Ds, D¢} {D1, D2, D3, Ds} 0.45 0.55
{azs} {D2,D3,D4,Ds} {D:,Ds} 0.95 0.05
{az4} {D1,D2,D3,Da} {Ds5, D¢} 0.55 0.45
{azs} {D1,D3,D4,Ds5,Ds } {D>} 0.67 0.33
{az6} {D1, D2, D4, D5, D¢} {Ds} 0.86 0.14
{az7} {D1, D2, D3} {D4,D5,D¢} 0.48 0.52

Random RND: Samples one element uniformly at random from the query
space Q.

Ezxample 6. To illustrate these different selection principles, let us consider a
DPI (cf. [17, Table1 + 2]) with O = {1,...,7} (where numbers 7 denote axioms

az;) which gives rise to the minimal diagnoses D and associated diagnoses prob-
abilities given by

D={D,...,Ds} ={[2,3],[2,5],[2,6],[2,7],[1,4, 7], [3,4, 7]}
{p(D1),....p(Dg)} = {0.01,0.33,0.14,0.07, 0.41,0.04}

Let, for simplicity, the query space Q consist (only) of all single axiom sets
qi := {ax;} for ax; € O. The g-partitions of these queries are shown in Table 2.
Now, the query choice made by the discussed QSMs in this case is as given in
Table 3. O

Table 3. Query choice made by the different QSMs in Example 6.
QSM best query  explanation

ENT: qr p(D;) and p(D,_) are closest to 0.5 over all queries g;

SPL: qr |Dq+7\ and [D_| are equal to % =3

KL: q3 KL(g3) = 1.48 is maximal over all queries g;

EMCb: q7 the expected number of eliminated diagnoses is 3 (and lower for all other queries g;)
MPS: @ ID,, | =[{Ds}| = 1and p(Ds) = 0.41 > 0.33(cf. g5) > 0.14(cf. o)

BME: qr BME(g7) = 3 is maximal over all queries g;

RIO’ q2 Or q4 these are the queries with best ENT-value among all queries (g2, ¢3, g4) which eliminate

(withn = 2): n diagnoses in D in the worst case
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4 Experimental Settings

The Dataset. Table4 depicts the (part of the overall) dataset investigated in
the so-far® finished experiments. The tested ontologies U,M,T,E are inconsistent
real-world cases; these were also examined in [8,27]. The DPI dpi; we extracted
from O; was (0;,0,0,0) (j = 1,...,4), i.e. the background B, positive (P)
and negative (N) test cases were (initially) empty. Moreover, Table4 shows the
diagnostic structure of the used debugging problems in terms of the ontology
size, the number and size of minimal diagnoses, and the logical expressivity
which influences the reasoning complexity.

The Factors. To test the behavior and robustness of the discussed QSMs under
various scenarios, we — in addition to the DPI — varied the following factors in
our experiments:

(F1) the type of probability distribution (concerning faults wrt. logical symbols)
(non-biased, moderately biased, strongly biased),

(F2) 3 different random choices of assigned probabilities for each distribution
type (to average out potential peculiarities of a specific probability assign-
ment),

(F3) the plausibility of the probabilities (simulated by plausible, random,
implausible oracle behavior),

(F4) the amount of information available for query selection (number of leading
diagnoses Id € {6,10,14}), and

(F5) the actual diagnosis D* (i.e. the target solution of the TOD sessions).

Ad (F1): Let S be the set of all logical symbols (cf. Sect.2) occurring over all
az € O; and Ey(z) = Ae™*% the probability density function of the exponential
distribution. Three probability distribution types were modeled, by assigning to
each symbol in S'...

— all-equal (EQ): ...a fixed equal (random) value r € [0, 1]

— moderately biased (MOD): ...the probability Ej(z;) for a random z; € [i —
1,i+ 1) where i is randomly chosen (without replacement) from {1,...,|S|}
and A := 0.5 (same A as used in [27])

- itrongly biased (STR): ... the probability E(x;) for a random z; € [i— 3,1+

5) where i is randomly chosen (without replacement) from {1,...,[S|} and

A:=1.75 (same X as used in [27])

3 Note, due to the comprehensiveness (large number of factor combinations tested) of
our evaluations, experiments are very time-consuming (up to several weeks for one
ontology).
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Table 4. Dataset used in the experiments.

j KBO, |O;] expressivity ¥ #D/min/max 2 Key:
1): Description Logic expressivity [1, p. 525ff.].
iversi 3) (D)
1 Ur‘m’/ersnyA(U) 3 50 SOIN 90/3/4 2): #D, min, max denote the number, the min. and
2 MiniTambis (M) 5 173 ALCN b 48/3/3 max. size of minimal diagnoses for the DPI.
3 Transportation (T) ) 1300 ALCHP) 1782/6/9  3). Sufficiently complex cases (#D > 40) used in
4 Economy (E)?¥ 1781  ALCHP) 864/4/8 [27].

Intuitively, one can view both MOD and STR to (1) precompute a sequence
p1 > -+ > p|g| of values in (0, 1) where, on average, the ratio between each value
p; and the next smaller one p;11 is p;/pi+1 = e*, i.e. = 1.6 for MOD and ~ 5.8
for STR, and (2) assign to each s € S a randomly chosen probability p; from
this sequence without replacement. Hence, if sorted from large to small, the fault
probabilities assigned to logical symbols occurring in O; are completely uniform
for EQ (no bias), moderately descending for MOD (moderate bias) and steeply
descending for STR (strong bias).

Ezample 7. Returning to Example 3, note the strong bias (STR) in the fault
probabilities of the symbols 3,M, C, i.e. each probability is five times as high as
the next one. a

For instance, EQ could model a situation where a novice knowledge engineer
or domain expert obtains a faulty ontology, and there is no relevant information
about their faults at hand. On the other hand, MOD can be interpreted to simu-
late a moderate tendency in the fault information, i.e. a non-negligible number of
symbols have a non-negligible fault probability. For example, an ontology author
might extract from logs of her past debugging sessions that she were misusing a
range of different symbols, but some more often than others. STR reflects cases
where the differences in fault likeliness are substantial, i.e. very few symbols
have a non-negligible probability of being faulty, whereas most of the symbols
are practically always correct. An example is a knowledge engineer that, in the
past, has made almost only errors regarding quantifiers.

Ad (F3): Let g be a query with p(class(q) = P) = = (cf. Sect. 2). The plausibility
of the given probabilistic information was modeled by different oracle functions
class, simulating different strategies of query classification:

— plausible: classify ¢ to P with probability x
— random: classify g to P with probability 0.5
— implausible: classify q to P with probability 1 — z

Recall (Sect.2), p(class(q) = N) = 1 — p(class(¢) = P). The idea is that, given
(un)reasonable fault information, the estimated query classification probabilities
should be good (bad) approximations of the real likeliness of getting a respective
outcome. The plausible scenario reflects the case where given probabilities are
useful and provide a rational bias, e.g. when different (reliable) sources of fault
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information are integrated or the user knows their strengths and weaknesses well.
The random strategy aims at estimating the average number of queries needed
to pin down D*, assuming we cannot make useful predictions about the oracle.
The implausible strategy represents a misleading fault model, where probabilities
turn out to be opposite to what the given information suggests, e.g., when using
subjective estimates or historical data that do not apply to the present scenario.
As QSMs utilize fault information for query suggestion, we want to assess their
robustness under changing fault information quality [22,27].

Ezample 8. Intuitively, given the actual diagnosis D3 in our running example
(Examples 1-5) and the diagnoses probability distribution in Example 3 (assign-
ing D only a value of 0.03), the fault information p(.) would fall into the category
“implausible”. a

Ad (F5): We specified the target solution D* in the different TOD sessions
implicitly through the oracle answer strategies, see (F3). That is, each TOD
session continued until positive (P’) and negative (N’) test cases were collected
such that there was just a single minimal diagnosis for the DPI (O;,0, P’, N')
(resulting from the initial DPI by adding P’ and N’ cf. Problem 1). This implicit
definition of D* has the advantage of higher generality and closeness to reality
over a prior explicit fixation of some D* among the minimal diagnoses for the
initial DPI dpig = (0;,0,0,0) [27]. Because, in the latter case only one specific
class of TOD problems is considered, namely those where the actual solution D*
is already a minimal diagnosis for dpi?. In practice, this assumption might often

not hold. The reason is that the DPI changes throughout TOD, i.e. dpi; becomes

dpi;-Jrl after the incorporation of a new test case; this transformation generally
gives rise to “new” diagnoses (minimal diagnoses for dpié“) that are proper

supersets of ruled out “original” ones (minimal diagnoses for dpi; inconsistent
with the added test case) [15,16].

The Tests. For each of the DPIs dpi,, ..., dpiy, for each of the 8 QSMs expli-
cated in Sect. 3, and for each of the 3% factor level combinations of factors (F1)
— (F4) we performed 20 TOD sessions, adopting the algorithms for query com-
putation presented in [20,21]. Factor (F5) was implicitly varied in these 20 runs
through the randomized oracle behavior (F3), yielding in most cases a differ-
ent D*. When some D* happened to occur repeatedly in the 20 sessions, we
discarded such duplicate runs.*

* To reproduce the experiments or access logs see http://isbi.aau.at/ontodebug/
evaluation.
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5 Experimental Results

5.1 Representation

The obtained experimental results are shown by Figs.1, 2, 3 and 4 which
graph the number of queries required by the tested QSMs until D* could be
isolated. At this, the green/yellow/red bars depict the situation of a plausi-
bly /randomly/implausibly answering oracle (F3). Each bar represents an aver-
age over (up to) 20 TOD sessions (F5) and 3 random choices of probabilities
(F2). Each figure summarizes the results for one ontology in Table4; the plots
for the U and T cases are more comprehensive, including all combinations of
factor levels for (F1), (F3) and (F4), whereas the depictions of M and E are
kept shorter due to space restrictions, showing only the ld = 10 case of (F4)
for all settings of (F1) and (F3). Along the x-axes of the figures we have the 8
different QSMs, grouped by manifestations of factor (F4) in Figs.1 and 3, and
by instantiations of factor (F1) in Figs.2 and 4.

5.2 Observations

Gained insights from the study of the experimental data are discussed next.

Is there a Clear Winner? This question can be answered negatively pretty
clearly. For instance, have a look at the MOD, Id = 14 case in Fig. 1. Here we see
that MPS performs really good compared to all other QSMs for all oracle types.
In fact, it is better than all others in the plausible and random configurations,
and loses just narrowly against RND given implausible answers. However, if we
draw our attention to, e.g., the EQ case in the same figure, we recognize that
MPS comes off significantly worse than other heuristics under a plausible oracle
behavior. Similar argumentations apply for all other potential winner QSMs.
For ld = 10, Table5, which lists the best QSMs in all the different settings we
investigated, confirms that there is no single best QSM.

Sensitivity to Fault Information. That there is no QSM which always out-
matches all others is not a great surprise, as we evaluate under various types of
given probabilistic information p(.) and the different measures exploit p(.) to a
different extent when selecting a query. As a result, we can observe probability-
independent QSMs such as SPL outperform (lose against) strongly probability-
reliant ones such as ENT in situations where the fault information is wrongly
(reasonably) biased, e.g., see the implausible (plausible) cases for MOD and STR
in Figs.1 and 3. So, e.g., SPL can never benefit from high-quality meta infor-
mation about faults, but cannot effect a significant overhead given low-quality
probabilities either. The behavior of, e.g., ENT, is diametrically opposite. To
verify this, check the difference between the green and red bars for both SPL
and ENT for MOD and STR; for SPL they are hardly different at all, whereas
for ENT they diverge rapidly as we raise the bias (EQ — MOD — STR) in the
underlying distribution. In contrast to these extreme cases, there is, e.g., RIO’
which incorporates both the diagnoses elimination rate and fault probabilities
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in its calculations. The consequence is a behavior that mostly lies in between
the performances of SPL and ENT. Based on the data in the figures, which is
quite consistent in this regard, the following qualitative ordering from most to
least probability-sensitive can be imposed on QSMs:

(EMCb, BME, ENT, KL, MPS, RIO’, RND, SPL) (1)

Impact of the DPI/Diagnostic Structure. Trivially, the overall number
of (minimal) diagnoses to discriminate between impacts the average number of
queries required. Thus, for M (48 minimal diagnoses initially), U (90), E (864)
and T (1782), respectively, the min/avg/max number of queries over all QSMs
and sessions is (rounded) 3/7/18, 4/8/19, 6/10/19 and 4/12/29. The difference
between M and E, for instance, can be quite well seen by comparing the length
of the bars in Figs. 2 and 4 which are placed side by side. On the contrary and as
one would expect, there are no indications of the ontology size |O;| (3rd column,
Table4) having a remarkable influence on QSM performance (as the ontology
size has generally no bearing on the number of minimal diagnoses). The rea-
soning complexity (4th column, Table4), in contrast, albeit not relevant to the
QSM performance, is known to affect the query computation time [20]. The
latter was quite constant over all runs and QSMs and amounted to maximally
0.18/0.14/0.18/0.13 sec (per query) for the cases M/U/E/T. The relative behav-
ior of the QSMs under varying DPI (but otherwise same conditions) appears to
be quite stable. To see this, compare, e.g., the EQ, the MOD and the STR cases
between Figs. 1 and 3, or Figs. 2 and 4. From the pragmatic point of view, if this
consistency of QSM performances irrespective of the particular DPI generalizes
(as needs to be verified using a larger dataset), a nice implication thereof would
be the possibility to recommend (against) QSMs independently of (the structure
of) the problem at hand.

Impact of the Leading Diagnoses. As Figs.1 and 3 indicate quite well,
and numbers confirm, there is no significant average difference in the numbers
of queries for varying ld € {6,10,14}. This is in line with the findings of [2].
What we can realize, though, is an exacerbation of the discrepancy between the
plausible (green bars) and implausible (red bars) cases when Id increases. The
random case (yellow bars), on the other hand, is mostly stable. The reason for
this intensification of the effect of good or bad bias with larger diagnoses samples
is that more extreme decisions might be made in this case. A simple illustration
of this is to compare a “risky” [22] query (one that might invalidate very few
diagnoses) wrt. a sample of 3 and 100 diagnoses; in the former case, this would
be one eliminating either 1 or 2, in the latter one ruling out either 1 or 99 known
hypotheses. We see that the former query is similar to a“risk-less” split-in-half
choice, while the latter is far off being that conservative. A practical consequence
of this is that it might make sense to try generating a higher number of diagnoses
per iteration (if feasible in reasonable time) if a probability-based measure, e.g.
EMCb or ENT, is used and the trust in the given (biased) fault information
is high (e.g. if reliable historical data is available). Verify this by considering
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Table 5. Shows which QSM(s) exhibited best performance in the various scenarios
in (F1) x (F3) for all DPIs (1st column) in Table4 and the setting Id = 10 of (F4).
The QSM(s) with lowest # of queries (per scenario) are underlined. All stated non-
underlined QSMs lay within 3% of the best QSM wrt. # of queries. The number below
the QSM(s) gives the possible overhead (#quorstosn(s),s/Fqvestasm(s),s — 1) * 100 in
% incurred by using a non-optimal QSM in a scenario S, where #qx, s refers to the #
of required queries of QSM X in scenario S, and bestQSM (S) / worstQSM (S) denote
the best/worst QSM in scenario S. The colors indicate criticality of QSM choice based
on the overhead, from lowest = green to highest = red.

PLAUSIBLE RANDOM IMPLAUSIBLE
EQ MOD STR EQ MOD STR EQ MOD STR
KL RIO”. ENT, BME MPS, ENT MPS MPS MPS MPS  RND RND
M e 176 144 46 47 48 s 131 7
U BME BME MPS, BME MPS MPS MPS RND  RND  RND. KL
59 129 151 2 50 53 67 | 149 220
.  BME ENT EMCb, RIO’, BME ENT,MPS MPS ENT,RIO’, BME, MPS MPS KL RND
64 93 9 30 33 37 12 191 9
EMCb  EMCb.RIO’,ENT  ENT. BME, EMCb, MPS MPS MPS MPS MPS  RND RND
T & 125 174 45 40 38 93 102 123

Table 6. Number of times each QSM is (among) the best in Table 5.
ENT SPL KL EMCb MPS BME RIO’ RND

among best 7 0 3 4 18 8 4 8
ALL the best 4 0 2 4 16 4 2 8
among best 5 0 1 4 3 7 3 0
PLAUSIBLE the best 2 0 1 4 3 4 1 0

EMCb and ENT in the MOD and STR cases for Id € {6,14} in Figs.1 and 3.
By contrast, when adopting a probability-insensitive QSM, say SPL, one seems
to be mostly better off when relying on a smaller [d. That is, when the meta
information is vague, a good option is to rely on a “cautious” [22] measure such
as SPL and a small diagnoses sample. Note, the latter is doubly beneficial as it
also decreases computation times.

Importance of Using a Suitable QSM. To quantify the importance of QSM
choice we compute the degree of criticality of choosing the right QSM in a sce-
nario as the overhead in oracle cost (number of queries) when employing the
worst instead of the best QSM in this scenario, see (the caption of) Table5. At
this, a scenario refers to one factor level combination in (F1) x (F3). We learn
from Table 5 that, even in the least critical cases (green-colored), we might expe-
rience a worst-case overhead in oracle effort of at least 30% when opting for the
wrong QSM. This overhead is drastically higher in other cases and reaches figures
of over 250%. That is, more than triple the effort might be necessary to locate
a fault under an inopportune choice of QSM heuristic. However, we emphasize
that even a 30% overhead must be considered serious given that usually oracle
inquiries are very costly. Hence, appropriate QSM selection is an important issue
to be addressed in all scenarios.
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As a predictor of the criticality, the scenario (columns in Table 5) appears to
be a reasonable candidate, as the colors already suggest. In fact, the coefficients
of variation, one computed for each column in Table5, are fairly low, ranging
from 3% to 26% (except for the last column with 47%). So, the negative effect
of a bad QSM choice is similar in equal scenarios, and does not seem to be
dependent on the DPI.

Which QSM to use in which Scenario? To approach this question, we have,
for all four DPIs, analyzed all the nine settings in (F1) x (F3) wrt. the optimal
choice of a QSM. The result is presented in Table5. We now discuss various
insights from this analysis.

Owerall Picture. SPL is never a (nearly) optimal option. This is quite natural
because, intuitively, going for no “risk” at all means at the same time excluding
the chance to perform extraordinarily well. All other QSMs appear multiple
times among those QSMs which are <3% off the observed optimal number of
queries. Table6 (rows 1 + 2) lists how often each QSM is (among) the best.
It shows that MPS is close to the optimum in a half of the cases, significantly
more often than all other heuristics. However, blindly deciding for MPS is not
a rational way to go. Instead, one must consider the numbers at a more fine-
grained level, distinguishing between the quality of the given fault distribution
(blocks in Table5), to get a clearer and more informative picture.

The Implausible Cases: Here RND distinctly prevails. It occurs in all but four
optimal QSM sets, and is often much better than other measures, e.g., see the
STR setting in Fig.2. At first sight, it might appear counterintuitive that a
random selection outweighs all others. One explanation is simply that the ran-
domness prevents RND from getting misled by the (wrong) fault information.
Remarkable is, however, that in quasi all cases RND significantly outperforms
SPL, which acts independently of the given probabilities as well. The conclusion
from this is that, whenever the prior distribution is wrongly biased, introducing
randomness into the query selection procedure saves oracle effort.

The Random Cases: These cases are strongly dominated by MPS which occurs in
each set of best QSMs per scenario. Therefore, whenever the given fault informa-
tion does neither manifest a tendency towards nor against the actual diagnosis,
MPS is the proper heuristic. Moreover, the benefit of using MPS seems to increase
the more leading diagnoses are available for query selection (see Figs.1 and 3).
Since MPS, in attempt to invalidate a mazimal number of diagnoses, suggests
very “risky” queries (see above), a possible explanation for this is that acting
on a larger diagnoses sample allows to guarantee a higher risk than when rely-
ing on a smaller sample (cf. discussion above). However, as all Figs. 1, 2, 3 and
4 clearly reveal, MPS is definitely the wrong choice in any situation where we
have a plausible, but unbiased probability distribution. In such cases it manifests
sometimes significantly worse results than other heuristics do. But, as soon as a
bias is given, the performance of MPS gets really good.
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The Plausible Cases: Throughout these cases we have the highest variation con-
cerning the optimal QSM. Actually, all QSMs except for RND and SPL do appear
as winners in certain cases. The distribution of the number of appearances as
(or among) the best QSM(s) over all QSMs is displayed by Table6 (rows 3 + 4).
That, e.g., ENT is rather good in these cases and RND is no good choice (see also
Figs. 1, 2, 3 and 4) is in agreement with the findings of [27]. However, we realize
that BME is (among) the best QSMs more often than ENT. Comparing only these
two, we find that BME outdoes ENT 7 times, ENT wins against BME 4 times,
and they are equally good once. A reason for the strength of BME could be the
fact that it will in most cases achieve only a minor bias towards one query out-
come, as the maximization of the diagnoses elimination rate requires an as small
as possible number of diagnoses with a probability sum >0.5. Thus, there is on
the one hand a bias increasing the expected diagnoses invalidation rate, and on
the other hand a near 50-50 outcome distribution implying a good entropy value.
Unsurprisingly, if we sort the QSMs from most to least times being (among) the
best based on Table6 (rows 3 + 4), the resulting order coincides quite well with
Eq. (1). In other words, in the plausible scenarios, probability-sensitive heuristics
perform best.

Towards New QSMs/Meta-Heuristics. Exploiting the discussed results, one
could endeavor to devise new QSMs that are superior to the investigated ones.
For instance, in the implausible cases, only RND, MPS and KL occur as best
QSMs. Thus, an optimal heuristic for these cases should likely adopt or unify
selection principles of these three QSMs. One idea could be, e.g., to sample a few
queries using RND and then choose the best one among them using (a weighted
combination of) MPS and/or KL. Generally, one could use a meta heuristic
that resorts to an appropriately (possibly dynamically re-)weighted sum of the
QSM-functions (Table 1, 2nd column). Also, a QSM selecting queries based on a
majority voting of multiple heuristics is thinkable, e.g., in Example 6 the query
selected by such a QSM would be g7 (cf. Table 3).

6 Conclusions and Future Work

Results of extensive evaluations on both classical and recently suggested query
selection measures (QSMs) for test-driven ontology debugging (TOD) are pre-
sented. Main findings are: Using an appropriate QSM is essential, as otherwise
TOD cost overheads of over 250% are possible. The one and only best QSM does
not exist (or has not yet been found). Besides the size of the solution space of
diagnoses, main factors influencing TOD cost are the bias in and the quality of
the fault probability distribution, but not the ontology (debugging problem) as
such or the size of the diagnoses sample used for query selection. Different QSMs
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prevail in the various probability distribution scenarios. Interestingly, the quite
popular and frequently adopted entropy measure only manifested good (albeit
not best) behavior in a single set of scenarios.

Future work topics include in-depth analyses of the (full) results and the
design of new QSMs, e.g. meta-heuristics, based on the lessons learned. More-
over, machine learning techniques could be adopted to recommend optimal QSMs
based on a classification of a debugging scenario wrt. the QSM-relevant factors
we found. And, we plan to integrate the investigated QSMs into our Protégé
ontology debugging plug-in [24].% From the application point of view — since the
discussed techniques are not only applicable to ontologies, but to any monotonic
knowledge representation formalism [16] — we intend to explore other use cases
of the method. One example could be the adoption in the context of knowledge-
based recommender systems [4] where model-based diagnosis is applied for relax-
ing user selection filters for avoiding empty result sets. Our gained insights could
be profitably exploitable for guiding the relaxation process.
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