
StaticHS: A Variant of Reiter’s Hitting Set Tree
for Efficient Sequential Diagnosis

Patrick Rodler,1∗ Manuel Herold2

1Alpen-Adria Universität Klagenfurt
e-mail: patrick.rodler@aau.at

2Alpen-Adria Universität Klagenfurt
e-mail: m1herold@edu.aau.at

Abstract

Sequential Diagnosis methods aim at suggesting a minimal-
cost sequence of measurements to identify the root cause
of a system failure among the possible fault explanations,
called diagnoses. Hitting set algorithms are often used by such
methods to precompute a set of diagnoses serving as a decision
basis for iterative measurement selection.
We show that there are two natural interpretations of the se-
quential diagnosis problem and argue that (1) existing methods
consider only the more general definition of the problem and
that (2) tackling the more specific problem might suffice under
assumptions commonly met in practice.
Thus, we present StaticHS, a novel variant of Reiter’s hitting
set tree usable for solving both formulations of the sequential
diagnosis problem. Like Reiter’s algorithm, StaticHS is logics-
and reasoner-independent and thus generally applicable to var-
ious (diagnosis) domains. Theoretical and empirical analyses
show the significant superiority of StaticHS to an application
of Reiter’s tree in terms of measurement costs when solving
both types of sequential diagnosis problems.

1 Introduction
Sequential Diagnosis. When systems such as software, hard-
ware, physical devices or knowledge bases do not exhibit
required or desired properties, one important and often time-
consuming task towards their repair is the localization of
the actual fault. Concretely, the goal is to identify a diagno-
sis, i.e. a set of system components, e.g. lines of code in a
program, whose faultiness provides an explanation for the
wrong system behavior. Since there are usually multiple, in
the worst case exponentially many, diagnoses for the initially
present observations of the system behavior, various sequen-
tial diagnosis techniques have been proposed for diagnoses
discrimination. The latter try to suggest a minimal-length
or least-cost sequence of system measurements that help to
narrow down the diagnoses space to a single or a highly
probable diagnosis. To make a well-informed decision for
each selection of the next measurement, sequential diagnosis
algorithms are usually realized in an iterative fashion. This
implies an update of the algorithm’s internal state whenever

∗This work was supported by the Carinthian Science Fund
(KWF), contract KWF-3520/26767/38701.
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a new measurement outcome becomes known. More pre-
cisely, before each measurement selection, such sequential
approaches update the set of (known) diagnoses, called lead-
ing diagnoses, and possibly other relevant information such
as their probabilities. These diagnoses then act as a decision
guidance in the selection process. Note, as the computation
cost of all diagnoses is generally prohibitive (Bylander et
al. 1991), sequential diagnosis approaches usually (must) re-
strict their focus to leading diagnoses that are (subsets of the)
minimal diagnoses. A minimal diagnosis is an irreducible
set of conjectured faulty components consistent with all the
available information about the system.
Existing Diagnoses Computation Methods. Leading diag-
noses can be computed by various approaches, distin-
guishable along (at least) three axes. First, there are (di-
rect) algorithms which compute diagnoses in a divide-and-
conquer fashion (Shchekotykhin et al. 2014) or by com-
piling the problem to a target language (Darwiche 2001;
Torasso and Torta 2006; Metodi et al. 2014) such as SAT,
and (indirect) ones which construct diagnoses as hitting
sets of conflicts (Reiter 1987; Greiner, Smith, and Wilker-
son 1989). A conflict is a set of system components which
cannot all be fault-free given the current system knowl-
edge. Along the second axis we have (glass-box) (Parsia,
Sirin, and Kalyanpur 2005) methods that tightly intermesh
diagnosis computation and logical reasoning for higher effi-
ciency, e.g. by leveraging modifications of the solver (Kalyan-
pur 2006) or intelligent caching techniques (de Kleer 1986;
de Kleer and Williams 1987), and (black-box) approaches
that are independent of particular theorem provers and
can use them in a simple plug-in fashion (Reiter 1987;
Rodler 2015). Lastly, (stateful) algorithms maintain their
state, e.g. a (partial) search tree, for reuse in subsequent iter-
ations (de Kleer and Williams 1987; Siddiqi and Huang 2011;
Rodler 2015), while (stateless) ones act up to a discard-and-
rebuild principle (Shchekotykhin et al. 2012; 2014).
Views on the Sequential Diagnosis Problem. Regardless of
their properties in terms of the said features, a commonality
of existing algorithms is the sequential diagnosis problem
they address. Based on the nomenclature of (Rodler 2015,
Chap. 6) we term the latter Dynamic Sequential Diagnosis
(DynSD) problem: Given an input diagnosis problem instance
(DPI) – consisting of knowledge about the system, its compo-
nents, and the so-far made observations and measurements

The Eleventh International Symposium on Combinatorial Search
(SoCS 2018)

72

(Reiter 1987) – the goal is to extend this DPI by a set of new
measurements in a way that there is a single minimal diag-
nosis for the resulting new DPI. (The optimization version
would call for a minimal-cost set of measurements to solve
DynSD.) As a matter of fact, this means that the DPI is con-
stantly changing throughout the sequential process, each time
a new measurement is incorporated; and, more importantly,
the same holds for the solution space of minimal diagnoses
considered in each iteration. That is, in the first iteration a
set of leading minimal diagnoses is computed wrt. the input
DPI dpi0, in the second wrt. dpi1 resulting from the addition
of a new measurement m1 to dpi0, and so forth. If prop-
erly chosen, each measurement will rule out some diagnosis.
However, the solution space of minimal diagnoses for each
next DPI dpi j+1, denoted by sol(dpi j+1), will in general
not be a subset of sol(dpi j). Fig. 1 sketches the evolution of
sol(dpi j). In fact, each minimal diagnosis in sol(dpi j+1) is
either equal to or a proper superset of some minimal diag-
nosis in sol(dpi j) (Reiter 1987). In other words, any “new”
minimal diagnosis emerging throughout the sequential diag-
nosis process assumes faulty strictly more components than
some initial minimal diagnosis.

In many real-world applications, e.g. physical devices,
however, components are usually much more likely to be
nominal than at fault (at a certain point in time). Thus,
there is a high chance of the actual diagnosis D∗ (pinpoint-
ing the actually faulty components) being among the min-
imal diagnoses for the input DPI dpi0. For such systems,
one would only want to explore the initial solution space
sol(dpi0), and neglect all “new” solutions arising after DPI
transition(s). To this end, we suggest to solve the, as we
call it in accord with (Rodler 2015, Chap. 6), Static Se-
quential Diagnosis (StatSD) problem in such a situation:
Given an input DPI, the goal is to find a set of new mea-
surements such that all but one minimal diagnosis for the
input DPI is ruled out by the measurements. (Again, the
optimization version requires a minimal cost set of measure-
ments.) Note the difference between the DynSD and the
StatSD problem. In the latter the performed measurements
mi serve just as constraints to iteratively narrow the solution
space sol(dpi0) for the input DPI, i.e. sol(dpi0) ⊇ sol(dpi0
+{m1}) ⊇ · · · ⊇ sol(dpi0 + {m1, . . . ,mk}) = {D′}, as
illustrated by Fig. 1. In the former, in contrast, the measure-
ments aim at formulating a new DPI to be solved in each
iteration.

Example 1 We illustrate the difference between StatSD
and DynSD by an execution of a sequential diagnosis session
for both problems using a simple example. The single steps
of these sessions are shown by Tab. 1. The example involves a
DPI dpi0 including a system with five components c1, . . . , c5
which gives rise to two set-minimal conflicts, 〈c1, c4, c5〉 and
〈c2, c3, c5〉. The resulting solution space of minimal diag-
noses (minimal hitting sets (Reiter 1987) of the conflicts)
sol(dpi0) = {D1, . . . ,D5} = {[c1, c2], [c1, c3], [c2, c4],
[c3, c4], [c5]} =: D (cf. iteration 0 in Tab. 1). Suppose the
faulty components are c2 and c4 (and all others are OK), i.e.
the actual diagnosis D∗ = [c2, c4] = D3. Let us, for simplic-
ity, assume a measurement selection algorithm that suggests

Dynamic Sequential Diagnosis (DynSD)

Static Sequential Diagnosis (StatSD)

sol(dpi0) sol(dpi1)

sol(dpi0) sol(dpi0+{m1}) sol(dpi0+{m1,m2})

sol(dpi2)

Figure 1: Evolution of the addressed minimal diagnoses
search space for the StatSD and the DynSD problem.

tests of system components ci in order to discriminate be-
tween the given diagnoses. Let the measurement selection
strategy favor tests such that for each test outcome, i.e. nomi-
nal (ok(ci)) or faulty (nok(ci)), (approximately) half of the
diagnoses can be ruled out. Thence, the first proposed test
could involve, e.g., the inspection of component c4, as a pos-
itive outcome would eliminate two and a negative outcome
three solutions (see third and fourth column for iteration 1 in
Tab. 1). Measuring c4 would then evince that it is not work-
ing properly, leading to the recognition that 〈c4〉 is a conflict.
For dpi0’s minimal diagnoses this means thatD1,D2 andD5

are eliminated through the new constraint nok(c4) (StatSD).
However, there is also a “new” minimal diagnosis [c4, c5] for
dpi1, the DPI resulting from the extension of the measure-
ments set of dpi0 by nok(c4) (DynSD). Overall, the StatSD
problem is solved by two measurements, whereas the DynSD
problem requires three. In both cases the actual diagnosis D3

is finally revealed.

StaticHS. In this work we propose StaticHS, a hitting set
tree search method inspired by (Reiter 1987) that solves the
StatSD problem in a sound and complete manner. It is

indirect in order to enable a uniform-cost (min.-cardinality
or most-probable first) search for minimal diagnoses,

black-box in order to keep it as general as possible and
applicable to a large variety of systems, system modeling
languages and respective inference engines,

stateful for better efficiency by avoiding redundant compu-
tations through the storage of the so-far built hitting set
tree between each two diagnoses computation phases.

Efficiency and Generality. Given that the actual diagnosis
D∗ ∈ sol(dpi0), one decisive advantage of considering the
static problem rather than the dynamic one is the lower ex-
pected number of measurements, and hence the lower cost,
necessary to capture D∗. In fact, we will prove that, for any
sequence of measurements that solves DynSD, there is a
shorter or equally long sequence of measurements which
solves StatSD. If, on the contrary, D∗ /∈ sol(dpi0), one can
nevertheless focus on StatSD to compute an approximation
of the actual diagnosis without loss of generality. That is,

73

iteration i measurement location cj D−(ok(ci)) D−(nok(ci)) all measurements Mi C(dpii) sol(dpii) sol(dpi0+Mi)

0 - - - - 〈1, 4, 5〉, 〈2, 3, 5〉 D D

1 c4 [2, 4], [3, 4] [1, 2], [1, 3], [5] nok(c4) 〈4〉, 〈2, 3, 5〉 [2, 4], [3, 4], [4, 5] [2, 4], [3, 4]
2 c3 [3, 4] [2, 4], [4, 5] nok(c4), ok(c3) 〈4〉, 〈2, 5〉 [2, 4], [4, 5] [2, 4]⇒ X
3 c5 [4, 5] [2, 4] nok(c4), ok(c3), ok(c5) 〈4〉, 〈2〉 [2, 4]⇒ X

Table 1: Sequential diagnosis session for Example 1. Diagnoses are written in squared brackets, conflicts in angled brackets,
numbers k in diagnoses/conflicts stand for components ck, D−(m) refers to the minimal diagnoses eliminated by the measurement
m, C(dpi) denotes the set-minimal conflicts for dpi , X indicates the end of the diagnosis session (= solution for DynSD (column
7) and StatSD (column 8) found, respectively).

after solving the StatSD problem using k measurements with
the final result D′, one can continue the sequential diagnosis
session until a solution for DynSD is found. To this end, the
targeted DPI dpi0 can be simply replaced by (the current)
dpik. This means now addressing the StatSD problem with
the changed solution space sol(dpik), with the guarantee
that the actual diagnosis D∗ is still (a superset of) an element
of this solution space.1 Indeed, multiple StatSD problems can
be solved in sequence while preserving completeness wrt.D∗.
It is at that immaterial when the DPI-context switches take
place. Actually, it might sometimes make sense to start over
considering a new DPI before StatSD for the currently tar-
geted DPI has been solved, e.g., if some search data structure
would otherwise consume too much memory.

Example 2 Returning to Example 1 (cf. Tab. 1), one could,
after iteration 2, when StatSD is already solved (with final
diagnosis D3 = [c2, c4]), switch to the current DPI dpi2
(i.e. the DPI resulting from the original dpi0 by adding mea-
surements nok(c4), ok(c3)) and restart solving StatSD using
dpi2 as an input. The result would be the recognition that
there is only a single minimal diagnosis (D3) for dpi2. This
proves that D3 is the final diagnosis for DynSD as well.

Note, even if, e.g., the actual diagnosis D∗ = [c4, c5]
(which is not a minimal diagnosis for dpi0), it would be
correctly identified in the same manner. The number of mea-
surements (3) for solving StatSD and DynSD would in this
case be equal, i.e. nok(c4), ok(c3) and nok(c5).

Parameterized StaticHS. To account for such DPI changes,
StaticHS can be parameterized by some strategy s that gov-
erns when DPI-context switches must take place, with s
potentially depending on dynamic (performance) conditions
such as memory consumption or diagnoses computation time.
On the one extreme, when s tells to switch DPIs in each itera-
tion, then StaticHS behaves like an iterative (re)construction
and deletion of Reiter’s HS-Tree between each two consec-
utive measurements and DynSD is solved. On the other ex-
treme, when s dictates no DPI transitions at all, then StaticHS
resembles an iterative construction of Reiter’s HS-Tree for the
input DPI and StatSD is considered. An optimal parametriza-
tion would allow to profit from the benefits of both ex-
tremes, the lower expected measurement cost associated with
StatSD and the completeness (wrt. solution diagnoses not
in sol(dpi0)) when tackling DynSD. Thus, equipped with

1In general, the single finally remaining minimal diagnosis after
solving DynSD is equal to or a subset of the actual diagnosis D∗,
depending on the (information given by the) taken measurements.

such parameter s, StaticHS represents a generalization of
the application of Reiter’s HS-Tree to sequential diagnosis,
serving to solve both StatSD and DynSD.
Organization. Sec. 2 provides technical basics. Sec. 3 de-
scribes and exemplifies StaticHS. In Sec. 4 we discuss and
prove various properties of StaticHS including its soundness,
completeness, generality and its expected cost savings over al-
gorithms tackling DynSD, followed by a report on empirical
evaluation results in Sec. 5. We conclude in Sec. 6.

2 Preliminaries
We briefly describe basic technical concepts used in this
work, based on the framework of (Shchekotykhin et al. 2012;
Rodler 2015) which is slightly more general (Rodler and
Schekotihin 2018) than Reiter’s theory (Reiter 1987).
Diagnosis Problem Instance (DPI). A diagnosis problem is
characterized by a system description and measurements:
System Description: We assume that the diagnosed system,
consisting of a set of components {c1, . . . , ck}, is described
by a finite set of logical sentences K ∪ B, where K (re-
tractable knowledge) characterizes the behavior of the sys-
tem components, and B (correct background knowledge)
comprises any additional available system knowledge and
system observations. More precisely, there is a one-to-one
relationship between sentences ax i ∈ K and components
ci, where ax i describes the nominal behavior of ci (weak
fault model). E.g., if ci is an AND-gate in a circuit, then
ax i := out(ci) = and(in1(ci), in2(ci)); B in this example
might encompass sentences stating, e.g., which components
are connected by wires, or observed outputs of the circuit.
The inclusion of a sentence ax i in K corresponds to the as-
sumption that ci is healthy.
Measurements: Evidence about the system behavior is cap-
tured by sets of positive (P) and negative (N) measurements
(Reiter 1987; de Kleer and Williams 1987; Felfernig et al.
2004). Each measurement is a logical sentence; positive ones
p ∈ P must be true and negative ones n ∈ N must not be
true. The former can be, e.g., system observations, probes or
required system properties. The latter model properties that
must not hold for the system.
We call 〈K,B,P ,N 〉 a diagnosis problem instance (DPI).
Diagnoses. Given that the system description along with
the positive measurements (under the assumption K that all
components are healthy) is inconsistent, i.e. K∪B∪P |= ⊥,
or some negative measurement is entailed, i.e.K∪B∪P |= n
for some n ∈ N , some component healthiness assumption(s),
i.e. some sentences inK, must be retracted. We call such a set

74

of sentences D ⊆ K a diagnosis for the DPI 〈K,B,P ,N 〉 iff
(K \D)∪B ∪P 6|= x for all x ∈ N ∪ {⊥}. We say that D is
a minimal diagnosis for dpi iff there is no diagnosis D′ ⊂ D
for dpi . The set of minimal diagnoses is representative of all
diagnoses (under the weak fault model (de Kleer, Mackworth,
and Reiter 1992)), i.e. any superset of a minimal diagnosis is
a diagnosis. Therefore, diagnosis approaches usually restrict
their focus to only minimal diagnoses. The set of all minimal
diagnoses for a DPI dpi is denoted by sol(dpi); and the
set of all minimal diagnoses in sol(dpi) consistent with all
positive (P ′) and negative (N ′) measurements is referred to
as sol(dpi + P ′ +N ′).
Conflicts. Useful for the computation of minimal diagnoses
is the concept of a conflict (de Kleer and Williams 1987;
Reiter 1987), a set of healthiness assumptions for components
ci that cannot all hold given the current knowledge. That is,
C ⊆ K is a conflict for 〈K,B,P ,N 〉 iff C ∪ B ∪ P |= x for
some x ∈ N ∪ {⊥}. We call C a minimal conflict for dpi iff
there is no conflict C′ ⊂ C for dpi . A (minimal) diagnosis
for dpi is then a (minimal) hitting set of all conflicts for dpi
(Reiter 1987). X is a hitting set of a collection of sets S iff
X ⊆

⋃
Si∈S Si and X ∩ Si 6= ∅ for all Si ∈ S.

Sequential Diagnosis Problems. We now define the prob-
lems discussed in Sec. 1 in a more formal fashion:

Problem 1 ((Opt)DynSD). Given: A DPI 〈K,B,P ,N 〉.
Find: A (minimal-cost) set of measurements P ′ ∪ N ′ such
that |sol(〈K,B,P ∪ P ′,N ∪N ′〉)| = 1.

Problem 2 ((Opt)StatSD). Given: A DPI 〈K,B,P ,N 〉.
Find: A (minimal-cost) set of measurements P ′ ∪ N ′ such
that |sol(〈K,B,P ,N 〉+ P ′ +N ′)| = 1.

A minimal-cost set of measurements P ′ ∪N ′ minimizes∑
m∈P ′∪N ′ cost(m). In this paper we assume cost(m) = 1

for all measurements m, i.e. |P ′ ∪N ′| should be minimized.
Meaningful measurement selection must, as a least re-

quirement, suggest discriminating measurements, i.e. at
least two diagnoses must predict different outcomes. To
guarantee this property and verify it in advance, a sample
of (minimal) diagnoses, the leading diagnoses, is usually
taken as a basis (de Kleer and Williams 1987; Feldman,
Provan, and van Gemund 2010; Shchekotykhin et al. 2012;
Rodler 2015). In fact, it has been proven in (Rodler 2015)
that, for each set of minimal diagnoses including two or more
elements, there is a measurement to discriminate between the
diagnoses in the set.2 This implies both the existence of a set
of measurements to solve StatSD and DynSD.

One efficient sequential diagnosis method that guaran-
tees to deliver a solution for both problems was presented
in (Rodler, Schmid, and Schekotihin 2018). Moreover, at-
tempting to approach a solution to the optimization problems
OptStatSD and OptDynSD, the leading diagnoses can be
leveraged to compute more sophisticated quality properties
of measurements, such as their information gain (de Kleer
and Williams 1987), their ability to equally separate solu-
tions (Moret 1982; Shchekotykhin et al. 2012), a dynamic
combination thereof (Rodler et al. 2013), or their goodness
wrt. active learning criteria (Rodler 2018). All these metrics

2Note, this holds if all system components are observable.

Algorithm 1 Sequential Diagnosis
Input: DPI dpi0 := 〈K,B,P,N 〉R , probability measure p (to compute diag-

noses probabilities), number ld of minimal diagnoses to be computed per itera-
tion, heuristic heur for measurement selection

Output: {D}, whereD is the final diagnosis after solving StatSD (Probl. 2)
1: P ′ ← ∅,N ′ ← ∅ . performed measurements
2: D← ∅, state← 〈[∅], ∅, ∅〉 . variables describing state of StaticHS
3: while true do
4: 〈D, state〉 ← STATICHS(dpi0,P

′,N ′, p, ld,D, state)
5: if |D| = 1 then return D
6: m← PERFORMBESTMEAS(D, dpi0,P

′,N ′, p, heur)
7:

〈
P ′,N ′

〉
← ADDMEAS(m,P ′,N ′)

8: 〈D, state〉 ← UPDATESTATE(m, state)

are heuristics and rely on a one-step lookahead (de Kleer,
Raiman, and Shirley 1992) due to the fact that OptStatSD
and OptDynSD are NP-hard (Hyafil and Rivest 1976).

Orthogonal to the mentioned heuristics that try to opti-
mize measurements for best diagnoses discrimination, the
StaticHS algorithm we propose addresses the optimization
problems from the perspective of diagnoses computation. No-
tably, StaticHS is completely compatible and able to syner-
gize with any measurement selection or optimization method
(that acts on the basis of minimal diagnoses).

3 StaticHS
StaticHS is a procedure that computes a set of minimal diag-
noses for an (initial) DPI dpi0 = 〈K,B,P ,N 〉 in lowest-
cost-first order such that each returned diagnosis is consistent
with the sets of (positive and negative) measurements (P ′
and N ′) gathered throughout the sequential diagnosis session
so far. Besides dpi0 and P ′,N ′, StaticHS accepts further ar-
guments: (1) a probability measure p (de Kleer and Williams
1987), which is exploited to compute diagnoses in descend-
ing order based on their probabilities, (2) a stipulated number
ld ≥ 2 of diagnoses to compute, and (3) a variable D and
a tuple of variables state, altogether describing StaticHS’s
current state.

Alg. 1 sketches a generic sequential diagnosis algorithm
and shows how it accommodates the StaticHS procedure (line
4) as an iterative method for diagnoses computation. The
algorithm reiterates a while-loop (line 3) until the solution
space of minimal diagnoses includes only a single element
(line 5). Since StaticHS is complete (see later) and always
attempts to compute at least two diagnoses (ld ≥ 2), this is
the case exactly if StaticHS outputs a diagnoses set D where
|D| = 1. On the other hand, as long as |D| > 1, a next
measurement is performed to rule out further elements in D
(line 6). As mentioned in Sec. 2, the computation of a good
next measurement point might depend (besides dpi , D, and
acquired measurements P ′, N ′) on the given probabilistic
information p and some selection heuristic heur. Then the
new measurement m is added to P ′ if it constitutes a positive
measurement, and to N ′ otherwise (line 7). Finally, m is used
to update the state 〈D, state〉 of StaticHS (line 8), which
essentially involves a relabeling of diagnoses invalidated by
m in StaticHS’s search tree (see later).
StaticHS – Idea. When designing StaticHS, the goal was to
modify Reiter’s HS-Tree (Reiter 1987) in a way it can be used
in an algorithm like Alg. 1 to solve StatSD (Probl. 2). While
doing so, the generality (logics- and reasoner-independence)

75

as well as the feature to calculate diagnoses in most-preferred-
first order should be maintained. Since StatSD calls for a
restriction to the initial diagnoses search space, sol(dpi0), a
first observation is that dpi0 will be the relevant DPI through-
out all calls of StaticHS in Alg. 1. So, if the search tree is
deleted after each call of StaticHS, significant portions of this
tree will need to be redundantly reconstructed in the next run.
Hence, in contrast to targeting the DynSD problem, where it
is well justified to choose a stateless algorithm due to a con-
stantly changing solution space sol(dpi0), sol(dpi1), . . . ,
for StatSD a stateful algorithm appears to be the natural and
better choice.

3.1 Description of StaticHS
We next describe the StaticHS algorithm, given by Alg. 2. It
inherits most of its aspects from Reiter’s HS-Tree. Hence, we
first recapitulate HS-Tree and then focus on the differences
to and idiosyncrasies of StaticHS.
Reiter’s HS-Tree – The Basis. We briefly repeat the func-
tioning of Reiter’s HS-Tree, which computes minimal diag-
noses for a (current) DPI dpi = 〈K,B,P ∪ P ′,N ∪N ′〉
including acquired measurements P ′,N ′ (in a sound and
complete3 way).

Starting from a priority queue of unlabeled nodes Q, ini-
tially comprising only an unlabeled root node, the algorithm
continues to remove and label the first ranked node from
Q (GETANDDELETEFIRST) until all nodes are labeled or
some other stop criterion applies. The possible node labels
are minimal conflicts (for internal tree nodes) and valid as
well as closed (for leaf nodes). All minimal conflicts used
as node labels are stored in the set Ccalc. Each edge in the
constructed tree has a label. For ease of notation, the set of
edge labels along the branch from the root node of the tree
to a node nd is associated with nd, i.e. nd stores this set of
labels. E.g., the node at location 9© in iteration 2 of Fig. 2
is referred to as {5, 7}. Once the tree has been completed
(Q = []), i.e. all nodes are labeled, the minimal diagnoses
for dpi are given exactly by {nd | nd is labeled by valid}.

To label a node nd, the algorithm calls a labeling function
which executes the following tests in the given order and
returns as soon as a label for nd has been determined:

1. (non-minimality): Check if nd is non-minimal (i.e. whether
there is a node n with label valid where nd ⊇ n). If so, nd
is labeled by closed .

2. (duplicate): Check if nd is duplicate (i.e. whether nd = n
for some other n in Q). If so, nd is labeled by closed .

3. (reuse label): scans Ccalc for some C such that nd∩C = ∅.
If so, nd is labeled by C.

4. (compute label): invokes GETMINCONFLICT, a (sound
and complete) minimal conflicts searcher (MCS), e.g.
QuickXPlain (Junker 2004), to get a minimal conflict for
〈K \ nd,B,P ∪ P ′,N ∪N ′〉. If MCS outputs a minimal
conflict C, nd is labeled by C. Otherwise, if MCS returns
’no conflict’, then nd is labeled by valid .

3Unlike Reiter, we assume that only minimal conflicts are used
as node labels. Thus, the issue pointed out by (Greiner, Smith, and
Wilkerson 1989) does not arise.

Algorithm 2 StaticHS
Input: . tuple

〈
dpi0,P

′,N ′, p, ld,DX, state
〉

comprising
• a DPI dpi0 = 〈K,B,P,N 〉
• the acquired sets of positive (P ′) and negative (N ′) measurements so far
• a function p assigning a fault probability to each element inK
• the number ld of leading minimal diagnoses to be computed
• the set DX of all minimal diagnoses wrt. dpi0 computed so far that are con-

sistent with all measurements P ′ and N ′

• state = 〈Q,Ccalc ,D×〉 where
– the current queue Q of unlabeled nodes
– the set Ccalc of all minimal conflict sets wrt. dpi0 computed so far
– the set D× of all minimal diagnoses wrt. dpi0 computed so far that are

inconsistent with some measurement(s) in P ′ or N ′

Output: tuple 〈D, state〉 where
• D is the set of most probable (as per p) minimal diagnoses wrt. dpi0 that are

consistent with all measurements P ′ and N ′

• state is as described above

1: procedure STATICHS(dpi0,P
′,N ′, p, ld,DX, 〈Q,Ccalc,D×〉)

2: Dcalc ← ∅
3: dpinow ←

〈
K,B,P ∪ P ′,N ∪ N ′

〉
. current DPI

4: while Q 6= [] ∧ (|Dcalc| = ∅ ∨ |Dcalc ∪DX| 6= ld) do
5: nd← GETANDDELETEFIRST(Q)
6: D(×,X,calc) ← D× ∪DX ∪Dcalc

7: 〈L,C〉 ← SLABEL(dpi0, nd,Ccalc,D(×,X,calc),Q)
8: Ccalc ← C
9: if L = valid then . nd is min diagnosis wrt. dpi0

10: if ISDIAGNOSIS(nd, dpinow) then
11: Dcalc ← Dcalc ∪ {nd} . nd satisfies P ′ and N ′

12: else
13: D× ← D× ∪ {nd} . nd violates P ′ or N ′

14: else if L = closed then . nil: no need to store non-min diagnoses
15: else . L is a min conflict
16: for e ∈ L do
17: Q← INSERTSORTED(nd ∪ {e} ,Q, p)

18: return 〈Dcalc ∪DX, 〈Q,Ccalc,D×〉〉
19: procedure SLABEL(〈K,B,P,N 〉, nd,Ccalc,D(×,X,calc),Q)
20: for n ∈ D(×,X,calc) do
21: if nd ⊇ n then . nd is a non-min diagnosis
22: return 〈closed,Ccalc〉
23: for n ∈ Q do
24: if nd = n then . nd is a duplicate node
25: return 〈closed,Ccalc〉
26: for C ∈ Ccalc do
27: if C ∩ nd = ∅ then . reuse min conflict set C to label nd
28: return 〈C,Ccalc〉
29: L← GETMINCONFLICT(〈K \ nd,B,P,N 〉) . uses initial DPI dpi0
30: if L = ’no conflict’ then . nd is a diagnosis
31: return 〈valid,Ccalc〉
32: else . L is a new min conflict (/∈ Ccalc)
33: Ccalc ← Ccalc ∪ {L}
34: return 〈L,Ccalc〉

All nodes labeled by closed or valid have no successors
and are leaf nodes. For each node nd labeled by a mini-
mal conflict C = {e1, . . . , ek}, k outgoing edges are con-
structed, where the i-th edge is labeled by ei ∈ C and
pointing to a newly created unlabeled node nd ∪ {ei}. Each
new node is added to Q such that Q’s sorting is preserved
(INSERTSORTED). Q might be either (i) a FIFO queue,
entailing that HS-Tree computes diagnoses in minimum-
cardinality-first order (breadth-first search), or (ii) sorted
in descending order by p, where most probable diagnoses are
generated first (uniform-cost search; for details see (Rodler
2015, Sec. 4.6)).
StaticHS – Changes to Reiter’s HS-Tree. The changes im-
plemented by StaticHS compared to HS-Tree are:
(1) The usage of the initial DPI dpi0 (instead of the current
one) in the labeling function SLABEL. That is, minimal con-
flicts are only computed wrt. dpi0 (line 29), as only diagnoses
wrt. dpi0 are of interest.
(2) There are three different sets storing minimal diagnoses
wrt. dpi0, i.e. Dcalc, DX and D×. The first comprises diag-

76

noses newly calculated in the current StaticHS-iteration,
whereas the latter two contain diagnoses known from pre-
vious StaticHS-iterations. Moreover, the first two sets in-
clude diagnoses consistent with P ′, N ′, while the last one
comprises those not consistent with P ′, N ′. The union
D(×,X,calc) of these sets (i.e. all so-far computed minimal
diagnoses wrt. dpi0) is used in the non-minimality criterion
(lines 20-22). Because a node that is a superset of some el-
ement in D(×,X,calc) cannot be a (new) minimal diagnosis
wrt. dpi0.
(3) A node assigned the label valid by SLABEL is checked
for consistency with P ′, N ′ (function ISDIAGNOSIS, lines 9-
13). This is necessary since valid just means nd is a minimal
diagnosis for dpi0, but it might be one that contradicts some
element in P ′ or N ′ since SLABEL relies on dpi0.
StaticHS – Maintaining and Updating State. In order to
restore the current state of StaticHS’s so-far built hitting
set tree at some later point, after a new measurement m
has been performed, the relevant values are stored in the
tuple 〈Dcalc ∪DX, 〈Q,Ccalc,D×〉〉 and returned by each
call of StaticHS (line 18). While Q and Ccalc remain constant
outside of StaticHS, Dcalc ∪DX and D× are adapted by the
UPDATESTATE function in Alg. 1. This involves all diagnoses
inconsistent with m being transferred from the former to the
latter set. The updated tuple of variables is then passed to
StaticHS as an argument at its next call.
StaticHS – Stop Condition and DPI Transition. In the ba-
sic implementation shown by Alg. 2, StaticHS stops if the
queue Q is empty, i.e. the complete hitting set tree for dpi0
has been constructed, or if the desired ld minimal diagnoses
have been found. Note, one could also incorporate more so-
phisticated termination criteria such as a time threshold t
(Rodler 2015) which forces StaticHS to stop once at least
some minimum specified number (e.g. 2) of diagnoses are
known and t has been exceeded. Moreover, Alg.s 1 and 2 are
able to accept a parameter s that rules when StaticHS should
change its considered DPI dpi0 to the current one. This de-
cision might depend on performance metrics, e.g. reaching
some maximum allowed memory or time consumption, or
on the sequential diagnosis problem to be solved. In fact,
the definition of this parameter s determines whether StatSD
(Probl. 2) or DynSD (Probl. 1) is solved. For simplicity and
conciseness of the pseudocode, the integration and handling
of s is not shown in the presented algorithms.

3.2 Exemplification of StaticHS
We now illustrate the workings of StaticHS and contrast it
with a construct-and-discard usage of HS-Tree (cdHS for
short). Specifically, cdHS, after each addition of a new mea-
surement to the DPI, builds Reiter’s HS-Tree from scratch to
compute a new set of leading diagnoses for the new DPI.

Example 3 Consider dpi0 = 〈K,B,P ,N 〉 in Tab. 2. Fig. 2
and Fig 3 each showcase the evolution of the hitting set tree(s)
throughout a sequential diagnosis session for the input DPI
dpi0, the former for StaticHS and the latter for cdHS. Both
searches are used in breadth-first mode with a required lead-
ing diagnoses number of ld := 2 per iteration. Pursued pol-
icy for measurement selection is a simple splitting strategy

K
{ax1 : A→ E ax2 : X ∨ E → F ∧ Y ∧ Z ax3 : F → B
ax4 : B → X ax5 : Y → ¬A ax6 : B → Z ax7 : Z → G }

B P N

{G→ ¬A} ∅ {¬A}

Table 2: Example DPI stated in propositional logic.

seeking to eliminate half of the diagnoses each time (cf. Ex-
ample 1); and, given the same leading diagnoses D, the same
measurement is suggested for both algorithms. We assume
the actual diagnosis D∗ := [ax 5, ax 7].

Looking at the figures, we recognize that both methods
build exactly the same tree in iteration 1 (since both start from
scratch and consider dpi0). The returned leading diagnoses
– in this iteration {D1,D2} (see tree nodes labeled by X) –
and state of StaticHS along with the subsequently performed
measurement mi and its effect on the variables is shown in
Tab. 3. Measurements for cdHS are stated in Fig. 3 below
the respective tree. After iteration 1, the incoming new infor-
mation is the negative measurement m1 : E → ¬A (same
for both). Whereas cdHS now starts to build a new HS-Tree
for dpi1 = 〈K,B,P ,N ∪ {m1}〉, StaticHS resorts to the
existing partial tree and extends it, sticking further on to the
original DPI dpi0 and using m1 as a constraint on diagnoses.
The effect is the invalidation of D1 through UPDATESTATE

in Alg. 1 (indicated by a m1⇒ towards the new label × of D1,
now element of D×).

A circled number i© in the trees denotes the i-th node
labeling during the (entire) sequential session. E.g., the 7th
node labeling for StaticHS is the closing of node nd = {5, 1}
as it is a superset of the (by now invalidated) minimal di-
agnosis D1 = [1] for dpi0 (signified by the label ×(⊃D1)).
Calls of GETMINCONFLICT (cf. Alg. 2, line 29) – involving
a reasoner – that compute a minimal conflict (more costly)
are denoted by a superscript C besides the particular conflict;
and those resulting in ’no conflict’ as well as calls to IS DI-
AGNOSIS in line 10 (less costly) by i©X(Dj) or i©×(Dj) for
some i, j. Note the difference between cdHS and StaticHS in
iteration 2. While the former computes minimal conflicts wrt.
dpi1, e.g. the root label 〈2, 5〉, the latter still uses 〈1, 2, 5〉
which is minimal for dpi0, but non-minimal for dpi1. That is,
cdHS uses reasoner calls to recompute (possibly reduced ver-
sions of) conflicts known from the previous iteration. Notable
is also that [5, 1] is a minimal diagnosis for dpi1, i.e. both al-
gorithms return different diagnoses D in iteration 2 (different
addressed search spaces!), leading to different measurements
m2 for cdHS and StaticHS.

Overall, the former and latter require 9 vs. 2 more costly
reasoner invocations, 9 vs. 7 less costly ones, a maximal
memory usage of 6 vs. 7 nodes, and 4 vs. 2 measurements to
figure out D∗, respectively. We emphasize that using cdHS
involves double the amount of user interaction, and in fact
a strict superset of the measurements StaticHS requires, as
{m1,m2} for StaticHS equals {m1,m3} for cdHS.

77

D state (of StaticHS) measurement and effect on D, state

iter. i Dcalc ∪DX Q Ccalc D× mi added to P ′ or N ′? new DX new D×

1 {[1], [2]} [{5}] {〈1, 2, 5〉} ∅ E → ¬A N ′ {[2]} {[1]}
2 {[2], [5, 7]} [] {〈1, 2, 5〉 , 〈1, 2, 7〉} {[1]} Y → ¬A N ′ {[5, 7]} {[1], [2]}
3 {[5, 7]} [] {〈1, 2, 5〉 , 〈1, 2, 7〉} {[1], [2]} |Dcalc ∪DX| = 1 ⇒ return {[5, 7]}

Table 3: Values of D and state-variables of StaticHS and performed measurements during diagnosis session for DPI in Tab. 2.
For diagnoses and conflicts, we use the same notation as in Tab. 1. Numbers j in diagnoses and conflicts stand for ax j ∈ K.

1©〈1, 2, 5〉C

2©X(D1) 3©X(D2) ?

1

x xrrr
rr 2��

5

**VVV
VVVV

VVVV
VVV

Iteration 1

〈1, 2, 5〉

X X 6©〈1, 2, 7〉C

4©×(D1) 5©X(D2)
7©×(⊃D1) 8©×(⊃D2) 9©X(D3)

1

x xrrr
rrr

r
2
��

5

**VVV
VVVV

VVVV

m1��
m1��

1

x xrrr
rrr 2��

7

&&LL
LLL

Iteration 2

〈1, 2, 5〉

X X 〈1, 2, 7〉

×(D1) X ×(⊃D1) ×(⊃D2) X

10©×(D2) 11©X(D3)

1

x xrrr
rrr

r
2
��

5

**VVV
VVVV

VVVV
VV

m1��
m1
� �

1

xxrrr
rrr 2��

7

&&LL
LLL

LL

m2��
m2� �

Iteration 3

Figure 2: Iterative diagnoses computation executed by
StaticHS for the DPI in Tab. 2.

4 Properties of StaticHS
Essential properties of StaticHS (combined with Alg. 1) are:
Theorem 1. Let dpi0 be the DPI given as input to Alg. 1
and D∗ the actual diagnosis. Statements 3 and 5 below addi-
tionally assume that only discriminating measurements (cf.
Sec. 2) are taken in line 6 of Alg. 1. Then:
1. StaticHS (interpreted as all calls of it in Alg. 1) is sound

and complete wrt. sol(dpi0) and finds its elements in best-
first order (according to card. or prob.).

2. When StaticHS is called given acquired measurements
P ′,N ′, then it returns the ld best (min.-card. or most prob.)
elements of sol(dpi0+P ′+N ′) if |sol(dpi0+P ′+N ′)| ≥
ld . Else it computes sol(dpi0 + P ′ +N ′).

3. Alg. 1 solves StatSD (Probl. 2). I.e., if D∗ ∈ sol(dpi0), it
outputs {D∗}.

4. Let D∗ ∈ sol(dpi0). If the set of measurements M solves
DynSD (Probl. 1), then M solves StatSD and there is a set
of measurements M ′ ⊆M that solves StatSD (Probl. 2).

5. There is a DPI transition strategy (parameter s, see Sec. 1
and 3) such that Alg. 1 and 2 solve DynSD (Probl. 1).

1©〈1, 2, 5〉C

2©X(D1) 3©X(D2) ?

1

x xqqq
qqq 2��

5

++VVVV
VVVV

VVVV
VVV

Iteration 1 ⇒ m1 : E → ¬A to N ′

4©〈2, 5〉C

5©X(D2)

6©〈1, 2, 7〉C

7©X(D3) ? ?

2� �

5 --\\\\\\\\

1
||xxx
xx 2
� �

7

''OO
OOO

OOO

Iteration 2 ⇒ m2 : E → G to N ′

8©〈2, 5〉C

9©X(D2)

10©〈2, 7〉C

11©×(⊃D2) 12©X(D4)

2� �

5 --\\\\\\\\\

2� �
7

''OO
OOO

O

Iteration 3 ⇒ m3 : Y → ¬A to N ′

13©〈5〉C
14©〈2, 7〉C

15©X(D5) 16©X(D4)

5 --\\\\\\\\\\

2��
7

''OO
OOO

O

Iteration 4 ⇒ m4 : E → Z to P ′

17©〈5〉C
18©〈7〉C

19©X(D4)

5 ,,ZZZZ
7 ,,ZZZ

Iteration 5

Figure 3: Iterative diagnoses computation using Reiter’s HS-
Tree with construct-and-discard strategy (cdHS) for the DPI
in Tab. 2.

6. For sequential diagnosis, StaticHS is a generalization of
construct-and-discard HS-Tree (cdHS, cf. Sec. 3.2).

Proof. (Sketch) For a rigorous proof of the first three state-
ments we refer to (Rodler 2015, Sec. 9.4+11.4) and just
outline the basic idea. The principal reasons why (1.) holds
are the soundness and completeness of Reiter’s HS-Tree, the
usage of dpi0 in the SLABEL function for conflict compu-
tation (Alg. 2, line 29) and the sorting of Q (Alg. 2, line
17). As to (2.), we observe that the input argument DX to
StaticHS comprises, if any, exactly the best |DX| elements
of sol(dpi0 + P ′ + N ′), and a node nd (first element of
sorted queue Q) marked by valid in SLABEL (i.e. nd is an
element of sol(dpi0)) is added to Dcalc∪DX (returned diag-

78

noses) only after its consistency with P ′,N ′ has been verified
(Alg. 2, lines 9-13). (3.) is valid since only discriminating
measurements are added (always ruling out ≥ 1 solution),
|sol(dpi0)| < ∞ (because K is finite), and only sol(dpi0)
is fully explored by (1.). Ad (4.): Let |M | = k and assume
|sol(dpik)| = 1. Then sol(dpik) = {D∗}. Generally, it
holds that, if D ∈ sol(dpi0) and D is consistent with all
mi ∈ M , then D ∈ sol(dpik). By contraposition, if for
some D′ ∈ sol(dpi0) it holds that D′ /∈ sol(dpik) it must
be inconsistent with some mi ∈M . But, as D∗ ∈ sol(dpi0)
and D∗ is the only element of sol(dpi0) in sol(dpik), M
and thus also some M ′ ⊆ M rule out all elements of
sol(dpi0) \ {D∗}. Hence, M,M ′ are solutions for StatSD.
Ad (5.): One such strategy s is to update the DPI after each
measurement, thus focusing on sol(dpi j) in iteration j. Once
|sol(dpik)| = 1 for some k ≥ 0 (this must happen for some
k < ∞ due to adding only discriminating measurements),
Alg. 1 returns sol(dpik) = {D} (line 5). Thus, StaticHS
solves the DynSD problem. Ad (6.): Using s as in (5.), the
behavior of StaticHS equals the one of cdHS.

To sum up, StaticHS is sound and complete wrt. each diag-
noses solution space encountered when solving StatSD and
always delivers diagnoses best-first. Further, for any solu-
tion regarding OptStatSD found by a more general diagnoses
computation method (that focuses on DynSD), StaticHS can
find an equally good or better solution if D∗ ∈ sol(dpi0).
Besides, any algorithm for DynSD can also solve StatSD.
And, DynSD can be solved by solving a sequence of StatSD
problems. Finally, StaticHS is a generalization of Reiter’s
HS-Tree in the context of sequential diagnosis and is parame-
terizable to solve both StatSD and DynSD.

5 Evaluation
In the evaluations of StaticHS (SHS) described next we focus
on a comparison with cdHS (cf. Sec. 3.2).
Evaluation Settings. The dataset used in the experiments is
given in Tab. 4 where the underlying systems are faulty (i.e.
inconsistent) real-world knowledge bases (KBs).4 Each of
these KBs K ∈ {U,M,T,E} was used to define an initial
input DPI dpi0 (cf. Alg. 1) as 〈K, ∅, ∅, ∅〉, i.e. the background
B, positive (P) and negative (N) measurements were (ini-
tially) empty. Tab. 4 also shows the diagnostic structure (# of
components |K|, reasoning complexity, # and min./max. size
of minimal diagnoses for dpi0) of the considered problems.

The factors varied in the experiments were (F1) the DPI
dpi0, (F2) the # of leading diagnoses per iteration ld ∈
{6, 10}, and (F3) how the actual diagnosis D∗ was set (i.e.
whether StatSD or DynSD were solved). To simulate StatSD,
each D∗ was selected from sol(dpi0) (without replacement)
by using INVHSTREE (Shchekotykhin et al. 2014) with a ran-
domly shuffled input.5 For DynSD, we defined eachD∗ as the

4Using KBs as test cases does not restrict the generality of the
results, as any model-based diagnosis problem (Reiter 1987) can be
modeled as an inconsistent KB (Rodler and Schekotihin 2018).

5Pre-computing sol(dpi0) and randomly drawing an element
from it is intractable. Because, given one minimal diagnosis, even
deciding if there is a further one is NP-complete (Bylander et al.

KBK |K| reasoning complexity a #D/min/max b

University (U) c 49 SOIN (D) 90/3/4
MiniTambis (M) c 173 ALCN 48/3/3
Transportation (T) c 1300 ALCH(D) 1782/6/9
Economy (E) c 1781 ALCH(D) 864/4/8

a The column states the logical expressiveness in terms of (Baader et al. 2007,
p. 525ff.) of the logic used in KB K, which determines the complexity of rea-
soning (consistency/entailment checks), see (Baader et al. 2007, Chap. 3+5)

b #D/min/max denote |sol(dpi0)|/ min./max./ size of diagnoses in sol(dpi0).
c Sufficiently complex systems (#D≥ 40) used in (Shchekotykhin et al. 2012).

Table 4: Dataset used in the experiments.

final diagnosis found after solving DynSD given dpi0 using
random measurement(-outcome)s. For each dpi0, the fault
probability p(ax) for each ax ∈ K was assigned uniformly
at random from (0, 1).

Then, for each of the 4 ∗ 2 ∗ 2 combinations of factor
levels of (F1),(F2),(F3) and for each algorithm, SHS and
cdHS, we ran 20 sequential diagnosis sessions, each with a
different random D∗ as per (F3). For measurement selection
we applied the method of (Rodler, Schmid, and Schekotihin
2018) and as a heuristic heur (cf. Alg. 1) we used entropy
(de Kleer and Williams 1987).

Note, to make tests fair and both methods equally general,
we used for SHS a version (parameter s, see Sec. 1 and 3) that
solves the DynSD problem, just as cdHS does. Specifically, s
effected a switch to the current DPI if only one diagnosis was
left and no second diagnosis could be found after exploring
500 new tree nodes. Consequently, the used version of SHS
actually solves DynSD by solving multiple StatSD problems
in sequence.
Evaluation Results. For each performed diagnosis session
we measured (1) the system reaction time (avg. time between
two successive measurements / executions of line 6 in Alg. 1)
and (2) the # of measurements required until finding D∗
with certainty. Fig. 4 pictures the results for ld = 10 (F2);
see the x-axis for factor levels of (F1),(F3). SHS required
lower/same/higher # of measurements than cdHS in 76/21/3%
of all sessions (solid lines and bars). Avg./max. measurement
cost savings in % (see bars) achieved by SHS compared to
cdHS were 20/65 (all runs), 21/65 (DynSD runs) and 20/65
(StatSD runs). Thus, albeit designed primarily for StatSD,
SHS also performs really well for DynSD (using the parame-
ter s). As to reaction time, on average, SHS saves 35% over
cdHS for the cases M, U, and cdHS saves 56% over SHS
for T, E. However, as the blue solid and dashed lines indi-
cate, whenever SHS exhibits a somewhat higher reaction
time (though never > 4s/5s for ld = 6/ld = 10), this is
compensated by very few measurements. In the (not shown)
case ld = 6 for (F2), the results were pretty alike, with an
avg./max. of 17/56% (StatSD) and 20/61% (DynSD) fewer
measurements than cdHS. The avg. reaction times (of both
SHS and cdHS) were slightly lower for ld = 6.

1991). However, as computing a single minimal diagnosis is in P,
we can efficiently simulate this random selection as described.

79

-20

-10

0

10

20

30

40

50

60

70

M U T E M U T E

solving DynSD solving StatSD

savings # meas. SHS (%) # meas. SHS # meas. cdHS reaction time (s) SHS reaction time (s) cdHS

Figure 4: Results for ld = 10 (F2). The x-axis indicates
which problem (StatSD vs. DynSD) was solved (F3) and the
used input DPI dpi0 (F1) referred to by the name of the KB
K ∈ {U,M,T,E} addressed in it (cf. Tab. 4).

6 Conclusions and Future Work
We argue that the sequential diagnosis problem can be in-
terpreted in two natural ways, StatSD and DynSD, and that
existing methods focus only on DynSD. Thus, we present
StaticHS, a novel diagnoses search that can solve both StatSD
and DynSD and is as generally applicable as Reiter’s HS-Tree.
Supporting our theoretical results, empirical examinations
using real-world problems reveal that StaticHS reduces the re-
quired measurement effort substantially (20% on avg.), both
when tackling StatSD and DynSD, compared to an (iterative)
application of Reiter’s algorithm. These savings are a result
of the ability of StaticHS to combine search space reduction
(StatSD) and completeness (DynSD).

Notably, these obtained results regarding measurement
cost are not specific to the particular (sound and complete
best-first) algorithm used for diagnoses computation (Alg. 1,
line 4) in the course of solving StatSD or DynSD, respec-
tively. The reason is that any such algorithm, no matter how
implemented, will return the same set of diagnoses for one
and the same DPI. Instead, the crucial thing is which DPI is
considered when and how acquired measurements are incor-
porated. In particular, our findings show that solving DynSD
by solving a (sequence of) StatSD problem(s) can lead to
significant savings in terms of overall effort and time6 until
the real cause of a failing system is located.

Future work topics include more extensive experiments
and the development of intelligent StaticHS adaptation strate-
gies (parameter s) for an automatized dynamic performance
optimization.

References
Baader, F.; Calvanese, D.; McGuinness, D. L.; Nardi, D.; and Patel-
Schneider, P. F., eds. 2007. The Description Logic Handbook.
Cambridge University Press.
Bylander, T.; Allemang, D.; Tanner, M.; and Josephson, J. 1991.
The computational complexity of abduction. Artif. Intell. 49:25–60.
Darwiche, A. 2001. Decomposable negation normal form. JACM
48(4):608–647.
de Kleer, J., and Williams, B. C. 1987. Diagnosing multiple faults.
Artif. Intell. 32(1):97–130.

6Depending on the diagnosed system, the time for performing a
measurement, e.g. in a physical system, might be substantial, e.g.
in the order of minutes. In such a case, given system reaction times
in the order of seconds as we observed, significant savings in the
number of measurements imply significant overall time savings.

de Kleer, J.; Mackworth, A. K.; and Reiter, R. 1992. Characterizing
diagnoses and systems. Artif. Intell. 56.
de Kleer, J.; Raiman, O.; and Shirley, M. 1992. One step lookahead
is pretty good. In Readings in model-based diagnosis, 138–142.
de Kleer, J. 1986. An assumption-based TMS. Artif. Intell.
28(2):127–162.
Feldman, A.; Provan, G. M.; and van Gemund, A. J. C. 2010. A
model-based active testing approach to sequential diagnosis. JAIR
39:301–334.
Felfernig, A.; Friedrich, G.; Jannach, D.; and Stumptner, M. 2004.
Consistency-based diagnosis of configuration knowledge bases. Ar-
tif. Intell. 152(2):213–234.
Greiner, R.; Smith, B. A.; and Wilkerson, R. W. 1989. A correc-
tion to the algorithm in Reiter’s theory of diagnosis. Artif. Intell.
41(1):79–88.
Hyafil, L., and Rivest, R. L. 1976. Constructing optimal binary de-
cision trees is NP-complete. Information processing letters 5(1):15–
17.
Junker, U. 2004. QuickXPlain: Preferred Explanations and Relax-
ations for Over-Constrained Problems. In AAAI, volume 3, 167–172.
Kalyanpur, A. 2006. Debugging and Repair of OWL Ontologies.
Ph.D. Dissertation, University of Maryland, College Park.
Metodi, A.; Stern, R.; Kalech, M.; and Codish, M. 2014. A novel
sat-based approach to model based diagnosis. JAIR 51:377–411.
Moret, B. M. 1982. Decision trees and diagrams. ACM Computing
Surveys 14(4):593–623.
Parsia, B.; Sirin, E.; and Kalyanpur, A. 2005. Debugging OWL
ontologies. In WWW, 633–640.
Reiter, R. 1987. A Theory of Diagnosis from First Principles. Artif.
Intell. 32(1):57–95.
Rodler, P., and Schekotihin, K. 2018. Reducing model-based
diagnosis to knowledge base debugging. In Int’l Workshop on
Principles of Diagnosis (DX’17), 284–296.
Rodler, P.; Shchekotykhin, K.; Fleiss, P.; and Friedrich, G. 2013.
RIO: Minimizing User Interaction in Ontology Debugging. In Web
Reasoning and Rule Systems, 153–167.
Rodler, P.; Schmid, W.; and Schekotihin, K. 2018. Inexpensive
cost-optimized measurement proposal for sequential model-based
diagnosis. In Int’l Workshop on Principles of Diagnosis (DX’17),
200–218.
Rodler, P. 2015. Interactive Debugging of Knowledge
Bases. Ph.D. Dissertation, Alpen-Adria Universität Klagenfurt.
http://arxiv.org/pdf/1605.05950v1.pdf.
Rodler, P. 2018. On active learning strategies for sequential di-
agnosis. In Int’l Workshop on Principles of Diagnosis (DX’17),
264–283.
Shchekotykhin, K.; Friedrich, G.; Fleiss, P.; and Rodler, P. 2012.
Interactive Ontology Debugging: Two Query Strategies for Efficient
Fault Localization. JWS 12-13:88–103.
Shchekotykhin, K.; Friedrich, G.; Rodler, P.; and Fleiss, P. 2014.
Sequential diagnosis of high cardinality faults in knowledge-bases
by direct diagnosis generation. In ECAI, 813–818.
Siddiqi, S., and Huang, J. 2011. Sequential diagnosis by abstraction.
JAIR 41:329–365.
Torasso, P., and Torta, G. 2006. Model-based diagnosis through
OBDD compilation: A complexity analysis. In Reasoning, Action
and Interaction in AI Theories and Systems. 287–305.

80

