Reducing Model-Based Diagnosis to Knowledge Base Debugging

Patrick Rodler, Konstantin Schekotihin

Alpen-Adria Universität Klagenfurt

Con	itents			

1 Overview

- 2 Model-based Diagnosis (MBD)
- 3 Knowledge Base Debugging (KBD)
- 4 Reduction (MBD \rightarrow KBD)

5 Example

6 Conclusions

Overview •				
Ove	rview			

- Model-based Diagnosis (MBD) is a principled approach to fault localization in any type of system that can be described in a formal structured way
- Knowledge Base Debugging (KBD) draws on concepts from MBD to find faults in a monotonic knowledge base
- We show that KBD is a generalization of MBD in that
 - any MBD problem can be reduced to a KBD problem
 - solutions of the MBD problem can be directly extracted from solutions of the KBD problem
- The sequential MBD problem is a special case of the sequential KBD problem in that the latter allows a user to provide more types of measurements and specify additional requirements (beyond consistency)
- Consequently: KBD approaches can be applied to all systems amenable to MBD

	Model-based Diagnosis (MBD) ●OO			
MBI	DI			

Definition 1 (System)

A *system* is a tuple (SD, COMPS) where SD, the system description, is a set of first-order sentences, and COMPS, the system components, is a finite set of constants c_1, \ldots, c_n .

Let $SD_{beh} := \{\neg AB(c) \rightarrow beh(c) \mid c \in COMPS\}$ where beh(c) denotes the first-order sentence describing the expected behavior of $c \in COMPS$. General axioms describing the system domain or descriptions of the interplay between the system components are comprised by SD_{gen} . So, $SD = SD_{beh} \cup SD_{gen}$.

Definition 2 (MBD-DPI)

Let OBS (observations) be a finite set of first-order sentences, MEAS (measurements) be a finite set including finite sets m_i of first-order sentences, and (SD, COMPS) be a system. Then (SD, COMPS, OBS, MEAS) is an *MBD diagnosis problem instance (MBD-DPI*).

	Model-based Diagnosis (MBD) ○●○			
MBI	וו ח			

Definition 3 (SD*[Δ])

Let DPI := (SD, COMPS, OBS, MEAS) be an MBD-DPI and U_{MEAS} denote the union of all $m \in MEAS$. Then $SD^*[\Delta] :=$ $SD \cup \{AB(c) \mid c \in \Delta\} \cup \{\neg AB(c) \mid c \in COMPS \setminus \Delta\} \cup OBS \cup U_{MEAS}$ for $\Delta \subseteq COMPS$ denotes the behavior description of the system (SD, COMPS)

- under the current state of knowledge given by the DPI in terms of OBS and MEAS, and
- under the assumption that all components in $\Delta \subseteq$ COMPS are faulty and all components in COMPS $\setminus \Delta$ are healthy.

	Model-based Diagnosis (MBD) ○O●			
MBI				

Definition 4 (MBD-Diagnosis)

Let DPI := (SD, COMPS, OBS, MEAS) be an MBD-DPI. Then $\Delta \subseteq COMPS$ is an *MBD-diagnosis for DPI* iff $SD^*[\Delta]$ is consistent (i.e. Δ explains OBS and MEAS). An MBD-diagnosis Δ for *DPI* is called *minimal* iff there is no MBD-diagnosis Δ' for *DPI* such that $\Delta' \subset \Delta$.

Problem 1 (Sequential MBD)

Given: An MBD-DPI DPI := (SD, COMPS, OBS, MEAS) and a diagnostic goal *G*. **Find:** $MEAS_{new} \supseteq \emptyset$ and Δ , where $MEAS_{new}$ is a set of new measurements such that Δ is a minimal MBD-diagnosis for the MBD-DPI $DPI_{new} := (SD, COMPS, OBS, MEAS \cup MEAS_{new})$ and Δ satisfies *G*.

Remark: Examples for diagnostic goals *G* are the presence of one highly probable or just a single remaining (minimal) diagnosis.

		Knowledge Base Debugging (KBD)		
	<u> </u>			

KBD – Diagnosis Problem Instance

Definition 5 (KBD-DPI)

Let

- *K* be a KB,
- *P*, *N* be sets including sets of sentences,
- $R \supseteq$ {consistency} be a set of (logical) requirements,
- \mathcal{B} be a KB such that $\mathcal{K} \cap \mathcal{B} = \emptyset$ and \mathcal{B} satisfies all requirements $r \in \mathbf{R}$,
- the cardinality of all sets *K*, *B*, *P*, *N* be finite, and
- all sets \mathcal{K} , \mathcal{B} , P, N be formulated over some monotonic logic.

Then we call the tuple $\langle \mathcal{K}, \mathcal{B}, \mathcal{P}, N \rangle_R$ a *KBD diagnosis problem instance (KBD-DPI)*.

Overview O		Knowledge Base Debugging (KBD) ○●○○○○○			
Solu	ution KB				

Definition 6 (Solution KB)

Let $DPI := \langle \mathcal{K}, \mathcal{B}, P, N \rangle_R$ be a KBD-DPI. Then a KB \mathcal{K}^* is called *solution KB w.r.t. DPI* iff all the following conditions hold:

 $\forall r \in R : \mathcal{K}^* \cup \mathcal{B} \text{ fulfills } r \tag{1}$

$$\forall \boldsymbol{p} \in \boldsymbol{P} : \mathcal{K}^* \cup \mathcal{B} \models \boldsymbol{p}$$
(2)

$$\forall n \in N : \mathcal{K}^* \cup \mathcal{B} \not\models n.$$
(3)

A solution KB \mathcal{K}^* w.r.t. *DPI* is called *maximal* iff there is no solution KB \mathcal{K}' w.r.t. *DPI* such that $\mathcal{K}' \cap \mathcal{K} \supset \mathcal{K}^* \cap \mathcal{K}$ (i.e. \mathcal{K}^* has a set-maximal intersection with \mathcal{K} among all solution KBs).

		Knowledge Base Debugging (KBD) 00●0000			
KBD	D-Diagnosis	and KBD-Cor	nflict		

Definition 7 (KBD-Diagnosis)

Let $DPI := \langle \mathcal{K}, \mathcal{B}, P, N \rangle_R$ be a KBD-DPI. A set of sentences $\mathcal{D} \subseteq \mathcal{K}$ is called a *KBD-diagnosis w.r.t. DPI* iff $(\mathcal{K} \setminus \mathcal{D}) \cup U_P$ is a solution KB w.r.t. *DPI* (i.e. $\mathcal{K}^* := (\mathcal{K} \setminus \mathcal{D}) \cup U_P$ satisfies (1) – (3)). A KBD-diagnosis \mathcal{D} w.r.t. *DPI* is *minimal* iff there is no $\mathcal{D}' \subset \mathcal{D}$ such that \mathcal{D}' is a KBD-diagnosis w.r.t. *DPI*.

Definition 8 (KBD-Conflict)

Let $DPI := \langle \mathcal{K}, \mathcal{B}, P, N \rangle_{B}$ be a KBD-DPI. A set of formulas $\mathcal{C} \subseteq \mathcal{K}$ is called a *KBD-conflict w.r.t. DPI* iff $\mathcal{C} \cup U_{P}$ is not a solution KB w.r.t. *DPI* (i.e. $\mathcal{K}^{*} := \mathcal{C} \cup U_{P}$ violates at least one of (1) – (3)). A KBD-conflict \mathcal{C} w.r.t. *DPI* is *minimal* iff there is no $\mathcal{C}' \subset \mathcal{C}$ such that \mathcal{C}' is a KBD-conflict w.r.t. *DPI*.

Overview O		Knowledge Base Debugging (KBD)		
Can	ionical Solut	ion KB		

In general, the (maximal) solution KB resulting from the deletion of one and the same set ${\cal D}$ from ${\cal K}$ is not unique. Since

- P does not justify the inclusion of sentences (semantically) different from U_P, and
- only one solution KB is sought

we define:

Definition 9 (Canonical Solution KB)

 $(\mathcal{K} \setminus \mathcal{D}) \cup U_P$ is the canonical solution KB for \mathcal{D} w.r.t. DPI iff $(\mathcal{K} \setminus \mathcal{D}) \cup U_P$ is a solution KB w.r.t. DPI.

The relationship between maximal canonical solution KBs and minimal KBD-diagnoses w.r.t. a DPI is as follows (cf. [Rodler, 2015]):

Property 1

Let *DPI* be a KBD-DPI. Then the set of all maximal canonical solution KBs w.r.t. *DPI* is given by

 $\{(\mathcal{K} \setminus \mathcal{D}) \cup U_P \mid \mathcal{D} \text{ is a minimal KBD-diagnosis w.r.t. } DPI\}$

Therefore, KBD methods focus on the computation of minimal KBD-diagnoses in order to find all maximal canonical solution KBs.

The relationship between the notions *KBD-diagnosis*, *solution KB* and *KBD-conflict* is as follows:

Property 2

Let $\mathcal{D} \subseteq \mathcal{K}$. Then the following statements are equivalent:

- **1** \mathcal{D} is a KBD-diagnosis w.r.t. $\langle \mathcal{K}, \mathcal{B}, \mathcal{P}, \mathcal{N} \rangle_{\mathcal{R}}$.
- **2** $(\mathcal{K} \setminus \mathcal{D}) \cup U_P$ is a solution KB w.r.t. $\langle \mathcal{K}, \mathcal{B}, P, N \rangle_R$.
- **3** $(\mathcal{K} \setminus \mathcal{D})$ is not a KBD-conflict w.r.t. $\langle \mathcal{K}, \mathcal{B}, \mathcal{P}, \mathcal{N} \rangle_{\mathcal{R}}$.

		Knowledge Base Debugging (KBD) 000000●			
Seq	uential KB [Debugging			

The sequential KBD problem which seeks a set of test cases in order to achieve a diagnostic goal *G* is defined as follows:

Problem 2 (Sequential KBD)

Given: A KBD-DPI $DPI := \langle \mathcal{K}, \mathcal{B}, P, N \rangle_R$ and a diagnostic goal *G*. **Find:** $P_{new}, N_{new} \supseteq \emptyset$ and \mathcal{D} , where P_{new}, N_{new} are sets of positive and negative test cases, respectively, such that \mathcal{D} is a minimal KBD-diagnosis w.r.t. $DPI_{new} := \langle \mathcal{K}, \mathcal{B}, P \cup P_{new}, N \cup N_{new} \rangle_R$ and \mathcal{D} satisfies *G*.

			Reduction (MBD → KBD) ●00000		
Por	Juning MRD	to KRD			

Any MBD-DPI can be modeled as a KBD-DPI, and the solutions of the latter directly yield the solutions of the former:

Theorem 1 (Reduction of MBD to KBD)

Let mDPI := (SD, COMPS, OBS, MEAS) be an MBD-DPI where $COMPS = \{c_1, \dots, c_n\}$. Then:

- mDPI can be formulated as a KBD-DPI kDPI such that there is a bijective correspondence between KBD-diagnoses for kDPI and MBD-diagnoses for mDPI.
- All MBD-diagnoses for mDPI can be computed from the KBD-diagnoses for kDPI.

_				

Proof:

We first show how *mDPI* can be formulated as a KBD-DPI *kDPI*. To this end, we specify how $kDPI = \langle \mathcal{K}, \mathcal{B}, P, N \rangle_R$ can be written in terms of the components of $mDPI = (SD_{beh} \cup SD_{gen}, COMPS, OBS, MEAS)$:

$$\mathcal{K} = \{ \alpha_i \mid \alpha_i := beh(c_i), c_i \in \text{COMPS} \}$$
(4)

$$\mathcal{B} = \mathsf{OBS} \cup \mathsf{SD}_{gen}$$
 (5)

$$P = MEAS$$
 (6

$$N = \emptyset$$
 (7)

$$R = \{consistency\}$$
(8)

Proof (cont'd):

That is, \mathcal{K} captures $SD_{beh} \cup \{\neg AB(c_i) \mid c_i \in COMPS\}$, i.e. the nominal behavioral descriptions of all system components. By Def. 7, $\mathcal{D} \subseteq \mathcal{K}$ is a KBD-diagnosis for *kDPI* iff both

$$(\mathcal{K} \setminus \mathcal{D}) \cup \mathcal{B} \cup U_P$$
 meets all $r \in R$ (i.e. is consistent) (9)

and

$$(\mathcal{K} \setminus \mathcal{D}) \cup \mathcal{B} \cup U_{\mathcal{P}} \not\models n \text{ for all } n \in N$$
(10)

hold.

Proof (cont'd):

Let now \mathcal{D} be an arbitrary KBD-diagnosis for kDPI such that $\mathcal{D} = \{\alpha_i \mid i \in I\}$ for the index set $I \subseteq \{1, \ldots, n\}$. Using (4) – (8) above, condition (9) for \mathcal{D} is equivalent to the consistency of

 $\texttt{SD}_{\textit{beh}} \cup \{\texttt{AB}(\textit{c}_i) \mid i \in \textit{I}\} \cup \{\neg \texttt{AB}(\textit{c}_i) \mid i \in \{1, \dots, n\} \setminus \textit{I}\} \cup \texttt{OBS} \cup \texttt{SD}_{\textit{gen}} \cup \textit{U}_{\texttt{MEAS}}$

which in turn yields that

$$SD \cup \{AB(c_i) \mid c_i \in \Delta\} \\ \cup \{\neg AB(c_i) \mid c_i \in COMPS \setminus \Delta\} \\ \cup OBS \cup U_{MEAS} \text{ is consistent}$$

$$(11)$$

for
$$\Delta := \{ c_i \mid i \in I \}$$
.

 Overview
 Model-based Diagnosis (MBD)
 Knowledge Base Debugging (KBD)
 Reduction (MBD → KBD)
 Example

 0
 000
 0000000
 0000000
 0000000
 0000000

nple Conclusions Refere

Reducing MBD to KBD

Proof (cont'd).

But, (11) is exactly the condition defining an MBD-diagnosis (see Def. 4). Note, since $N = \emptyset$ by (7), condition (10) is met for any \mathcal{D} satisfying (9) and can thus be neglected. Hence, $\mathcal{D} = \{\alpha_i \mid i \in I\} \subseteq \mathcal{K}$ is a KBD-diagnosis w.r.t. *kDPI* iff $\Delta = \{c_i \mid i \in I\} \subseteq \text{COMPS}$ is an MBD-diagnosis for *mDPI*.

Overview		Reduction
0		00000

 Reduction (MBD → KBD)
 Example
 Conclusions
 Reference

 000000
 000
 0
 0
 0

Reducing MBD to KBD

Also, there is a bijective correspondence between KBD-conflicts and MBD-conflicts:

Theorem 2

Let mDPI = (SD, COMPS, OBS, MEAS) be an MBD-DPI and $kDPI = \langle \mathcal{K}, \mathcal{B}, P, N \rangle_R$ a KBD-DPI modeling mDPI as per (4) – (8). Further, let $COMPS = \{c_1, \dots, c_n\}$ and $I \subseteq \{1, \dots, n\}$. Then, $C = \{c_i \mid i \in I\} \subseteq COMPS$ is an MBD-conflict for mDPI iff $C = \{\alpha_i \mid i \in I\} \subseteq \mathcal{K}$ is a KBD-conflict w.r.t. kDPI.

Proof.

C is a KBD-conflict w.r.t. kDPI iff $\mathcal{K} \setminus C = \{\alpha_i \mid i \in \{1, ..., n\} \setminus I\}$ is not a KBD-diagnosis w.r.t. kDPI (Property 2) iff $\{c_i \mid i \in \{1, ..., n\} \setminus I\}$ is not an MBD-diagnosis for mDPI (Theorem 1) iff $\{c_i \mid i \in I\} = C$ is an MBD-conflict for mDPI ([Reiter, 1987, Prop. 4.2]).

		Example	
		000	

Example (cont'd)

i	α_i	\mathcal{K}	B
1	$out(X_1) = xor(in1(X_1), in2(X_1))$	•	
2	$out(X_2) = xor(in1(X_2), in2(X_2))$	•	
3	$out(A_1) = and(in1(A_1), in2(A_1))$	•	
4	$out(A_2) = and(in1(A_2), in2(A_2))$	•	
5	$out(O_1) = or(in1(O_1), in2(O_1))$	•	
6	$out(X_1) = in2(A_2)$		•
7	$out(X_1) = in1(X_2)$		•
8	$out(A_2) = in1(O_1)$		•
9	$in1(A_2) = in2(X_2)$		•
10	$in1(X_1) = in1(A_1)$		•
11	$in2(X_1) = in2(A_1)$		•
12	$out(A_1) = in2(O_1)$		•
13	$in1(X_1) = 1$		•
14	$in2(X_1) = 0$		•
15	$in1(A_2) = 1$		•
16	$out(X_2) = 1$		•
17	$out(O_1) = 0$		•
i	$p_i \in P$		
×	×		
i	$n_i \in N$		
×	×		
i	$r_i \in R$		
1	consistency		

>

i	α_i	SDbch	SD_{gen}	OBS
1	$\neg AB(X_1) \rightarrow beh(X_1)$	•		
2	$\neg AB(X_2) \rightarrow beh(X_2)$	•		
3	$\neg AB(A_1) \rightarrow beh(A_1)$	•		
4	$\neg AB(A_2) \rightarrow beh(A_2)$	•		
5	$\neg AB(O_1) \rightarrow beh(O_1)$	•		
6	$out(X_1) = in2(A_2)$		•	
7	$out(X_1) = in1(X_2)$		•	
8	$out(A_2) = in1(O_1)$		•	
9	$in1(A_2) = in2(X_2)$		•	
10	$in1(X_1) = in1(A_1)$		•	
11	$in2(X_1) = in2(A_1)$		•	
12	$out(A_1) = in2(O_1)$		•	
13	$in1(X_1) = 1$			•
14	$in2(X_1) = 0$			•
15	$in1(A_2) = 1$			•
16	$out(X_2) = 1$			•
17	$out(O_1) = 0$			•
	COMPS			
	$\{X_1, X_2, A_1,, X_n, X_n, X_n, X_n, X_n, X_n, X_n, X_n$	$4_2, O_1$		
с	beh(c) for	$c \in COMP$	PS	
X_1	$out(X_1) = xor(in$	$n1(X_1), i$	$in2(X_1))$	
X_2	$out(X_2) = xor(in$	$1(X_2), i$	$in2(X_2))$	
A_1	$out(A_1) = xor(in$	$n1(A_1), i$	$in2(A_1))$	
A_2	$out(A_2) = xor(in$	$n1(A_2), i$	$n2(A_2))$	
O_1	$out(O_1) = xor(in$	$n1(O_1), i$	$in2(O_1))$	
i	ME	AS		
×	>	<		

EDI I ED ORE

MBD-DPI

KBD-DPI

		Example 000	
_			

Example (cont'd)

	I	I	
`	ł	Y	

 $\{X_1, X_2\}, \{X_1, A_2, O_1\}$

min MBD-diagnoses

 $\{X_1\}, \{X_2, A_2\}, \{X_2, O_1\}$

Minimal MBD-conflicts and MBD-diagnoses

min KBD-conflicts
$\{lpha_1, lpha_2\}, \{lpha_1, lpha_4, lpha_5\}$
min KBD-diagnoses
$\left\{ \alpha_{1} ight\} ,\left\{ \alpha_{2},\alpha_{4} ight\} ,\left\{ \alpha_{2},\alpha_{5} ight\}$

Minimal KBD-conflicts and KBD-diagnoses

				Conclusions	
Les	sons learned	d			

- Can find all MBD-diagnoses and MBD-conflicts for any MBD problem by representing it as a KBD problem and solving the latter for KBD-diagnoses and KBD-conflicts, respectively
- Sequential MBD problem is a special case of Sequential KBD problem: Former can be solved for a given MBD-DPI *MP* by reducing *MP* to a KBD-DPI *KP* and solving latter for *KP* under the restriction that $N_{new} = \emptyset$
- Methods targeting KBD-problem are more general than those addressing MBD-problem as they allow the specification of negative information N_{new} in addition to positive one (P_{new} and MEAS_{new}, respectively)
- Existing KBD methods such as [Felfernig et al., 2004], [Shchekotykhin et al., 2012] and [Rodler, 2015] are suitable to be used for solving arbitrary MBD problems as per [Reiter, 1987] and [de Kleer & Williams, 1987]

References

[de Kleer & Williams, 1987] DE KLEER, J., AND WILLIAMS, B. C.

Diagnosing multiple faults. Artificial Intelligence 32, 1 (1987), 97–130.

[Felfernig et al., 2004] FELFERNIG, A., FRIEDRICH, G., JANNACH, D., AND STUMPTNER, M.

Consistency-based diagnosis of configuration knowledge bases. *Artificial Intelligence 152*, 2 (2004), 213 – 234.

[Reiter, 1987] REITER, R.

A Theory of Diagnosis from First Principles. *Artificial Intelligence 32*, 1 (1987), 57–95.

[Rodler, 2015] RODLER, P.

Interactive Debugging of Knowledge Bases. PhD thesis, Alpen-Adria Universität Klagenfurt, 2015. goo.gl/NTszUY.

[Shchekotykhin et al., 2012] SHCHEKOTYKHIN, K., FRIEDRICH, G., FLEISS, P., AND RODLER, P. Interactive Ontology Debugging: Two Query Strategies for Efficient Fault Localization. Web Semantics: Science, Services and Agents on the World Wide Web 12-13 (2012), 88–103.

