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Abstract

Constraint answer set programming (CASP) is a
family of hybrid approaches integrating answer set
programming (ASP) and constraint programming
(CP). These hybrid approaches have already proven
to be very successful in various domains. In this pa-
per we present the CASP solver ASCASS (A Sim-
ple Constraint Answer Set Solver) which provides
novel methods for defining and exploiting search
heuristics. Beyond the possibility of using already
built-in problem-independent heuristics, ASCASS
allows on the ASP level the definition of problem-
dependent variable selection, value selection and
pruning strategies which guide the search of the CP
solver. The concepts are exemplified and evaluated
with respect to the real world Partner Units Problem
(PUP). Due to a sophisticated heuristic, which can-
not be represented by other ASP or CASP solvers,
ASCASS shows superior performance.

1 Introduction
During the last decade, Answer Set Programming (ASP) un-
der the stable model semantics [Gelfond and Lifschitz, 1988]
has evolved to an extremely powerful approach for solving
combinatorial problems. Especially conflict-driven search
mechanisms contributed to the high performance of state-
of-the-art solvers [Gebser et al., 2012]. Furthermore, ASP
provides superior problem encoding capabilities as ASP is
strongly declarative in nature and even provides language fea-
tures which go beyond first order.

However, the expressive power on the one hand and the
mighty conflict-driven search approach on the other hand
does not come for free. Current ASP solvers employing
conflict-driven search transform the higher-order problem
representation to propositional logic. This transformation
(called grounding) constitutes the space bottleneck of nowa-
days ASP systems. Once the grounding step is completed,
the performance of the conflict-driven search in combina-
tion with state-of-the-art look-back heuristics like VSIDS and
restarts [Lewis et al., 2005] typically shows superior perfor-
mance compared to other search approaches. Yet, grounding
is not possible for many industrial-sized problem instances.

Figure 1: Grounding size for the incremental scheduling
problem with respect to number of job operations

Firgure 1 shows how the size of the grounding explodes
for the incremental scheduling problem instances from the
ASP competition1. For the instances incorporating 120 job
operations the size of the grounding is more than 50 GByte.

In industrial scheduling domains the sizes of problem in-
stances are typically significantly higher. Scheduling in-
stances of our project partners Infineon Austria incorporate
>10000 job operations for a weekly workload performed on
>100 machines in the back-end (i.e. where chips are cut and
packaged) and >100000 job operations for a weekly work-
load performed on >1000 machines in the front-end (i.e.
where the chips are actually produced). Thus, such instances
are clearly out of reach for conventional ASP approaches.

One approach that emerged also out of the need of eas-
ing the grounding was Constraint Answer Set Programming
(CASP) [Mellarkod et al., 2008]. CASP can be seen as a
hybrid approach extending ASP by Constraint Programming
(CP) features. Conceptually, it is very close to satisfiability
(SAT) modulo theory approaches which integrate first-order
formulas with additional background theories such as real
numbers or integers [Sebastiani, 2007].

For combining ASP and CP there are basically two ap-
proaches. First, solvers like Clingcon [Ostrowski and Schaub,
2012] are based on the extension of the ASP input language in
order to support the definitions of constraints. A different ap-
proach has been introduced by [Balduccini, 2009] where ASP

1Find instances encodings and grounders/solvers at
www.mat.unical.it/aspcomp2014. Our tests were done with
gringo4 and the provided ’new’ encoding.



and CP are not integrated into one language. ASP rather acts
as a specification language for Constraint Satisfaction Prob-
lems (CSPs). The main idea is that answer sets constitute
CSP encodings which are used as input for a CP solver.

For certain classes of problems like industrial-sized
scheduling CASP was already successfully applied [Balduc-
cini, 2011]. Especially search problems with large variable
domains often profit from the CASP representation due to the
alleviation of the grounding bottleneck [Lierler et al., 2012].

Of course, the complexity of problem solving does not van-
ish by easing the grounding bottleneck but it is rather shifted
from grounding in ASP to search in CP. In the context of
CASP, often a majority of the solution calculation is done
by the CP solver. Hence, the applied search strategies on the
CP level play a crucial role for the successful application of
CASP in real-world problem domains. However, up to now
there was no focus on the development of sophisticated fea-
tures for expressing and exploiting search strategies in CASP
solvers. Consequently, the means for expressing and exploit-
ing search strategies on the CP level are rather limited.

Clingcon does not provide any means for influencing the
search of the underlying CP solver Gecode2. In EZCSP3 (see
[Balduccini, 2009]) there is a set of built-in strategies depend-
ing on the underlying CP solver that can be used. In case
of Sicstus Prolog as a CP solver, the value selection strate-
gies step (min domain value, when ascending order is used,
max domain value when descending order is used) and bisect
(bisection of the domain in the middle) are available. Sim-
ilarly in case of B-Prolog, the bisection strategies split and
reverse split are supported. The supported variable selection
strategies are leftmost (leftmost variable), min (leftmost vari-
able with minimal lower bound), max (leftmost variable with
maximal upper bound), and ff (first-fail).

Clearly, for many real-world problem domains problem-
independent strategies are not sufficient and problem-
dependent heuristics are needed. Any problem-dependent
heuristic on the CP level basically consists of three compo-
nents:

1. a problem-dependent variable selection strategy
2. a problem-dependent value selection strategy
3. a problem-dependent pruning strategy

In EZCSP, problem-dependent variable selection strategies
are already possible. By the special predicate label order it
is possible to define the order in which the CSP variables are
processed by the CP solver. What is missing is the possibility
of expressing custom value ordering and pruning strategies.

In this paper we present ASCASS, a novel CASP solver
which uses Clingo for answer set solving and the Java frame-
work Jacop for CP solving. ASCASS combines and extends
the heuristic possibilities of state-of-the-art CASP solvers and
makes them completely available on the problem encoding
level. Beyond the usage of built-in strategies, ASCASS pro-
vides powerful constructs for the formulation and exploita-
tion of problem-dependent heuristics consisting of variable
selection, value selection and pruning strategies.

2www.gecode.org
3mbal.tk/ezcsp/index.html

By means of the real-world Partner Units Problem (PUP),
which constitutes one of the hardest benchmarks in the ASP
competition, we exemplify problem encoding in ASCASS.
We furthermore show how to express the currently most pow-
erful heuristic for this problem in ASCASS. It is shown
that due to this heuristic, which, to the best of our knowl-
edge, can not be expressed within any other ASP or CASP
approach, ASCASS outperforms state-of-the-art ASP and
CASP solvers.

2 A Simple Constraint Answer Set Solver
Architecture ASCASS4 is a CASP solver following the
approach of [Balduccini, 2009], i.e. the input language is
pure ASP and the answer sets encode CSPs. Figure 2 shows
the overall architecture of ASCASS. Answer set production
(grounding and solving) is done by Clingo5, which is cur-
rently one of the most powerful ASP systems. The input lan-
guage is the ASP standard ASP-Core-26.

After answer set solving, a produced answer set is handed
over to a parsing module that extracts the facts which encode
the CSP and search directives. This information is used to
instantiate a corresponding CSP in the CP solver and perform
search conforming to the given search directives. Currently,
Jacop7 is used within ASCASS as a CP solver. In case that
the CSP could not be solved by the CP solver or a timeout oc-
curred (defined by the special predicate csptimeout(∆)), the
process continues with the next answer set, until a solution is
found, or there are no more answer sets. The empty CSP (i.e.
when there is not a single CSP variable) is always satisfiable
and possesses the empty CSP solution.

Encoding of CSPs ASCASS focuses on finite discrete
Constraint satisfaction problems (CSPs). CSPs can be de-
fined as three-tuples of the form 〈V,D = {dom(v)|v ∈
V }, C〉 whereby V is a set of variables, D is the set of do-
mains of the variables in V and C is a set of constraints
on variables in V . A solution to a CSP is an assignment
∀v ∈ V, v := d ∈ dom(v) such that all constraints c ∈ C
are fulfilled. In order to encode a CSP within ASCASS there
can be used a number of specific predicates. Of course, in the
input these predicates can contain variables. The following
explanations refer to their grounded form.

The predicates cspvar(α, λ, υ) and cspvar(α, λ, υ, η) are
responsible for encoding CSP variables. Hereby, α represents
the variable name and λ and υ represent respectively the nu-
merical lower and upper bound of the variable’s domain. For
example cspvar(x, 1, 10) stands for a CSP variable v with
the domain [1..10]. The numerical priority η is used to define
a custom variable selection ordering. When using the variable
selection strategy priority (see below), the CP solver selects
the variable with the highest priority first.

The predicate cspconstr(α, ρ, τ) encodes a relational con-
straint (i.e. =, <>,<,<=, >,>=) over a variable α. ρ

4www.dropbox.com/l/sh/A0jQqrE9kiNTXDmV9FrQhr
5sourceforge.net/projects/potassco/files/clingo
6www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.03b.pdf
7jacop.osolpro.com



Figure 2: Architecture of ASCASS

denotes the type of relation and must be a constant out of
{eq, neq, lt, lteq, gt, gteq}. τ denotes another CSP variable
or a numerical constant. For example, cspconstr(x, lt, 5) ex-
presses that variable x must be lower than 5.

The predicate csparith(α, π, β, ρ, γ) encodes arithmetic
constraints. α, β and γ are CSP variable names. Like for
cspconstr, the constant ρ denotes the type of relation. π is a
constant standing for an arithmetic operation. Currently, AS-
CASS supports addition (plus), subtraction (minus), multi-
plication (mult), division (div) and exponent (exp). For ex-
ample, csparith(xa, plus, xb, eq, xc) states that the sum of
the values of xa and xb must be equal the value of xc.

For expressing logical constraints predicates of the form
cspif(Ξ1, and,Ξ2, and, . . . , and,Ξm, then,Ξm+1, or,Ξn)
can be used. Each Ξ consists of a variable α, a relational
symbol ρ and another variable or numerical constant τ . For
example, cspif(x, lt, 5, and, y, gt, 10, then, z, gteq, 0) is to
be read as ‘if x is lower than 5 and y is greater than 10 then z
must be non-negative’.

Global constraints are constraints over arrays of vari-
ables. In ASCASS global constraints are defined
by predicates of the form cspglobal(σ1, . . . , σm, κ) and
cspglobal(σ1, . . . , σm, κ, τ1, . . . , τn). κ is a constant denot-
ing the type of global constraint. σ1, . . . , σm represent ar-
rays of variables. τ1, . . . , τn represent single CSP variables
or integers. ASCASS currently supports the following global
constraints8:

• min: cspglobal(σ,min, τ), the minimum value of the
variables σ is equal to τ

• max: cspglobal(σ,max, τ), the maximum value of the
variables σ is equal to τ

• sum: cspglobal(σ, sum, τ), the sum of values of the
variables σ is equal to τ

• count: cspglobal(σ, count, τ1, τ2), τ1 is equal to the
counted number of variables in σ with value τ2
• global cardinality: cspglobal(σ1, σ2, gcc), a more gen-

eral counting constraint where the occurring values in σ1
are counted in the corresponding counter variables in σ2
• all different: cspglobal(σ, alldiff), all variables in σ

are mutually unequal

8More information about global constraints can be
found at http://jacop.osolpro.com/guideJaCoP.pdf and
http://sofdem.github.io/gccat/

Figure 3: Concept of variable arrays in ASCASS

• element: cspglobal(σ, element, τ1, τ2), the value of the
τ1-th variable in σ is equal to τ2
• cumulative: cspglobal(σ1, σ2, σ3, cumulative, τ), σ1

represents the starting times of |σ1|many jobs, σ2 repre-
sents the durations of the jobs, σ3 represents the amounts
of needed resources of the jobs and τ represents the
allowed accumulated amount of resources at any time
point

• bin packing: cspglobal(σ1, σ2, σ3, binpacking), σ1
represents bin assigments for |σ1| many items, σ2 rep-
resents the bin sizes of the |σ2| many bins and σ3 repre-
sents the item sizes

In order to address arrays of CSP variables, ASCASS
not only allows simple constants but also n-ary func-
tional terms for variable names of the form φ(ι1, . . . , ιn)
with ι1, . . . , ιn representing string or integer arguments
(see Figure 3). The special functional argument all acts
as a placeholder and can be used for addressing arrays
of variables. For example, take the four variable def-
initions cspvar(v(1, 1), 1, 10), cspvar(v(1, 2), 1, 10),
cspvar(v(2, 1), 1, 10) and cspvar(v(2, 2), 1, 10). A
natural interpretation of the arguments is row and col-
umn of a two-dimensional variable array. Consequently,
cspglobal(v(all, 2), alldiff) expresses that the values of all
second column’s variables, in our case v(1, 2) and v(2, 2),
must be different to each other. v(all,all) stands for all
variables in the two-dimensional array, i.e. all variables
formed by the functional symbol v with arity 2.

Encoding of variable selection strategies Apart from the
predicates for defining a CSP, ASCASS provides predi-
cates for steering the search of the CP solver. The predi-
cates cspvarsel(ε) and cspvarsel(ε, θ) define the variable
selection strategy to be used. Herby, ε is the primary
selection strategy and, if defined, θ acts as a tiebreaker.



For variable selection, ASCASS currently supports the
problem-independent built-in strategies smallestDomain,
mostConstrainedStatic, mostConstrainedDynamic, smallest-
Min, largestDomain, largestMin, smallestMax, maxRegret,
weightedDegree and the problem-dependent strategy priority.

When using the priority-strategy, ASCASS builds an or-
dering of the CSP variables based on the provided priorities
η in cspvar(α, λ, υ, η). Variables with high priorities are se-
lected first. Variables for which there is no η defined are se-
lected as the last ones. Hence, the priority strategy in combi-
nation with the variable priorities is similar to the label order
predicate in Balduccini’s EZCSP.

Encoding of value selection strategies For value selec-
tion ASCASS provides the predicates cspvalsel(φ) and
cspvalsel(φ, ϕ) where φ and ϕ are constants denoting
the strategy. As it is often important to have different
value selection strategies for different sets of variables,
ASCASS provides also the predicates cspvalsel(σ, φ) and
cspvalsel(σ, φ, ϕ) where σ represents an array of vari-
ables like in global constraints. ASCASS supports the al-
ready built-in strategies indomainMin, indomainMiddle, in-
domainMax and indomainRandom. For expressing problem-
dependent value selection strategies, the novel strategy indo-
mainPreferred can be used.

When using indomainPreferred, the CP solver first tries
to use specified values before changing to the built-in strat-
egy ϕ (minDomain if not stated otherwise). For specify-
ing preferred values, ASCASS provides the special predicate
cspprefer(α, ρ, τ) and cspprefer(α, ρ, τ, η). Like for rela-
tional constraints, α represents a CSP variable, ρ represents
a relational symbol and τ stands for a further variable or a
numerical constant. For example, cspprefer(v, eq, 5) states
that for the CSP variable v a preferred value is 5. In order
to specify an ordering of the specified values, it is possible to
make use of a numerical priority η. Higher priority statements
are taken into account first by ASCASS. For example, if there
is given cspprefer(v, eq, 5, 1) and cspprefer(v, eq, 20, 2),
ASCASS tries to first label v with 20 and only after that with
5. Of course, only preferred values are taken into account
which are still in the variable’s domain. In case that τ de-
notes another variable, the minimum value in the current do-
main of τ is used as a preferred value, i.e. τ does not need
to be singleton for specifying a preferred value of α. This in
combination with global constraints is a highly dynamic and
powerful mechanism.

As with the relational constant eq in combination with the
priorities η every ordering of preferred values can be ex-
pressed, the usage of lt, lteq, gt and gteq can be clearly seen
as syntactic sugar. By using lt, lteq, gt and gteq sets of pre-
ferred values can be expressed:

• lteq τ : {τ, τ − 1, . . . ,−∞}
• lt τ : {τ − 1, . . . ,−∞}
• gteq τ : {τ, τ + 1, . . . ,∞}
• gt τ : {τ + 1, . . . ,∞}
Note that all preferred values of such a set P have

the same priority (possibly given explicitly by η). For

defining an order relation over P , i.e. fix the order in
which ASCASS considers the preferred values in P , the
following holds: For lt and lteq decreasing order is used,
i.e. τ, τ − 1, . . . ,−∞ and for gt and gteq increasing order
is used, i.e. τ, τ + 1, . . . ,∞. For example having the
variable definition cspvar(v, 1, 10) and the value selection
strategy cspvalsel(indomainPreferred, indomainMin),
cspprefer(v, lt, 5) would effect that ASCASS con-
siders the domain values in the following order:
4, 3, 2, 1, 5, 6, 7, 8, 9, 10. The reason why for lt and
lteq descending order and for gt or gteq ascending order
is used is simply the following: Would it be the other way
round, the behavior with lt and lteq would conform to
indomainMin and with gt and gteq to indomainMax.

Encoding of pruning strategies The third component of
many problem-dependent heuristics is the pruning strategy.
For specifying how a search tree is pruned, ASCASS pro-
vides the special predicate cspsearch(ω, µ). Hereby, ω spec-
ifies the pruning type and µ specifies a numerical limit that,
when reached, triggers backtracking. Again it could be bene-
ficial having different limits for different groups of variables
or even having no limit on certain variables whilst search on
others is limited. To this, ASCASS provides the predicate
cspsearch(σ, ω, µ) with σ denoting an array of variables like
for global constraints.

Currently, ASCASS provides two pruning types.
cspsearch(limit, µ) limits the number of wrong deci-
sions for variables. If the number µ of wrong choices for a
variable is reached, backtracking is triggered and the counter
for the variable is reset. For example, cspsearch(limited, 3)
specifies that for every variable v there must not be more than
three labeling trials for v within a search branch. The second
pruning type is based on limited discrepancy search [Harvey
and Ginsberg, 1995] and operates on the level of search
paths. When specifying cspsearch(lds, µ) only a certain
number of wrong decisions (called discrepancies) along the
whole search path is allowed. If this number reaches µ,
backtracking is triggered.

3 Proof of Concept
We want to exemplify the expressive power of ASCASS with
respect to the partner units problem (PUP) out of three rea-
sons.

1. The PUP is a real world combinatorial problem with
many different application domains [Aschinger et al.,
2011].

2. The PUP is one of the hardest benchmark problems par-
ticipating in the ASP competitions9.

3. There exists an effective problem-dependent heuristic to
solve the PUP.

The PUP originates in the domain of railway safety sys-
tems. One of the problems in this domain is to make sure that
certain rail tracks are not occupied by a train/wagon before

9Further information can be found at
www.mat.unical.it/aspcomp2014/



another train enters this track. The signals for the correspond-
ing occupancy indicators are calculated by special processing
units based on the input of several observing sensors. Be-
cause of fail-safety and realtime requirements the number of
sensors respectively indicators which can be connected to the
same unit is limited (called unit capacity, UCAP). Also one
sensor/indicator device can only be directly connected to one
unit. However, a unit can be connected to a limited num-
ber (called inter unit capacity, IUCAP) of other units. These
units are called the partner units of the unit. Devices (i.e.
sensors and indicators) can only communicate with devices
connected to the same unit and with devices connected to one
of the partner units. Given the IUCAP, UCAP and a bipar-
tite input graph represented by edges specifying which sen-
sor data is needed in order to calculate the correct signal of
an occupancy indicator, the problem consists in connecting
sensors/indicators with units and units with other units such
that all communication requirements are fulfilled and IUCAP
and UCAP are not violated.

The state-of-the-art heuristic for solving PUP is the Quick-
Pup heuristic proposed in [Teppan et al., 2012]. QuickPup
is based on three major techniques. First, based on the input
graph and a distinguished root indicator, QuickPup produces
a topological ordering of the devices, which is basically the
minimum distances from the root indicator to all other de-
vices. The distance to itself is zero, the distance to the direct
neighbors is one, the distance to the neighbors of the neigh-
bors is two and so forth. This reflects the (partial) ordering
in which the devices should be processed. Second, for each
device, first try to place it on the next empty unit and if this is
unsuccessful try the already used units in descending order.
Third, try different root indicators, and consequently differ-
ent topological orderings, and limit search for each trial. The
intuition behind that is that not all root indicators are equally
good to start search from.

The input comprises of a set of egde(i, s) facts where i
takes the numerical id of an indicator and s takes the id of a
sensor. Additionally the input includes a fact ucap(x) with
x > 0 that defines the unit capacity (UCAP) and a fact
iucap(y) with y > 0 that defines the inter-unit capacity (IU-
CAP).

For the code snippets given in the remainder of this section
we use the standard notation of logic programming and ex-
plain extensions regarding ASP as needed. For the purposes
of this paper, answer sets can be seen as minimal logic models
and answer set production can be thought of applying forward
chaining.

In order to produce explicit indicator and sensor informa-
tion the following lines of code are used:
sensor(S):-edge(I,S).
indicator(I):-edge(I,S).
numIndicators(N):-N=#count{I:indicator(I)}.
numSensors(N):-N=#count{S:sensor(S)}.

The number of indicators (numIndicators) respectively
sensors (numSensors) are calculated by means of the
#count aggregate literal provided by Clingo.

We restrict the number of units (numUnits) available
for a solution to the theoretical minimum plus two, i.e.
numUnits =

⌈
max(numIndicators,numSensors)

UCAP

⌉
+ 2:

max(M):-numIndicators(E),numSensors(F),M=#max(E;F).
numUnits(N):-max(M),ucap(C),N=((M+1)/C)+2.
unit(Z):-numUnits(N),1<=Z,Z<=N.

Of course, the number of units is to be changed for optimiza-
tion purposes.

For each indicator i there is a CSP variable device(i, 1) and
for each sensor s there is a CSP variable device(s, 2). This
way it is also possible to refer to the array of all CSP device
variables as device(all, all), to only the indicator variables
as device(all, 1) and to the sensor variables as device(all, 2)
which will be useful later. The value range for these CSP
variables is [1..numUnits]. Furthermore, the variables get a
priority defining the topological order in which they are la-
beled by ASCASS:
cspvar(device(I,1),1,N,P):-numUnits(N),iPriority(I,P).
cspvar(device(S,2),1,N,P):-numUnits(N),sPriority(S,P).

The calculation of the priorities is explained in detail below.
In order to assure UCAP, for each unit u there are two

counting variables ci(u) and cs(u). These variables can take
values in the range [0..UCAP ]. Furthermore, for each unit u
there are two count global constraints counting the number
of indicator respectively sensor variables taking the value u:
cspvar(ci(U),0,C):-ucap(C),unit(U).
cspvar(cs(U),0,C):-ucap(C),unit(U).
cspglobal(device(all,1),count,ci(U),U):-unit(U).
cspglobal(device(all,2),count,cs(U),U):-unit(U).

In order to capture which unit u1 is connected to which unit
u2 there are numUnits × numUnits many CSP variables
(i.e. conn(U1, U2)). The variables can take values in the
range [0..1] if u1 <> u2. Otherwise, the variables’ ranges
consists of only a single value, i.e. [1..1]. This is because
in our model each unit u is always connected to itself. Fur-
thermore, there is a constraint assuring symmetry, i.e. if u1 is
connected to u2 also u2 is connected to u1:
cspvar(conn(U1,U2),0,1):-unit(U1),unit(U2),U1<>U2.
cspvar(conn(U,U),1,1):-unit(U).
cspconstr(conn(U1,U2),eq,conn(U2,U1)):-unit(U1),unit(U2),

U1<U2.

For summing up how many units are connected to a
unit u we make use of the global sum constraint. The
used summing variables can hereby take values in the range
[1..IUCAP + 1] as every unit is also connected to itself:
cspvar(sumconns(U),1,K+1):-iucap(K),unit(U).
cspglobal(conn(U,all),sum,sumconns(U)):-unit(U).

In order to make the summing variables and constraints
take effect, it must be assured that any connection variable
conn(u1, u2) is set to one whenever there is an edge(i, s) in
the input so that device(i, 1) = u1 and device(s, 2) = u2.
Following the approach of [Drescher, 2012], this is imple-
mented by means of the global element constraint. Given
an array of CSP variables arr, an index i and a value v,
an element constraint assures that the ith variable in arr is
equal to v. In our case, for each edge(i, s) in the input there
is such a global constraint setting the appropriate connection
variable within conn(all, all) to one:
cspglobal(conn(all,all),element,index(I,S),1):- edge(I,S).

As the element constraint cannot directly handle multi-
dimensional arrays, the respective index is calculated as
index(i, s) = (device(i, 1)−1)×numUnits+device(s, 2).

The priorities for the device variables (i.e. device(i, 1) and
device(s, 2) are based on a topological ordering of the de-
vices. Given the layer of a sensor or indicator whereby the



root of the topological graph is at layer zero, the priority is
higher the lower the layer is:
iPriority(I,P):-indicatorLayer(I,L),P=9999-L.
sPriority(S,P):-sensorLayer(S,L),P=9999-L.

The effect is that given a root indicator, ASCASS first tries
to label the root indicator, then the neighbors of the root in-
dicator, then the neighbors of the neighbors, and so on. In
our implementation a choice rule is used to express that there
is exactly one distinguished indicator that acts as root. This
indicator is always placed at the first unit:
1{root(I):indicator(I)}1.
cspconstr(device(I,1),eq,1):-root(I).

The choice rule 1{root(I) : indicator(I)}1 produces one
answer set for each root indicator and asserts a root(i) fact.

For calculating the actual layers, we first calculate the min-
imum distances to the root whereas root indicator has a zero
distance to itself10:
indicatorDist(I0,0):-root(I0).
sensorDist(S,D+1):-indicatorDist(I,D),edge(I,S),

numDevices(M),D<M.
indicatorDist(I,D+1):-sensorDist(S,D),edge(I,S),

numDevices(M),D<M.
numDevices(N):-numIndicators(E),numSensors(F),N=E+F.

The layers are calculated by using the #min aggregate lit-
eral from Clingo:
indicatorLayer(I,Dmin):-indicator(I),

Dmin=#min{D:indicatorDist(I,D)}.
sensorLayer(S,Dmin):- sensor(S),

Dmin = #min{D:sensorDist(S,D)}.

First to try to place devices on unused units and, only if
not successful, on used units in descending order can be ex-
pressed in ASCASS by means of preferred values:
cspprefer(device(I,1),lteq,nextUnit):-indicator(I).
cspprefer(device(S,2),lteq,nextUnit):-sensor(S).

The CSP variable nextUnit points to the next unused unit,
which is the last used unit plus one11:
cspvar(lastUnit,1,N):-numUnits(N).
cspvar(nextUnit,1,N+1):-numUnits(N).
csparith(lastUnit,plus,one,eq,nextUnit).

For the calculation of the last used unit, i.e. the highest
number taken by some device(i, 1) or device(s, 2) variable,
the global max constraint is used:
cspglobal(device(all,all),max,lastUnit).

As ASCASS uses the lower bound of variables for calculating
the preferred values, each device variable is first tried to be
bound to values lower than or equal to the lower bound of
nextUnit = lastUnit+ 1 in descending order.

In order to control how many units are maximally tried per
device variable, the search is pruned such that only the next
unit and a limited number of already used units can be tried
before backtracking is triggered. In our implementation we
use the following statement for only trying the next and the
last unit:
cspsearch(limited,2).

For making ASCASS respect the problem-
dependent selection strategies, cspvarsel(priority) and
cspvalsel(device(all, all), indomainPreferred) must
be included. Thus, QuickPup can be fully expressed in a
declarative way by ASCASS. To the best of our knowledge,
this is not possible within any other ASP or CASP approach.

10In order to make grounding safe, we have to limit the maximum
possible distance which is equal to the total number of devices.

11Within the constraint, the helping variable cspvar(one, 1, 1) is
used as arithmetic constraints only accept variables in ASCASS.

# Clingo ASCASS Clingcon Ezcsp
double(IUCAP=2) 10 2 10 0 2
doublev(IUCAP=2) 6 3 6 0 0
triple(IUCAP=2) 5 2 5 0 2
triple(IUCAP=4) 7 6 7 0 3
grid(IUCAP=4) 10 10 10 0 0
total 38 23 38 0 7

Table 1: Solved instances whithin 600 seconds

Evaluation We tested the ASP solver Clingo 4 and the
CASP solvers ASCASS, Clingcon and Ezcsp on the PUP
benchmark suite used in [Aschinger et al., 2011]12. Clingo
was tested using the PUP encoding proposed in [Aschinger et
al., 2011]. The tests were run on a 3.2 Ghz machine with 64
GByte of RAM, assuring that the grounding bottleneck does
not play a role for the tested instances13 and performance can
be attributed to the search phase.

In the Clingcon model, CSP variable selection, value selec-
tion or pruning strategies cannot be manipulated. For Ezcsp,
it is possible to express the topological variable orderings
similar to ASCASS. However, there are no means for pruning
search or problem-dependent value strategies.

Table 1 depicts how many instances of each type in the
benchmark suite could be solved by the different approaches
within a 600 seconds time frame. Clingo using VSIDS
heuristic peformed very well on the benchmark suite show-
ing once again that the conflict-driven search techniques em-
ployed by Clingo are quite powerful. Also Ezcsp was able to
solve some instances. Using other built-in heuristics did not
result in better performance. Clingcon was not able to solve
a single instance. This supports the finding in [Lierler et al.,
2012] that propagation between ASP and CP does not yet per-
form optimal in Clingcon. In the contrary, ASCASS was able
to solve all 38 instances before a timeout occurred. In fact,
every instance could be solved within (typically much) less
than 70 seconds which can be attributed to the sophisticated
QuickPup heuristic. This was crosschecked by removing the
heuristic from the ASCASS problem encoding which effected
that also no instance could be solved within time limits.

Conclusions It can be said that constraint answer set pro-
gramming (CASP) tries to combine the best from two dif-
ferent worlds. Within this scope, ASCASS provides supe-
rior features for using search heuristics. Apart from built-in
problem-independent heuristics, ASCASS facilitates the ex-
ploitation of problem-dependent variable selection, value se-
lection and pruning strategies. On the back of the real-world
Partner Units Problem, which constitutes one of the hard-
est benchmark problems of the ASP competitions, we exem-
plified problem encoding in ASCASS. We could show that
the non-trivial problem-dependent QuickPup heuristic can be
expressed quite naturally in ASCASS. Due to the heuris-
tic, which cannot be expressed by any other ASP or CASP
system, ASCASS outperforms state-of-the-art ASP or CASP
systems on the tested instances.

12www.dropbox.com/l/sh/A0jQqrE9kiNTXDmV9FrQhr
13The biggest grounding in the ASP model was ∼ 12 GByte.
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